Alternation of inverse problem approach and deep learning for lens-free microscopy image reconstruction
A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient c...
Saved in:
Published in: | Scientific reports Vol. 10; no. 1; p. 20207 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
19-11-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone. |
---|---|
AbstractList | Abstract
A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone. A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone. |
ArticleNumber | 20207 |
Author | Allier, C. Morales, S. Mandula, O. Menneteau, M. Hervé, L. Cioni, O. Kraemer, D. C. A. |
Author_xml | – sequence: 1 givenname: L. surname: Hervé fullname: Hervé, L. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 2 givenname: D. C. A. surname: Kraemer fullname: Kraemer, D. C. A. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 3 givenname: O. surname: Cioni fullname: Cioni, O. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 4 givenname: O. surname: Mandula fullname: Mandula, O. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 5 givenname: M. surname: Menneteau fullname: Menneteau, M. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 6 givenname: S. surname: Morales fullname: Morales, S. organization: Univ. Grenoble Alpes, CEA, LETI, DTBS – sequence: 7 givenname: C. surname: Allier fullname: Allier, C. email: cedric.allier@cea.fr organization: Univ. Grenoble Alpes, CEA, LETI, DTBS |
BookMark | eNp9kUtPxSAQhYnR-Lx_wBVLN1Wg0MLGxBhfiYkbXRNKh1rTQoXWxH8v13tjdCMbhsw5Z5h8R2jXBw8InVJyTkkpLxKnQsmCMFLUFae0UDvokBEuClYytvurPkCrlN5IPoIpTtU-OihLRnlF5SHqroYZojdzHzwODvf-A2ICPMXQDDBiM-XK2FdsfItbgAkPYKLvfYddiPnhU-EiAB57G0OyYfrE_Wg6wBFs8GmOi11nn6A9Z4YEq-19jF5ub56v74vHp7uH66vHwnJWzoVS3HFJpSAcBAHhjHCtqRglNavaRgnliGgbKmitwHAiwApFJWeNq4kkTXmMLje509KM0FrwczSDnmL-VPzUwfT6b8f3r7oLH7quaimFzAFn24AY3hdIsx77ZGEYjIewJM14VVJSSVlnKdtI15unCO5nDCV6DUlvIOkMSX9D0iqbyo0pZbHvIOq3sGQAQ_rP9QU7kJcj |
CitedBy_id | crossref_primary_10_3389_fphy_2021_776805 crossref_primary_10_3390_cells11050905 crossref_primary_10_1038_s41598_024_57684_w crossref_primary_10_3390_sym14081732 crossref_primary_10_1140_epjs_s11734_021_00342_3 crossref_primary_10_1039_D2NA00011C |
Cites_doi | 10.1364/OL.29.001132 10.1039/B713695A 10.1364/OE.27.014951 10.1364/OL.30.000468 10.1029/RS023i004p00713 10.1364/JOSAA.13.001999 10.1364/OE.17.013080 10.1364/OE.27.014903 10.1364/OE.27.015100 10.1364/BOE.9.005828 10.1117/1.AP.1.1.016004 10.20944/preprints201812.0137.v2 10.1109/TIP.2006.888351 10.1038/lsa.2017.141 10.1088/1361-6420/aa9581 10.1364/OPTICA.5.000704 10.1038/161777a0 10.1364/DH.2019.W2B.1 10.1002/cyto.a.23079 10.1016/j.cell.2018.03.040 10.1364/BOE.10.002768 10.1364/JOSAA.24.001164 10.1364/AO.21.002758 10.1364/OPTICA.6.000921 10.1021/acsphotonics.8b00146 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION 7X8 5PM |
DOI | 10.1038/s41598-020-76411-9 |
DatabaseName | Springer Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 20207 |
ExternalDocumentID | 10_1038_s41598_020_76411_9 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c423t-994f4818504e50e5fa5fda6210726db959f05db15179ea405ec591842bf7080b3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 20:56:36 EDT 2024 Fri Oct 25 22:31:49 EDT 2024 Fri Aug 23 01:56:39 EDT 2024 Fri Oct 11 20:49:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-994f4818504e50e5fa5fda6210726db959f05db15179ea405ec591842bf7080b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678858/ |
PMID | 33214618 |
PQID | 2463106887 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7678858 proquest_miscellaneous_2463106887 crossref_primary_10_1038_s41598_020_76411_9 springer_journals_10_1038_s41598_020_76411_9 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-19 |
PublicationDateYYYYMMDD | 2020-11-19 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | HervéLMultispectral total-variation reconstruction applied to lens-free microscopyBiomed. Opt. Exp.201895828583610.1364/BOE.9.005828 AllierCQuantitative phase imaging of adherent mammalian cells: A comparative studyBiomed. Opt. Exp.201910276827831:CAS:528:DC%2BC1MXit1elsL3L10.1364/BOE.10.002768 RivensonYZhangYGünaydınHTengDOzcanAPhase recovery and holographic image reconstruction using deep learning in neural networksLight Sci. Appl.20187171411:CAS:528:DC%2BC1cXjt12gs7Y%3D10.1038/lsa.2017.141 GoldsteinRMZebkerHAWernerCLSatellite radar interferometry: Two-dimensional phase unwrappingRadio Sci.1988237137201988RaSc...23..713G10.1029/RS023i004p00713 BarbastathisGOzcanASituGOn the use of deep learning for computational imagingOptica201969219432019Optic...6..921B10.1364/OPTICA.6.000921 RenZXuZLamEYEnd-to-end deep learning framework for digital holographic reconstructionAdv. Photon.201910160042019AdPho...1a6004R10.1117/1.AP.1.1.016004 AdlerJÖktemOSolving ill-posed inverse problems using iterative deep neural networksInverse Probl.2017331240072017InvPr..33l4007A372978910.1088/1361-6420/aa9581 FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F1:STN:280:DC%2BC3c3ms1GhtQ%3D%3D10.1364/AO.21.002758 Mardani, M. et al. Deep generative adversarial networks for compressed sensing automates mri. arXiv preprint arXiv:1706.00051 (2017). RepettoLPianoEPontiggiaCLensless digital holographic microscope with light-emitting diode illuminationOpt. Lett.200429113211342004OptL...29.1132R1:STN:280:DC%2BD2c3otF2rsQ%3D%3D10.1364/OL.29.001132 OzcanADemirciUUltra wide-field lens-free monitoring of cells on-chipLab Chip20088981061:CAS:528:DC%2BD2sXhsVeltb%2FL10.1039/B713695A GhigliaDCRomeroLAMinimum lp-norm two-dimensional phase unwrappingJOSA A199613199920131996JOSAA..13.1999G10.1364/JOSAA.13.001999 ChristiansenEMIn silico labeling: Predicting fluorescent labels in unlabeled imagesCell20181737928031:CAS:528:DC%2BC1cXnsFClu7k%3D10.1016/j.cell.2018.03.040 WuYExtended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recoveryOptica201857047102018Optic...5..704W10.1364/OPTICA.5.000704 WangKLiYKemaoQDiJZhaoJOne-step robust deep learning phase unwrappingOpt. Exp.20192715100151152019OExpr..2715100W10.1364/OE.27.015100 ZhangJTianXShaoJLuoHLiangRPhase unwrapping in optical metrology via denoised and convolutional segmentation networksOpt. Exp.20192714903149122019OExpr..2714903Z10.1364/OE.27.014903 MarquetPDigital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracyOpt. Lett.2005304684702005OptL...30..468M10.1364/OL.30.000468 AllierCImaging of dense cell cultures by multiwavelength lens-free video microscopyCytom. Part A2017914334421:STN:280:DC%2BC1czgvFCitA%3D%3D10.1002/cyto.a.23079 BonPMaucortGWattellierBMonneretSQuadriwave lateral shearing interferometry for quantitative phase microscopy of living cellsOpt. Exp.20091713080130942009OExpr..1713080B1:CAS:528:DC%2BD1MXptFSmt74%3D10.1364/OE.17.013080 Bioucas-DiasJMValadaoGPhase unwrapping via graph cutsIEEE Trans. Image Process.2007166987092007ITIP...16..698B246018510.1109/TIP.2006.888351 Gabor, D. A New Microscopic Principle (1948). BerdeuAReconstruction of in-line holograms: Combining model-based and regularized inversionOpt. Exp.20192714951149682019OExpr..2714951B10.1364/OE.27.014951 Fournier, C. et al. Numerical reconstruction of holograms using inverse problems approaches. In Digital Holography and Three-Dimensional Imaging, W2B–1 (Optical Society of America, Washington, 2019). SoulezFDenisLFournierCThiébautÉGoepfertCInverse-problem approach for particle digital holography: Accurate location based on local optimizationJOSA A200724116411712007JOSAA..24.1164S232690610.1364/JOSAA.24.001164 RivensonYDeep learning enhanced mobile-phone microscopyACS Photon.20185235423641:CAS:528:DC%2BC1cXks1Gku7k%3D10.1021/acsphotonics.8b00146 Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 1 (2019). Y Rivenson (76411_CR16) 2018; 7 RM Goldstein (76411_CR10) 1988; 23 Z Ren (76411_CR15) 2019; 1 EM Christiansen (76411_CR22) 2018; 173 JR Fienup (76411_CR4) 1982; 21 P Bon (76411_CR18) 2009; 17 76411_CR1 76411_CR8 J Zhang (76411_CR14) 2019; 27 G Barbastathis (76411_CR24) 2019; 6 L Repetto (76411_CR2) 2004; 29 Y Rivenson (76411_CR21) 2018; 5 C Allier (76411_CR20) 2019; 10 JM Bioucas-Dias (76411_CR12) 2007; 16 A Berdeu (76411_CR6) 2019; 27 C Allier (76411_CR9) 2017; 91 L Hervé (76411_CR7) 2018; 9 P Marquet (76411_CR19) 2005; 30 76411_CR25 A Ozcan (76411_CR3) 2008; 8 F Soulez (76411_CR5) 2007; 24 76411_CR23 J Adler (76411_CR26) 2017; 33 Y Wu (76411_CR17) 2018; 5 DC Ghiglia (76411_CR11) 1996; 13 K Wang (76411_CR13) 2019; 27 |
References_xml | – volume: 29 start-page: 1132 year: 2004 ident: 76411_CR2 publication-title: Opt. Lett. doi: 10.1364/OL.29.001132 contributor: fullname: L Repetto – volume: 8 start-page: 98 year: 2008 ident: 76411_CR3 publication-title: Lab Chip doi: 10.1039/B713695A contributor: fullname: A Ozcan – volume: 27 start-page: 14951 year: 2019 ident: 76411_CR6 publication-title: Opt. Exp. doi: 10.1364/OE.27.014951 contributor: fullname: A Berdeu – volume: 30 start-page: 468 year: 2005 ident: 76411_CR19 publication-title: Opt. Lett. doi: 10.1364/OL.30.000468 contributor: fullname: P Marquet – volume: 23 start-page: 713 year: 1988 ident: 76411_CR10 publication-title: Radio Sci. doi: 10.1029/RS023i004p00713 contributor: fullname: RM Goldstein – volume: 13 start-page: 1999 year: 1996 ident: 76411_CR11 publication-title: JOSA A doi: 10.1364/JOSAA.13.001999 contributor: fullname: DC Ghiglia – volume: 17 start-page: 13080 year: 2009 ident: 76411_CR18 publication-title: Opt. Exp. doi: 10.1364/OE.17.013080 contributor: fullname: P Bon – volume: 27 start-page: 14903 year: 2019 ident: 76411_CR14 publication-title: Opt. Exp. doi: 10.1364/OE.27.014903 contributor: fullname: J Zhang – volume: 27 start-page: 15100 year: 2019 ident: 76411_CR13 publication-title: Opt. Exp. doi: 10.1364/OE.27.015100 contributor: fullname: K Wang – volume: 9 start-page: 5828 year: 2018 ident: 76411_CR7 publication-title: Biomed. Opt. Exp. doi: 10.1364/BOE.9.005828 contributor: fullname: L Hervé – volume: 1 start-page: 016004 year: 2019 ident: 76411_CR15 publication-title: Adv. Photon. doi: 10.1117/1.AP.1.1.016004 contributor: fullname: Z Ren – ident: 76411_CR23 doi: 10.20944/preprints201812.0137.v2 – volume: 16 start-page: 698 year: 2007 ident: 76411_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.888351 contributor: fullname: JM Bioucas-Dias – volume: 7 start-page: 17141 year: 2018 ident: 76411_CR16 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2017.141 contributor: fullname: Y Rivenson – volume: 33 start-page: 124007 year: 2017 ident: 76411_CR26 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa9581 contributor: fullname: J Adler – volume: 5 start-page: 704 year: 2018 ident: 76411_CR17 publication-title: Optica doi: 10.1364/OPTICA.5.000704 contributor: fullname: Y Wu – ident: 76411_CR25 – ident: 76411_CR1 doi: 10.1038/161777a0 – ident: 76411_CR8 doi: 10.1364/DH.2019.W2B.1 – volume: 91 start-page: 433 year: 2017 ident: 76411_CR9 publication-title: Cytom. Part A doi: 10.1002/cyto.a.23079 contributor: fullname: C Allier – volume: 173 start-page: 792 year: 2018 ident: 76411_CR22 publication-title: Cell doi: 10.1016/j.cell.2018.03.040 contributor: fullname: EM Christiansen – volume: 10 start-page: 2768 year: 2019 ident: 76411_CR20 publication-title: Biomed. Opt. Exp. doi: 10.1364/BOE.10.002768 contributor: fullname: C Allier – volume: 24 start-page: 1164 year: 2007 ident: 76411_CR5 publication-title: JOSA A doi: 10.1364/JOSAA.24.001164 contributor: fullname: F Soulez – volume: 21 start-page: 2758 year: 1982 ident: 76411_CR4 publication-title: Appl. Opt. doi: 10.1364/AO.21.002758 contributor: fullname: JR Fienup – volume: 6 start-page: 921 year: 2019 ident: 76411_CR24 publication-title: Optica doi: 10.1364/OPTICA.6.000921 contributor: fullname: G Barbastathis – volume: 5 start-page: 2354 year: 2018 ident: 76411_CR21 publication-title: ACS Photon. doi: 10.1021/acsphotonics.8b00146 contributor: fullname: Y Rivenson |
SSID | ssj0000529419 |
Score | 2.394012 |
Snippet | A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is... Abstract A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 20207 |
SubjectTerms | 631/80/2373 639/624/1107/328 639/624/1107/328/1650 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
Title | Alternation of inverse problem approach and deep learning for lens-free microscopy image reconstruction |
URI | https://link.springer.com/article/10.1038/s41598-020-76411-9 https://search.proquest.com/docview/2463106887 https://pubmed.ncbi.nlm.nih.gov/PMC7678858 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB2xSJW4oJa2YilFRuqt9W7ixEl8RAuIC6gSrdSbFcdjWIn1rggc-HvGTrJlOXDgGEVyLM_E88Z-8wbgR6mEcLIW3BjT8KBIx2snUo6JdVJYZY0NRwMX1-XVv-r0LMjkyKEWJpL2GzOf-LvFxM9vI7dytWimA09s-vtyVtIOW8lqOoIRYcMXKXon6C1Unqq-QCbJqmlLQSoUklGiVBZ5mvIgFZplsaV1tRmP_oPM1xTJV_ekMfycf4TdHjeyk25-n2AL_R586DpJPn2Gm5O79ckeWzo294FugazvF8MG6XBWe8ss4or17SJuGKFWevAtd_eIbBEIeqFU5YnNF7TXsJgxr1Vmv8Df87M_swve91DgDQGlB65U7vIQlJMcZYLS1dLZuqBErxSFNUoql0hr0qDUhTWhN2ykoqxPGFcSmDTZV9j2S4_7wHIUaExFAxnMTZEYgYVU1gZ9nIqQ2Bh-DiupV51Uho5X3FmlOxNoMoGOJtBqDMfDYmvy6HBNUXtcPrZa5AVhzoJ2vzGUG1ZYDxs0sTffkKtEbezeNcbwa7CX7n_K9o3JHLz7Q99gRwTHCsRAdQjbZA78DqPWPh7F9P4oOuczocDpuw |
link.rule.ids | 230,315,729,782,786,866,887,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUFUu0KfYAq0r9daaTZw4iY-Ih7YqoEqlUm9WHI_pSqx31ZQD_75jJ1lYDj1wjCw5lj6P5xt75huAT6USwslacGNMw4MiHa-dSDkm1klhlTU2XA1MfpSXv6qT0yCTI4damJi035jpob-ZHfrp75hbuZg14yFPbPz94rikE7aS1XgdNslek-xBkN5JeguVp6ovkUmyatySmwqlZBQqlUWepjyIhWZZbGpdrXqke5r5OEny0UtpdEBnO09c-gvY7hknO-qGX8Ia-lfwrOtBefcaro9ulneCbO7Y1IdEDWR9pxk2iI6z2ltmEResbzRxzYjv0odvufuDyGYhtS8Uudyx6YxOKRZj7aU-7Rv4eXZ6dTzhffcF3hDF-suVyl0e3HmSo0xQulo6WxcUIpaisEZJ5RJpTRo0vrAm3oeNVBQvCuNKoqEmewsbfu5xF1iOAo2paCKDuSkSI7CQytqgrFMRhxvB5wEBvehENnR8HM8q3UGnCTododNqBB8HkDTZQnjgqD3Ob1st8oLYakHn5gjKFfSW0wY17dURQiqqavfIjODLgLPuzbn9z2LePflHH-D55OriXJ9_vfy2B1sibM6QXqj2YYOgwQNYb-3t-7i1_wG9AP5i |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhCXUj6qboHWSNzATeLESXys2q5aAVUlQOJmxfG4XanrXRF66L9n7CQL2wMHOEaJHEvP9ryxn98AvKuUEE42ghtjWh4c6XjjRMYxtU4Kq6yxYWvg7Et18b0-OQ02OatSX1G035rZob-ZH_rZddRWLudtMurEksvPxxWtsLWsk6V1yQY8pDmbyj8S9d7WW6giU8M1mTSvk45CVbhORulSVRZZxoNhaJ7Hwtb1elT6TTXvCyXvnZbGIDR9-h_d34atgXmyo_6TZ_AA_XN41NeivHsBV0c3q71BtnBs5oNgA9lQcYaN5uOs8ZZZxCUbCk5cMeK99OA77n4gsnmQ-IXLLndsNqfVisWce-VT-xK-TU-_Hp_xoQoDb4lq_eRKFa4IYT0tUKYoXSOdbUpKFStRWqOkcqm0JgteX9gQ_8NWKsobhXEV0VGT78CmX3jcBVagQGNqashgYcrUCCylsjY47NTE5SbwfkRBL3uzDR0PyfNa9_Bpgk9H-LSawNsRKE1zIhx0NB4Xt50WRUmstaT1cwLVGoKrZoOr9vobQiu6aw_oTODDiLUepnX3l87s_fOPDuDx5clUfzq_-PgKnogwPoPKUL2GTUIG38BGZ2_34-j-BcWwAPE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternation+of+inverse+problem+approach+and+deep+learning+for+lens-free+microscopy+image+reconstruction&rft.jtitle=Scientific+reports&rft.au=Herv%C3%A9%2C+L.&rft.au=Kraemer%2C+D.+C.+A.&rft.au=Cioni%2C+O.&rft.au=Mandula%2C+O.&rft.date=2020-11-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76411-9&rft.externalDocID=10_1038_s41598_020_76411_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |