On the transition from smoldering to flaming

We consider the transition from smoldering to flaming. Though there have been numerous experimental studies of this topic, it has been virtually untouched theoretically. Rather than investigating the details of either the transition process or the subsequent flaming, we focus on determining the mech...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame Vol. 145; no. 3; pp. 579 - 606
Main Authors: Aldushin, A.P., Bayliss, A., Matkowsky, B.J.
Format: Journal Article
Language:English
Published: Elsevier Inc 01-05-2006
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the transition from smoldering to flaming. Though there have been numerous experimental studies of this topic, it has been virtually untouched theoretically. Rather than investigating the details of either the transition process or the subsequent flaming, we focus on determining the mechanism and the conditions that trigger the transition. We employ both computation and approximate analytical approaches. We consider a planar, forward smolder wave driven by a constant forced flow of gas containing oxidizer. The chemical kinetic scheme employed consists of three reactions, namely, pyrolysis, fuel oxidation, and char oxidation. There have been a number of speculations about the nature of the triggering mechanism, including the gaseous reactions, the char oxidation reaction, destruction of the porous matrix through which the smolder wave propagates, and others. However, no mechanism has, as yet, been theoretically demonstrated to be capable of acting as the triggering mechanism. We show that the char oxidation reaction hardly affects the characteristics of smolder wave propagation due to its small reaction rate, though under appropriate conditions, it can act as the trigger for the transition to flaming due to its ability to self-accelerate. Specifically, we introduce the concept of, and then compute, a quantity that we term the flaming distance, L F . This is the distance that a steadily propagating smolder wave initiated at the gas flux inlet travels inside the porous medium before the char oxidation reaction spontaneously self-accelerates, resulting in an eruption of the temperature at the smolder front. That is, the smolder wave propagates for a relatively long latent period of time until it reaches L F . A transition to flaming then occurs. The flaming distance L F depends on the physicochemical parameters of the fuel and the products as well as external parameters: the velocity and composition of the incoming gas, heat loss, etc. We show that smolder waves propagating in porous samples of length L do (do not) exhibit a transition to flaming if L F < L ( L F > L ).
AbstractList We consider the transition from smoldering to flaming. Though there have been numerous experimental studies of this topic, it has been virtually untouched theoretically. Rather than investigating the details of either the transition process or the subsequent flaming, we focus on determining the mechanism and the conditions that trigger the transition. We employ both computation and approximate analytical approaches. We consider a planar, forward smolder wave driven by a constant forced flow of gas containing oxidizer. The chemical kinetic scheme employed consists of three reactions, namely, pyrolysis, fuel oxidation, and char oxidation. There have been a number of speculations about the nature of the triggering mechanism, including the gaseous reactions, the char oxidation reaction, destruction of the porous matrix through which the smolder wave propagates, and others. However, no mechanism has, as yet, been theoretically demonstrated to be capable of acting as the triggering mechanism. We show that the char oxidation reaction hardly affects the characteristics of smolder wave propagation due to its small reaction rate, though under appropriate conditions, it can act as the trigger for the transition to flaming due to its ability to self-accelerate. Specifically, we introduce the concept of, and then compute, a quantity that we term the flaming distance, L F . This is the distance that a steadily propagating smolder wave initiated at the gas flux inlet travels inside the porous medium before the char oxidation reaction spontaneously self-accelerates, resulting in an eruption of the temperature at the smolder front. That is, the smolder wave propagates for a relatively long latent period of time until it reaches L F . A transition to flaming then occurs. The flaming distance L F depends on the physicochemical parameters of the fuel and the products as well as external parameters: the velocity and composition of the incoming gas, heat loss, etc. We show that smolder waves propagating in porous samples of length L do (do not) exhibit a transition to flaming if L F < L ( L F > L ).
We consider the transition from smoldering to flaming. Though there have been numerous experimental studies of this topic, it has been virtually untouched theoretically. Rather than investigating the details of either the transition process or the subsequent flaming, we focus on determining the mechanism and the conditions that trigger the transition. We employ both computation and approximate analytical approaches. We consider a planar, forward smolder wave driven by a constant forced flow of gas containing oxidizer. The chemical kinetic scheme employed consists of three reactions, namely, pyrolysis, fuel oxidation, and char oxidation. There have been a number of speculations about the nature of the triggering mechanism, including the gaseous reactions, the char oxidation reaction, destruction of the porous matrix through which the smolder wave propagates, and others. However, no mechanism has, as yet, been theoretically demonstrated to be capable of acting as the triggering mechanism. We show that the char oxidation reaction hardly affects the characteristics of smolder wave propagation due to its small reaction rate, though under appropriate conditions, it can act as the trigger for the transition to flaming due to its ability to self-accelerate. Specifically, we introduce the concept of, and then compute, a quantity that we term the flaming distance, L sub(F). This is the distance that a steadily propagating smolder wave initiated at the gas flux inlet travels inside the porous medium before the char oxidation reaction spontaneously self-accelerates, resulting in an eruption of the temperature at the smolder front. That is, the smolder wave propagates for a relatively long latent period of time until it reaches L sub(F). A transition to flaming then occurs. The flaming distance L sub(F) depends on the physicochemical parameters of the fuel and the products as well as external parameters: the velocity and composition of the incoming gas, heat loss, etc. We show that smolder waves propagating in porous samples of length L do (do not) exhibit a transition to flaming if L sub(F)-L (L sub(F)>L).
Author Aldushin, A.P.
Bayliss, A.
Matkowsky, B.J.
Author_xml – sequence: 1
  givenname: A.P.
  surname: Aldushin
  fullname: Aldushin, A.P.
  organization: Institute for Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 142432 Chernogolovka, Russia
– sequence: 2
  givenname: A.
  surname: Bayliss
  fullname: Bayliss, A.
  organization: Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
– sequence: 3
  givenname: B.J.
  surname: Matkowsky
  fullname: Matkowsky, B.J.
  email: mat@bat.esam.northwestern.edu
  organization: Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
BookMark eNqNkD9PwzAUxC1UJNrCd4iYGEh4dhLHZUPlr1SpC8yW47yAq8QutovEt8dRGRiZ3hvuTne_BZlZZ5GQSwoFBcpvdoV2Y3sIsR_UiAUDqAvKCoDVCZnTuuY5WzE6I3MACjmjAs7IIoQdADRVWc7J9dZm8QOz6JUNJhpns967MQujGzr0xr5n0WVTenrPyWmvhoAXv3dJ3h4fXtfP-Wb79LK-2-S6YmXMlQLWsnYFJfJUknd9TYVoeN0zITQr6wYYcAZ1h02r2lKkLp0WyCvRN1PEklwdc_fefR4wRDmaoHEYlEV3CJKCSFMqJniS3h6l2rsQPPZy782o_HcSyQmR3Mm_iOSESFImE6Jkvj-aMY35Muhl0Aatxs541FF2zvwn5ge4eHaL
CitedBy_id crossref_primary_10_1002_fam_1123
crossref_primary_10_1134_S001050821301005X
crossref_primary_10_1016_j_combustflame_2016_04_008
crossref_primary_10_1007_s10483_013_1698_8
crossref_primary_10_1016_j_combustflame_2015_07_044
crossref_primary_10_1016_j_fuel_2012_01_064
crossref_primary_10_2118_129904_PA
crossref_primary_10_1016_j_rser_2023_113213
crossref_primary_10_4028_www_scientific_net_AMR_900_787
crossref_primary_10_1016_j_combustflame_2011_11_015
crossref_primary_10_1155_2017_4062945
crossref_primary_10_1016_j_combustflame_2018_01_013
crossref_primary_10_1016_j_pecs_2020_100869
crossref_primary_10_1016_j_combustflame_2010_10_025
crossref_primary_10_1002_fam_2464
crossref_primary_10_1016_j_firesaf_2023_103974
crossref_primary_10_1016_j_proci_2024_105343
crossref_primary_10_1016_j_proeng_2017_12_076
crossref_primary_10_1007_s11741_008_0216_1
crossref_primary_10_1088_1748_9326_aa9ea8
crossref_primary_10_1016_j_polymdegradstab_2013_12_010
crossref_primary_10_3103_S1061386214030029
crossref_primary_10_1080_13647830_2011_564658
crossref_primary_10_1016_j_jlp_2015_02_010
crossref_primary_10_1016_j_proeng_2011_04_647
crossref_primary_10_1007_s10694_020_01018_5
crossref_primary_10_1016_j_combustflame_2011_06_004
crossref_primary_10_1134_S0010508215010116
Cites_doi 10.1016/0010-2180(95)00102-6
10.1016/S0010-2180(98)00053-4
10.1080/00102209708935745
10.1016/0010-2180(92)90039-R
10.1016/S0082-0784(96)80372-9
10.1016/0010-2180(90)90030-U
10.1016/j.proci.2004.08.233
10.1016/0010-2180(90)90031-L
10.1016/0010-2180(95)00245-6
10.1016/0010-2180(96)00184-8
10.1016/0010-2180(94)90175-9
10.1016/j.expthermflusci.2003.12.012
10.1016/S0010-2180(98)00163-1
10.1177/0734904102020002071
10.1016/0360-1285(85)90004-8
10.1016/0010-2180(87)90052-6
10.1016/0010-2180(94)00239-O
10.1016/S0010-2180(99)00089-9
10.6028/NBS.IR.85-3294
ContentType Journal Article
Copyright 2006 The Combustion Institute
Copyright_xml – notice: 2006 The Combustion Institute
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.combustflame.2005.12.009
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1556-2921
EndPage 606
ExternalDocumentID 10_1016_j_combustflame_2005_12_009
S0010218006000071
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c423t-aa02b2b903e60166df5188765f288c23570206205de7bab38074dc8e648f7c423
ISSN 0010-2180
IngestDate Fri Oct 25 01:59:50 EDT 2024
Thu Sep 26 18:04:20 EDT 2024
Fri Feb 23 02:19:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Transition
Flaming
Smoldering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c423t-aa02b2b903e60166df5188765f288c23570206205de7bab38074dc8e648f7c423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082184286
PQPubID 23500
PageCount 28
ParticipantIDs proquest_miscellaneous_1082184286
crossref_primary_10_1016_j_combustflame_2005_12_009
elsevier_sciencedirect_doi_10_1016_j_combustflame_2005_12_009
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Combustion and flame
PublicationYear 2006
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tse, Fernandez-Pello, Miyasaka (bib008) 1996; 26
Torero, Fernandez-Pello (bib014) 1991; 91
Zeldovich, Barenblatt, Librovich, Makhviladze (bib019) 1985
Schult, Matkowsky, Volpert, Fernandez-Pello (bib013) 1995; 101
Bar-Ilan, Putzeys, Rein, Fernandez-Pello, Urban (bib028) 2005; 30
Aldushin (bib001) 1987; 173
Ohlemiller (bib002) 1985; 11
McGrattan, Kashiwagi, Baum, Olson (bib004) 1996; 106
Torero, Fernandez-Pello (bib012) 1996; 106
Frank-Kamenetsky (bib009) 1969
Aldushin, Kasparyan (bib021) 1982; 10
Tse, Anthenien, Fernandez-Pello, Miyasaka (bib024) 1997; 116
Ohlemiller (bib006) 1990; 81
Bar-Ilan, Rein, Fernandez-Pello, Torero, Urban (bib027) 2004; 28
Ohlemiller (bib007) 1990; 81
Aldushin, Matkowsky, Rumanov (bib018) 1999; 118
Leach, Ellzey, Ezekoye (bib015) 1997; 130
Zeldovich (bib020) 1941; 11
Nakabe, McGrattan, Kashiwagi, Baum, Yamashita, Kushida (bib005) 1994; 98
Polyanin (bib026) 2002
T.J. Ohlemiller, Smoldering Combustion, NB-SIR 85-3294, National Bureau of Standards, 1986
B.I. Khaikin, S.I. Khudayev, On nonuniqueness of stationary propagating reaction zones with competing reactions, Preprint, Inst. Chem. Phys., Chernogolovka, 1978 (in Russian)
Khaikin, Khudayev (bib023) 1979; 245
Dosanjh, Pagni, Fernandez-Pello (bib010) 1987; 68
Leach, Rein, Ellzey, Ezekoye, Torero (bib016) 2000; 120
Kashiwagi, Nambu (bib017) 1992; 88
Zeldovich (bib025) 1939; 9
Wang, Chao, Kong (bib029) 2002; 20
Schult, Matkowsky, Volpert, Fernandez-Pello (bib011) 1996; 104
Aldushin, Seplyarski (bib022) 1978; 23
Dosanjh (10.1016/j.combustflame.2005.12.009_bib010) 1987; 68
Wang (10.1016/j.combustflame.2005.12.009_bib029) 2002; 20
Aldushin (10.1016/j.combustflame.2005.12.009_bib001) 1987; 173
Tse (10.1016/j.combustflame.2005.12.009_bib024) 1997; 116
Polyanin (10.1016/j.combustflame.2005.12.009_bib026) 2002
Tse (10.1016/j.combustflame.2005.12.009_bib008) 1996; 26
10.1016/j.combustflame.2005.12.009_bib003
Ohlemiller (10.1016/j.combustflame.2005.12.009_bib007) 1990; 81
Kashiwagi (10.1016/j.combustflame.2005.12.009_bib017) 1992; 88
Schult (10.1016/j.combustflame.2005.12.009_bib013) 1995; 101
McGrattan (10.1016/j.combustflame.2005.12.009_bib004) 1996; 106
Ohlemiller (10.1016/j.combustflame.2005.12.009_bib006) 1990; 81
Schult (10.1016/j.combustflame.2005.12.009_bib011) 1996; 104
Khaikin (10.1016/j.combustflame.2005.12.009_bib023) 1979; 245
Torero (10.1016/j.combustflame.2005.12.009_bib014) 1991; 91
Nakabe (10.1016/j.combustflame.2005.12.009_bib005) 1994; 98
Aldushin (10.1016/j.combustflame.2005.12.009_bib022) 1978; 23
Ohlemiller (10.1016/j.combustflame.2005.12.009_bib002) 1985; 11
Bar-Ilan (10.1016/j.combustflame.2005.12.009_bib027) 2004; 28
Frank-Kamenetsky (10.1016/j.combustflame.2005.12.009_bib009) 1969
Torero (10.1016/j.combustflame.2005.12.009_bib012) 1996; 106
Zeldovich (10.1016/j.combustflame.2005.12.009_bib025) 1939; 9
Aldushin (10.1016/j.combustflame.2005.12.009_bib021) 1982; 10
Zeldovich (10.1016/j.combustflame.2005.12.009_bib020) 1941; 11
10.1016/j.combustflame.2005.12.009_bib030
Leach (10.1016/j.combustflame.2005.12.009_bib016) 2000; 120
Zeldovich (10.1016/j.combustflame.2005.12.009_bib019) 1985
Aldushin (10.1016/j.combustflame.2005.12.009_bib018) 1999; 118
Leach (10.1016/j.combustflame.2005.12.009_bib015) 1997; 130
Bar-Ilan (10.1016/j.combustflame.2005.12.009_bib028) 2005; 30
References_xml – volume: 116
  start-page: 120
  year: 1997
  ident: bib024
  publication-title: Combust. Flame
  contributor:
    fullname: Miyasaka
– volume: 11
  start-page: 277
  year: 1985
  ident: bib002
  publication-title: Prog. Eng. Combust. Sci.
  contributor:
    fullname: Ohlemiller
– volume: 26
  start-page: 1505
  year: 1996
  ident: bib008
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Miyasaka
– volume: 91
  start-page: 95
  year: 1991
  ident: bib014
  publication-title: Combust. Flame
  contributor:
    fullname: Fernandez-Pello
– volume: 11
  start-page: 159
  year: 1941
  ident: bib020
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Zeldovich
– volume: 130
  start-page: 244
  year: 1997
  ident: bib015
  publication-title: Combust. Sci. Technol.
  contributor:
    fullname: Ezekoye
– volume: 10
  start-page: 1412
  year: 1982
  ident: bib021
  publication-title: Sov. J. Chem. Phys.
  contributor:
    fullname: Kasparyan
– volume: 28
  start-page: 743
  year: 2004
  ident: bib027
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Urban
– volume: 106
  start-page: 89
  year: 1996
  ident: bib012
  publication-title: Combust. Flame
  contributor:
    fullname: Fernandez-Pello
– volume: 20
  start-page: 113
  year: 2002
  ident: bib029
  publication-title: J. Fire Sci.
  contributor:
    fullname: Kong
– volume: 101
  start-page: 471
  year: 1995
  ident: bib013
  publication-title: Combust. Flame
  contributor:
    fullname: Fernandez-Pello
– volume: 106
  start-page: 377
  year: 1996
  ident: bib004
  publication-title: Combust. Flame
  contributor:
    fullname: Olson
– volume: 104
  start-page: 1
  year: 1996
  ident: bib011
  publication-title: Combust. Flame
  contributor:
    fullname: Fernandez-Pello
– volume: 118
  start-page: 76
  year: 1999
  ident: bib018
  publication-title: Combust. Flame
  contributor:
    fullname: Rumanov
– volume: 81
  start-page: 341
  year: 1990
  ident: bib006
  publication-title: Combust. Flame
  contributor:
    fullname: Ohlemiller
– year: 1985
  ident: bib019
  article-title: The Mathematical Theory of Combustion and Explosions
  contributor:
    fullname: Makhviladze
– volume: 88
  start-page: 345
  year: 1992
  ident: bib017
  publication-title: Combust. Flame
  contributor:
    fullname: Nambu
– volume: 98
  start-page: 361
  year: 1994
  ident: bib005
  publication-title: Combust. Flame
  contributor:
    fullname: Kushida
– volume: 68
  start-page: 131
  year: 1987
  ident: bib010
  publication-title: Combust. Flame
  contributor:
    fullname: Fernandez-Pello
– year: 1969
  ident: bib009
  article-title: Diffusion and Heat Transfer in Chemical Kinetics
  contributor:
    fullname: Frank-Kamenetsky
– volume: 120
  start-page: 346
  year: 2000
  ident: bib016
  publication-title: Combust. Flame
  contributor:
    fullname: Torero
– volume: 245
  start-page: 225
  year: 1979
  ident: bib023
  publication-title: Dokl. Phys. Chem.
  contributor:
    fullname: Khudayev
– year: 2002
  ident: bib026
  article-title: Handbook of Linear Partial Differential Equations for Engineers and Scientists
  contributor:
    fullname: Polyanin
– volume: 23
  start-page: 483
  year: 1978
  ident: bib022
  publication-title: Sov. Phys. Dokl.
  contributor:
    fullname: Seplyarski
– volume: 81
  start-page: 354
  year: 1990
  ident: bib007
  publication-title: Combust. Flame
  contributor:
    fullname: Ohlemiller
– volume: 173
  start-page: 95
  year: 1987
  ident: bib001
  publication-title: Advances in Combustion Science: In Honor of Ya.B. Zeldovich
  contributor:
    fullname: Aldushin
– volume: 30
  start-page: 2295
  year: 2005
  ident: bib028
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Urban
– volume: 9
  start-page: 1530
  year: 1939
  ident: bib025
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Zeldovich
– volume: 104
  start-page: 1
  year: 1996
  ident: 10.1016/j.combustflame.2005.12.009_bib011
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(95)00102-6
  contributor:
    fullname: Schult
– volume: 245
  start-page: 225
  year: 1979
  ident: 10.1016/j.combustflame.2005.12.009_bib023
  publication-title: Dokl. Phys. Chem.
  contributor:
    fullname: Khaikin
– volume: 116
  start-page: 120
  year: 1997
  ident: 10.1016/j.combustflame.2005.12.009_bib024
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(98)00053-4
  contributor:
    fullname: Tse
– volume: 91
  start-page: 95
  year: 1991
  ident: 10.1016/j.combustflame.2005.12.009_bib014
  publication-title: Combust. Flame
  contributor:
    fullname: Torero
– volume: 130
  start-page: 244
  year: 1997
  ident: 10.1016/j.combustflame.2005.12.009_bib015
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209708935745
  contributor:
    fullname: Leach
– volume: 88
  start-page: 345
  year: 1992
  ident: 10.1016/j.combustflame.2005.12.009_bib017
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(92)90039-R
  contributor:
    fullname: Kashiwagi
– volume: 26
  start-page: 1505
  year: 1996
  ident: 10.1016/j.combustflame.2005.12.009_bib008
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(96)80372-9
  contributor:
    fullname: Tse
– volume: 81
  start-page: 341
  year: 1990
  ident: 10.1016/j.combustflame.2005.12.009_bib006
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(90)90030-U
  contributor:
    fullname: Ohlemiller
– volume: 30
  start-page: 2295
  year: 2005
  ident: 10.1016/j.combustflame.2005.12.009_bib028
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2004.08.233
  contributor:
    fullname: Bar-Ilan
– year: 1969
  ident: 10.1016/j.combustflame.2005.12.009_bib009
  contributor:
    fullname: Frank-Kamenetsky
– volume: 23
  start-page: 483
  year: 1978
  ident: 10.1016/j.combustflame.2005.12.009_bib022
  publication-title: Sov. Phys. Dokl.
  contributor:
    fullname: Aldushin
– volume: 81
  start-page: 354
  year: 1990
  ident: 10.1016/j.combustflame.2005.12.009_bib007
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(90)90031-L
  contributor:
    fullname: Ohlemiller
– volume: 106
  start-page: 89
  year: 1996
  ident: 10.1016/j.combustflame.2005.12.009_bib012
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(95)00245-6
  contributor:
    fullname: Torero
– volume: 11
  start-page: 159
  year: 1941
  ident: 10.1016/j.combustflame.2005.12.009_bib020
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Zeldovich
– volume: 106
  start-page: 377
  year: 1996
  ident: 10.1016/j.combustflame.2005.12.009_bib004
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(96)00184-8
  contributor:
    fullname: McGrattan
– volume: 98
  start-page: 361
  year: 1994
  ident: 10.1016/j.combustflame.2005.12.009_bib005
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(94)90175-9
  contributor:
    fullname: Nakabe
– year: 2002
  ident: 10.1016/j.combustflame.2005.12.009_bib026
  contributor:
    fullname: Polyanin
– volume: 28
  start-page: 743
  year: 2004
  ident: 10.1016/j.combustflame.2005.12.009_bib027
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2003.12.012
  contributor:
    fullname: Bar-Ilan
– volume: 118
  start-page: 76
  year: 1999
  ident: 10.1016/j.combustflame.2005.12.009_bib018
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(98)00163-1
  contributor:
    fullname: Aldushin
– year: 1985
  ident: 10.1016/j.combustflame.2005.12.009_bib019
  contributor:
    fullname: Zeldovich
– volume: 20
  start-page: 113
  year: 2002
  ident: 10.1016/j.combustflame.2005.12.009_bib029
  publication-title: J. Fire Sci.
  doi: 10.1177/0734904102020002071
  contributor:
    fullname: Wang
– ident: 10.1016/j.combustflame.2005.12.009_bib030
– volume: 173
  start-page: 95
  year: 1987
  ident: 10.1016/j.combustflame.2005.12.009_bib001
  publication-title: Prog. Aeronaut. Astronaut.
  contributor:
    fullname: Aldushin
– volume: 11
  start-page: 277
  year: 1985
  ident: 10.1016/j.combustflame.2005.12.009_bib002
  publication-title: Prog. Eng. Combust. Sci.
  doi: 10.1016/0360-1285(85)90004-8
  contributor:
    fullname: Ohlemiller
– volume: 68
  start-page: 131
  year: 1987
  ident: 10.1016/j.combustflame.2005.12.009_bib010
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(87)90052-6
  contributor:
    fullname: Dosanjh
– volume: 101
  start-page: 471
  year: 1995
  ident: 10.1016/j.combustflame.2005.12.009_bib013
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(94)00239-O
  contributor:
    fullname: Schult
– volume: 10
  start-page: 1412
  year: 1982
  ident: 10.1016/j.combustflame.2005.12.009_bib021
  publication-title: Sov. J. Chem. Phys.
  contributor:
    fullname: Aldushin
– volume: 120
  start-page: 346
  year: 2000
  ident: 10.1016/j.combustflame.2005.12.009_bib016
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(99)00089-9
  contributor:
    fullname: Leach
– volume: 9
  start-page: 1530
  year: 1939
  ident: 10.1016/j.combustflame.2005.12.009_bib025
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Zeldovich
– ident: 10.1016/j.combustflame.2005.12.009_bib003
  doi: 10.6028/NBS.IR.85-3294
SSID ssj0007433
Score 2.0278134
Snippet We consider the transition from smoldering to flaming. Though there have been numerous experimental studies of this topic, it has been virtually untouched...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 579
SubjectTerms Approximation
Combustion
Flaming
Fuels
Mathematical analysis
Oxidation
Smoldering
Transition
Wave propagation
Title On the transition from smoldering to flaming
URI https://dx.doi.org/10.1016/j.combustflame.2005.12.009
https://search.proquest.com/docview/1082184286
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEF-sPrQ-FLUWtVYi9E33yG2STe7Bh6ueqNBaUMG3sJ9wfiSll0P8753JbpJTERTpSziWuyQ7MzdfO_MbQn5ETFitlKKptQMam76lMjIxVZGyRlsmuMFA8egs_X2ZHYziUdd70q39V07DGvAaO2ffwO32prAAn4HncAWuw_VVfD91dYsV2qCxKyTEDpLJbYnzuOvmqHLHghw0NquBKShvJU728tXJ-I1OGm70FFNVtSLp_el16c_7m7Gbuj5sF3-J6rq88znZn72T3tPEQjKbWGg7Xh4VZGIMScEtcGcpxivNhFM2cJ3OrVZ1KJFefKIZHZm46THe3PIacOC5JndJhSvkBO6-3rVLgWH2Nhx09qutKjyrAfLg3UJen9BCULzAQP-A-lsYHo8uT1oTDW6TKz3wm2nQaOvCv5ee-JLn8sSG147J-RL57COKYOhEYZnMmWKFfNxvBvmtkMUZzMkvZPe0CEBAgk5AAhSQoBOQoCoDLyCr5OJwdL5_RP3IDKrAL66oECGTTA7CyCDODtcWAfdSnliWZQqhjSA84CxMtEmlkDhtINYqMzzObIq3-Ermi7IwayQQqRGRlTpjSRSLWMt-aBDKyYCLKhUL10nUkCP_65BR8qZk8CqfJSKOOk3yPsuBiOtkr6Fc7n0857vlwPhX_X67IXcOZMTTLVGYcjpBpFtMV7CMb7zzGd_Ip-7_sEnmq39T8518mOjplhekB6MvhJw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+transition+from+smoldering+to+flaming&rft.jtitle=Combustion+and+flame&rft.au=Aldushin%2C+A.P.&rft.au=Bayliss%2C+A.&rft.au=Matkowsky%2C+B.J.&rft.date=2006-05-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.eissn=1556-2921&rft.volume=145&rft.issue=3&rft.spage=579&rft.epage=606&rft_id=info:doi/10.1016%2Fj.combustflame.2005.12.009&rft.externalDocID=S0010218006000071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon