Alternation of inverse problem approach and deep learning for lens-free microscopy image reconstruction

A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; p. 20207
Main Authors: Hervé, L., Kraemer, D. C. A., Cioni, O., Mandula, O., Menneteau, M., Morales, S., Allier, C.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19-11-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone.
AbstractList Abstract A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone.
A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone.
ArticleNumber 20207
Author Allier, C.
Morales, S.
Mandula, O.
Menneteau, M.
Hervé, L.
Cioni, O.
Kraemer, D. C. A.
Author_xml – sequence: 1
  givenname: L.
  surname: Hervé
  fullname: Hervé, L.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 2
  givenname: D. C. A.
  surname: Kraemer
  fullname: Kraemer, D. C. A.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 3
  givenname: O.
  surname: Cioni
  fullname: Cioni, O.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 4
  givenname: O.
  surname: Mandula
  fullname: Mandula, O.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 5
  givenname: M.
  surname: Menneteau
  fullname: Menneteau, M.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 6
  givenname: S.
  surname: Morales
  fullname: Morales, S.
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
– sequence: 7
  givenname: C.
  surname: Allier
  fullname: Allier, C.
  email: cedric.allier@cea.fr
  organization: Univ. Grenoble Alpes, CEA, LETI, DTBS
BookMark eNp9kUtPxSAQhYnR-Lx_wBVLN1Wg0MLGxBhfiYkbXRNKh1rTQoXWxH8v13tjdCMbhsw5Z5h8R2jXBw8InVJyTkkpLxKnQsmCMFLUFae0UDvokBEuClYytvurPkCrlN5IPoIpTtU-OihLRnlF5SHqroYZojdzHzwODvf-A2ICPMXQDDBiM-XK2FdsfItbgAkPYKLvfYddiPnhU-EiAB57G0OyYfrE_Wg6wBFs8GmOi11nn6A9Z4YEq-19jF5ub56v74vHp7uH66vHwnJWzoVS3HFJpSAcBAHhjHCtqRglNavaRgnliGgbKmitwHAiwApFJWeNq4kkTXmMLje509KM0FrwczSDnmL-VPzUwfT6b8f3r7oLH7quaimFzAFn24AY3hdIsx77ZGEYjIewJM14VVJSSVlnKdtI15unCO5nDCV6DUlvIOkMSX9D0iqbyo0pZbHvIOq3sGQAQ_rP9QU7kJcj
CitedBy_id crossref_primary_10_3389_fphy_2021_776805
crossref_primary_10_3390_cells11050905
crossref_primary_10_1038_s41598_024_57684_w
crossref_primary_10_3390_sym14081732
crossref_primary_10_1140_epjs_s11734_021_00342_3
crossref_primary_10_1039_D2NA00011C
Cites_doi 10.1364/OL.29.001132
10.1039/B713695A
10.1364/OE.27.014951
10.1364/OL.30.000468
10.1029/RS023i004p00713
10.1364/JOSAA.13.001999
10.1364/OE.17.013080
10.1364/OE.27.014903
10.1364/OE.27.015100
10.1364/BOE.9.005828
10.1117/1.AP.1.1.016004
10.20944/preprints201812.0137.v2
10.1109/TIP.2006.888351
10.1038/lsa.2017.141
10.1088/1361-6420/aa9581
10.1364/OPTICA.5.000704
10.1038/161777a0
10.1364/DH.2019.W2B.1
10.1002/cyto.a.23079
10.1016/j.cell.2018.03.040
10.1364/BOE.10.002768
10.1364/JOSAA.24.001164
10.1364/AO.21.002758
10.1364/OPTICA.6.000921
10.1021/acsphotonics.8b00146
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
7X8
5PM
DOI 10.1038/s41598-020-76411-9
DatabaseName Springer Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20207
ExternalDocumentID 10_1038_s41598_020_76411_9
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c423t-994f4818504e50e5fa5fda6210726db959f05db15179ea405ec591842bf7080b3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 20:56:36 EDT 2024
Fri Oct 25 22:31:49 EDT 2024
Fri Aug 23 01:56:39 EDT 2024
Fri Oct 11 20:49:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-994f4818504e50e5fa5fda6210726db959f05db15179ea405ec591842bf7080b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678858/
PMID 33214618
PQID 2463106887
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7678858
proquest_miscellaneous_2463106887
crossref_primary_10_1038_s41598_020_76411_9
springer_journals_10_1038_s41598_020_76411_9
PublicationCentury 2000
PublicationDate 2020-11-19
PublicationDateYYYYMMDD 2020-11-19
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References HervéLMultispectral total-variation reconstruction applied to lens-free microscopyBiomed. Opt. Exp.201895828583610.1364/BOE.9.005828
AllierCQuantitative phase imaging of adherent mammalian cells: A comparative studyBiomed. Opt. Exp.201910276827831:CAS:528:DC%2BC1MXit1elsL3L10.1364/BOE.10.002768
RivensonYZhangYGünaydınHTengDOzcanAPhase recovery and holographic image reconstruction using deep learning in neural networksLight Sci. Appl.20187171411:CAS:528:DC%2BC1cXjt12gs7Y%3D10.1038/lsa.2017.141
GoldsteinRMZebkerHAWernerCLSatellite radar interferometry: Two-dimensional phase unwrappingRadio Sci.1988237137201988RaSc...23..713G10.1029/RS023i004p00713
BarbastathisGOzcanASituGOn the use of deep learning for computational imagingOptica201969219432019Optic...6..921B10.1364/OPTICA.6.000921
RenZXuZLamEYEnd-to-end deep learning framework for digital holographic reconstructionAdv. Photon.201910160042019AdPho...1a6004R10.1117/1.AP.1.1.016004
AdlerJÖktemOSolving ill-posed inverse problems using iterative deep neural networksInverse Probl.2017331240072017InvPr..33l4007A372978910.1088/1361-6420/aa9581
FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F1:STN:280:DC%2BC3c3ms1GhtQ%3D%3D10.1364/AO.21.002758
Mardani, M. et al. Deep generative adversarial networks for compressed sensing automates mri. arXiv preprint arXiv:1706.00051 (2017).
RepettoLPianoEPontiggiaCLensless digital holographic microscope with light-emitting diode illuminationOpt. Lett.200429113211342004OptL...29.1132R1:STN:280:DC%2BD2c3otF2rsQ%3D%3D10.1364/OL.29.001132
OzcanADemirciUUltra wide-field lens-free monitoring of cells on-chipLab Chip20088981061:CAS:528:DC%2BD2sXhsVeltb%2FL10.1039/B713695A
GhigliaDCRomeroLAMinimum lp-norm two-dimensional phase unwrappingJOSA A199613199920131996JOSAA..13.1999G10.1364/JOSAA.13.001999
ChristiansenEMIn silico labeling: Predicting fluorescent labels in unlabeled imagesCell20181737928031:CAS:528:DC%2BC1cXnsFClu7k%3D10.1016/j.cell.2018.03.040
WuYExtended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recoveryOptica201857047102018Optic...5..704W10.1364/OPTICA.5.000704
WangKLiYKemaoQDiJZhaoJOne-step robust deep learning phase unwrappingOpt. Exp.20192715100151152019OExpr..2715100W10.1364/OE.27.015100
ZhangJTianXShaoJLuoHLiangRPhase unwrapping in optical metrology via denoised and convolutional segmentation networksOpt. Exp.20192714903149122019OExpr..2714903Z10.1364/OE.27.014903
MarquetPDigital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracyOpt. Lett.2005304684702005OptL...30..468M10.1364/OL.30.000468
AllierCImaging of dense cell cultures by multiwavelength lens-free video microscopyCytom. Part A2017914334421:STN:280:DC%2BC1czgvFCitA%3D%3D10.1002/cyto.a.23079
BonPMaucortGWattellierBMonneretSQuadriwave lateral shearing interferometry for quantitative phase microscopy of living cellsOpt. Exp.20091713080130942009OExpr..1713080B1:CAS:528:DC%2BD1MXptFSmt74%3D10.1364/OE.17.013080
Bioucas-DiasJMValadaoGPhase unwrapping via graph cutsIEEE Trans. Image Process.2007166987092007ITIP...16..698B246018510.1109/TIP.2006.888351
Gabor, D. A New Microscopic Principle (1948).
BerdeuAReconstruction of in-line holograms: Combining model-based and regularized inversionOpt. Exp.20192714951149682019OExpr..2714951B10.1364/OE.27.014951
Fournier, C. et al. Numerical reconstruction of holograms using inverse problems approaches. In Digital Holography and Three-Dimensional Imaging, W2B–1 (Optical Society of America, Washington, 2019).
SoulezFDenisLFournierCThiébautÉGoepfertCInverse-problem approach for particle digital holography: Accurate location based on local optimizationJOSA A200724116411712007JOSAA..24.1164S232690610.1364/JOSAA.24.001164
RivensonYDeep learning enhanced mobile-phone microscopyACS Photon.20185235423641:CAS:528:DC%2BC1cXks1Gku7k%3D10.1021/acsphotonics.8b00146
Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 1 (2019).
Y Rivenson (76411_CR16) 2018; 7
RM Goldstein (76411_CR10) 1988; 23
Z Ren (76411_CR15) 2019; 1
EM Christiansen (76411_CR22) 2018; 173
JR Fienup (76411_CR4) 1982; 21
P Bon (76411_CR18) 2009; 17
76411_CR1
76411_CR8
J Zhang (76411_CR14) 2019; 27
G Barbastathis (76411_CR24) 2019; 6
L Repetto (76411_CR2) 2004; 29
Y Rivenson (76411_CR21) 2018; 5
C Allier (76411_CR20) 2019; 10
JM Bioucas-Dias (76411_CR12) 2007; 16
A Berdeu (76411_CR6) 2019; 27
C Allier (76411_CR9) 2017; 91
L Hervé (76411_CR7) 2018; 9
P Marquet (76411_CR19) 2005; 30
76411_CR25
A Ozcan (76411_CR3) 2008; 8
F Soulez (76411_CR5) 2007; 24
76411_CR23
J Adler (76411_CR26) 2017; 33
Y Wu (76411_CR17) 2018; 5
DC Ghiglia (76411_CR11) 1996; 13
K Wang (76411_CR13) 2019; 27
References_xml – volume: 29
  start-page: 1132
  year: 2004
  ident: 76411_CR2
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001132
  contributor:
    fullname: L Repetto
– volume: 8
  start-page: 98
  year: 2008
  ident: 76411_CR3
  publication-title: Lab Chip
  doi: 10.1039/B713695A
  contributor:
    fullname: A Ozcan
– volume: 27
  start-page: 14951
  year: 2019
  ident: 76411_CR6
  publication-title: Opt. Exp.
  doi: 10.1364/OE.27.014951
  contributor:
    fullname: A Berdeu
– volume: 30
  start-page: 468
  year: 2005
  ident: 76411_CR19
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.000468
  contributor:
    fullname: P Marquet
– volume: 23
  start-page: 713
  year: 1988
  ident: 76411_CR10
  publication-title: Radio Sci.
  doi: 10.1029/RS023i004p00713
  contributor:
    fullname: RM Goldstein
– volume: 13
  start-page: 1999
  year: 1996
  ident: 76411_CR11
  publication-title: JOSA A
  doi: 10.1364/JOSAA.13.001999
  contributor:
    fullname: DC Ghiglia
– volume: 17
  start-page: 13080
  year: 2009
  ident: 76411_CR18
  publication-title: Opt. Exp.
  doi: 10.1364/OE.17.013080
  contributor:
    fullname: P Bon
– volume: 27
  start-page: 14903
  year: 2019
  ident: 76411_CR14
  publication-title: Opt. Exp.
  doi: 10.1364/OE.27.014903
  contributor:
    fullname: J Zhang
– volume: 27
  start-page: 15100
  year: 2019
  ident: 76411_CR13
  publication-title: Opt. Exp.
  doi: 10.1364/OE.27.015100
  contributor:
    fullname: K Wang
– volume: 9
  start-page: 5828
  year: 2018
  ident: 76411_CR7
  publication-title: Biomed. Opt. Exp.
  doi: 10.1364/BOE.9.005828
  contributor:
    fullname: L Hervé
– volume: 1
  start-page: 016004
  year: 2019
  ident: 76411_CR15
  publication-title: Adv. Photon.
  doi: 10.1117/1.AP.1.1.016004
  contributor:
    fullname: Z Ren
– ident: 76411_CR23
  doi: 10.20944/preprints201812.0137.v2
– volume: 16
  start-page: 698
  year: 2007
  ident: 76411_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888351
  contributor:
    fullname: JM Bioucas-Dias
– volume: 7
  start-page: 17141
  year: 2018
  ident: 76411_CR16
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2017.141
  contributor:
    fullname: Y Rivenson
– volume: 33
  start-page: 124007
  year: 2017
  ident: 76411_CR26
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9581
  contributor:
    fullname: J Adler
– volume: 5
  start-page: 704
  year: 2018
  ident: 76411_CR17
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000704
  contributor:
    fullname: Y Wu
– ident: 76411_CR25
– ident: 76411_CR1
  doi: 10.1038/161777a0
– ident: 76411_CR8
  doi: 10.1364/DH.2019.W2B.1
– volume: 91
  start-page: 433
  year: 2017
  ident: 76411_CR9
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.23079
  contributor:
    fullname: C Allier
– volume: 173
  start-page: 792
  year: 2018
  ident: 76411_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.040
  contributor:
    fullname: EM Christiansen
– volume: 10
  start-page: 2768
  year: 2019
  ident: 76411_CR20
  publication-title: Biomed. Opt. Exp.
  doi: 10.1364/BOE.10.002768
  contributor:
    fullname: C Allier
– volume: 24
  start-page: 1164
  year: 2007
  ident: 76411_CR5
  publication-title: JOSA A
  doi: 10.1364/JOSAA.24.001164
  contributor:
    fullname: F Soulez
– volume: 21
  start-page: 2758
  year: 1982
  ident: 76411_CR4
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
  contributor:
    fullname: JR Fienup
– volume: 6
  start-page: 921
  year: 2019
  ident: 76411_CR24
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000921
  contributor:
    fullname: G Barbastathis
– volume: 5
  start-page: 2354
  year: 2018
  ident: 76411_CR21
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.8b00146
  contributor:
    fullname: Y Rivenson
SSID ssj0000529419
Score 2.394012
Snippet A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is...
Abstract A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 20207
SubjectTerms 631/80/2373
639/624/1107/328
639/624/1107/328/1650
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Title Alternation of inverse problem approach and deep learning for lens-free microscopy image reconstruction
URI https://link.springer.com/article/10.1038/s41598-020-76411-9
https://search.proquest.com/docview/2463106887
https://pubmed.ncbi.nlm.nih.gov/PMC7678858
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB2xSJW4oJa2YilFRuqt9W7ixEl8RAuIC6gSrdSbFcdjWIn1rggc-HvGTrJlOXDgGEVyLM_E88Z-8wbgR6mEcLIW3BjT8KBIx2snUo6JdVJYZY0NRwMX1-XVv-r0LMjkyKEWJpL2GzOf-LvFxM9vI7dytWimA09s-vtyVtIOW8lqOoIRYcMXKXon6C1Unqq-QCbJqmlLQSoUklGiVBZ5mvIgFZplsaV1tRmP_oPM1xTJV_ekMfycf4TdHjeyk25-n2AL_R586DpJPn2Gm5O79ckeWzo294FugazvF8MG6XBWe8ss4or17SJuGKFWevAtd_eIbBEIeqFU5YnNF7TXsJgxr1Vmv8Df87M_swve91DgDQGlB65U7vIQlJMcZYLS1dLZuqBErxSFNUoql0hr0qDUhTWhN2ykoqxPGFcSmDTZV9j2S4_7wHIUaExFAxnMTZEYgYVU1gZ9nIqQ2Bh-DiupV51Uho5X3FmlOxNoMoGOJtBqDMfDYmvy6HBNUXtcPrZa5AVhzoJ2vzGUG1ZYDxs0sTffkKtEbezeNcbwa7CX7n_K9o3JHLz7Q99gRwTHCsRAdQjbZA78DqPWPh7F9P4oOuczocDpuw
link.rule.ids 230,315,729,782,786,866,887,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUFUu0KfYAq0r9daaTZw4iY-Ih7YqoEqlUm9WHI_pSqx31ZQD_75jJ1lYDj1wjCw5lj6P5xt75huAT6USwslacGNMw4MiHa-dSDkm1klhlTU2XA1MfpSXv6qT0yCTI4damJi035jpob-ZHfrp75hbuZg14yFPbPz94rikE7aS1XgdNslek-xBkN5JeguVp6ovkUmyatySmwqlZBQqlUWepjyIhWZZbGpdrXqke5r5OEny0UtpdEBnO09c-gvY7hknO-qGX8Ia-lfwrOtBefcaro9ulneCbO7Y1IdEDWR9pxk2iI6z2ltmEResbzRxzYjv0odvufuDyGYhtS8Uudyx6YxOKRZj7aU-7Rv4eXZ6dTzhffcF3hDF-suVyl0e3HmSo0xQulo6WxcUIpaisEZJ5RJpTRo0vrAm3oeNVBQvCuNKoqEmewsbfu5xF1iOAo2paCKDuSkSI7CQytqgrFMRhxvB5wEBvehENnR8HM8q3UGnCTododNqBB8HkDTZQnjgqD3Ob1st8oLYakHn5gjKFfSW0wY17dURQiqqavfIjODLgLPuzbn9z2LePflHH-D55OriXJ9_vfy2B1sibM6QXqj2YYOgwQNYb-3t-7i1_wG9AP5i
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhCXUj6qboHWSNzATeLESXys2q5aAVUlQOJmxfG4XanrXRF66L9n7CQL2wMHOEaJHEvP9ryxn98AvKuUEE42ghtjWh4c6XjjRMYxtU4Kq6yxYWvg7Et18b0-OQ02OatSX1G035rZob-ZH_rZddRWLudtMurEksvPxxWtsLWsk6V1yQY8pDmbyj8S9d7WW6giU8M1mTSvk45CVbhORulSVRZZxoNhaJ7Hwtb1elT6TTXvCyXvnZbGIDR9-h_d34atgXmyo_6TZ_AA_XN41NeivHsBV0c3q71BtnBs5oNgA9lQcYaN5uOs8ZZZxCUbCk5cMeK99OA77n4gsnmQ-IXLLndsNqfVisWce-VT-xK-TU-_Hp_xoQoDb4lq_eRKFa4IYT0tUKYoXSOdbUpKFStRWqOkcqm0JgteX9gQ_8NWKsobhXEV0VGT78CmX3jcBVagQGNqashgYcrUCCylsjY47NTE5SbwfkRBL3uzDR0PyfNa9_Bpgk9H-LSawNsRKE1zIhx0NB4Xt50WRUmstaT1cwLVGoKrZoOr9vobQiu6aw_oTODDiLUepnX3l87s_fOPDuDx5clUfzq_-PgKnogwPoPKUL2GTUIG38BGZ2_34-j-BcWwAPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternation+of+inverse+problem+approach+and+deep+learning+for+lens-free+microscopy+image+reconstruction&rft.jtitle=Scientific+reports&rft.au=Herv%C3%A9%2C+L.&rft.au=Kraemer%2C+D.+C.+A.&rft.au=Cioni%2C+O.&rft.au=Mandula%2C+O.&rft.date=2020-11-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76411-9&rft.externalDocID=10_1038_s41598_020_76411_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon