Biological treatment of propanil and 3,4-dichloroaniline: Kinetic and microbiological characterisation
Propanil (3,4-dichloropropionanilide) is a widely used herbicide, applied worldwide in rice paddies. Propanil is primarily transformed in nature to 3,4-dichloroaniline (DCA), which is more slowly biodegradable. Both compounds have adverse health and ecotoxicity effects. This work investigated the mi...
Saved in:
Published in: | Water research (Oxford) Vol. 44; no. 17; pp. 4980 - 4991 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-09-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Propanil (3,4-dichloropropionanilide) is a widely used herbicide, applied worldwide in rice paddies. Propanil is primarily transformed in nature to 3,4-dichloroaniline (DCA), which is more slowly biodegradable. Both compounds have adverse health and ecotoxicity effects. This work investigated the microbial ecology and kinetics of propanil-degrading enrichments obtained from soil in a sequencing batch reactor (SBR) operated with different feeding strategies, aiming at the enhanced biological removal of propanil and DCA from contaminated waters.
During SBR operation with a dump feeding strategy, a high propanil concentration led to DCA accumulation, which was only fully degraded after 5 days, likely due to DCA inhibition. For this reason, the operational mode was changed to fed-batch operation with lower initial propanil concentrations, which resulted in faster propanil and DCA biodegradation. Thus a fed-batch operation seems more appropriate for the acclimatisation of an effective propanil- and DCA-degrading population.
The changes in performance were accompanied by a shift in the microbial population structure, as determined by DGGE of the 16S rRNA gene, particularly after a feed of DCA as the sole carbon source. Isolates obtained from the acclimatised population included members of the genera
Enterococcus and
Rhodococcus, as well as
Brevundimonas, which displayed >90% propanil biodegradation efficiency. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2010.08.006 |