Cas9‐targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare so...
Saved in:
Published in: | Journal of integrative plant biology Vol. 65; no. 10; pp. 2242 - 2261 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
China (Republic : 1949- )
Wiley Subscription Services, Inc
01-10-2023
N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia All-Russia Center for Plant Quarantine,Ramenski 140150,Russia All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants.
An integrated Cas9‐targeted Nanopore sequencing (CANS)–NanoCasTE pipeline successfully detected novel transposon insertions in a plant genome, including somatic and germline variations. Our evidence indicates the pivotal role of global DNA methylation and locus transcription activity in dictating the selection of transposition sites within the genome. |
---|---|
AbstractList | Transposable element insertions(TEIs)are an im-portant source of genomic innovation by con-tributing to plant adaptation,speciation,and the production of new varieties.The often large,complex plant genomes make identifying TEIs from short reads difficult and expensive.More-over,rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads.To address these challenges,we combined Cas9-targeted Nanopore sequencing(CANS)with the novel pipeline NanoCasTE to trace both genet-ically inherited and somatic TEIs in plants.We performed CANS of the EVADE(EVD)retro-transposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage.Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD trans-poson in the ddm1(decrease in DNA methylation 1)genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference.We also investigated somatic transposition events of the ONSEN transposon family,finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs.Finally,we detected hypomethylation of novel somatic in-sertions for two ONSENs.CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds,as well as screening T-DNA insertion mutants and transgenic plants. ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants. An integrated Cas9‐targeted Nanopore sequencing (CANS)–NanoCasTE pipeline successfully detected novel transposon insertions in a plant genome, including somatic and germline variations. Our evidence indicates the pivotal role of global DNA methylation and locus transcription activity in dictating the selection of transposition sites within the genome. Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants. Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ ( EVD ) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 ( decrease in DNA methylation 1 ) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSEN s. Finally, we detected hypomethylation of novel somatic insertions for two ONSEN s. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants. |
Author | Karlov, Gennady Divashuk, Mikhail Omarov, Murad Dudnikov, Maxim Soloviev, Alexander Merkulov, Pavel Kocheshkova, Alina Konstantinov, Zakhar Gvaramiya, Sofya Komakhin, Roman Kirov, Ilya |
AuthorAffiliation | All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;All-Russia Center for Plant Quarantine,Ramenski 140150,Russia;N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia |
AuthorAffiliation_xml | – name: All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;All-Russia Center for Plant Quarantine,Ramenski 140150,Russia;N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia |
Author_xml | – sequence: 1 givenname: Pavel orcidid: 0000-0001-6011-1376 surname: Merkulov fullname: Merkulov, Pavel organization: Moscow Institute of Physics and Technology – sequence: 2 givenname: Sofya orcidid: 0000-0002-0693-5363 surname: Gvaramiya fullname: Gvaramiya, Sofya organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 3 givenname: Maxim orcidid: 0000-0002-0755-0801 surname: Dudnikov fullname: Dudnikov, Maxim organization: Moscow Institute of Physics and Technology – sequence: 4 givenname: Roman orcidid: 0000-0001-5963-8111 surname: Komakhin fullname: Komakhin, Roman organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 5 givenname: Murad surname: Omarov fullname: Omarov, Murad organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 6 givenname: Alina orcidid: 0000-0003-1924-6708 surname: Kocheshkova fullname: Kocheshkova, Alina organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 7 givenname: Zakhar orcidid: 0000-0002-0825-9418 surname: Konstantinov fullname: Konstantinov, Zakhar organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 8 givenname: Alexander orcidid: 0000-0003-4480-8776 surname: Soloviev fullname: Soloviev, Alexander organization: N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences – sequence: 9 givenname: Gennady orcidid: 0000-0002-9016-103X surname: Karlov fullname: Karlov, Gennady organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 10 givenname: Mikhail orcidid: 0000-0001-6221-3659 surname: Divashuk fullname: Divashuk, Mikhail organization: All‐Russia Research Institute of Agricultural Biotechnology – sequence: 11 givenname: Ilya orcidid: 0000-0003-3885-3837 surname: Kirov fullname: Kirov, Ilya email: kirovez@gmail.com organization: Moscow Institute of Physics and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37555565$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URNuBDQ-ALCGkCinFP0mcLMvwV1QVFrC2bOdm6lFip3ZGZbriCRDPyJNwywxdsMAL-8rn87F9zzE5CDEAIU85O-U4Xq39ZE-5rKrqATniqiwL1bL2AOtaiaJlShyS45zXjMmG1eIROZQK4aqujsiPpcntr-8_Z5NWMENHL02IU0xAM1xvIDgfVjSZyXfDlsKwcb4zM2Q6XwGdkwl5itnPPgY6Jegh4QlUTejom8szOsJ8tR3MXo-9H1CMPR2jxRL9YIQwZ-pRHgxWj8nD3gwZnuzXBfn67u2X5Yfi4tP78-XZReFKIauidqV1repN1RknGtu3tnSs5aWpmTRlX1vcYA24uulUba0rW8WcNNyqioOxckFe7HxvTOhNWOl13KSAN-rbm29WMCE5YzgvyMmOw9djO_KsR58dDPhYiJusRVM2QrKKS0Sf_4Pee4qm4XXJG66QermjXIo5Y8v0lPxo0lZzpu_S1Hdp6j9pIvxsb7mxI3T36N_4EOD7b2A7t_-x0h_PP7_emf4G-DSvUQ |
CitedBy_id | crossref_primary_10_3390_ijms25063271 crossref_primary_10_3390_ijms242317054 |
Cites_doi | 10.1038/s41467-021-23918-y 10.1093/jxb/erz202 10.1093/bioinformatics/btp616 10.1038/s41467-019-11385-5 10.1038/nrg.2016.139 10.3390/plants11010005 10.1038/s41587-019-0201-4 10.1038/s41588-021-00807-0 10.1046/j.1365-313x.1998.00343.x 10.1371/journal.pgen.1002988 10.1038/nrg3374 10.1186/s13059-016-0924-1 10.1038/ng.768 10.1105/tpc.20.00115 10.1186/s12859-018-2486-6 10.1186/s13059-021-02348-5 10.1104/pp.113.216481 10.1038/nrg2072 10.1093/nar/gkaa370 10.1093/bioinformatics/bty191 10.3390/plants10122681 10.1002/humu.24063 10.1186/s13059-017-1221-3 10.1038/srep23181 10.1016/j.molp.2017.08.014 10.1093/bioinformatics/btp352 10.1038/nrg.2017.7 10.1371/journal.pgen.1000733 10.1038/s41467-021-26278-9 10.1038/s41467-020-16641-7 10.1126/science.1095011 10.1111/j.1399-3054.1962.tb08052.x 10.1093/bioinformatics/btac292 10.3390/plants8080270 10.1111/j.1365-313X.2010.04231.x 10.1016/j.pbi.2015.05.027 10.1038/s41587-020-0407-5 10.3390/plants9121794 10.1093/nar/gkac1115 10.1186/s13007-020-00661-x 10.1186/s13059-017-1265-4 10.1038/nature08328 10.1093/bioinformatics/btu638 10.1101/2020.08.23.263491 10.1038/nature07324 10.3389/fgene.2020.590282 10.1111/1755-0998.12938 10.7554/eLife.15716 10.1038/nature09861 10.1093/gigascience/giaa065 10.3390/ijms21239331 10.1016/j.tplants.2019.05.003 10.1080/08935696.2011.558751 10.1093/nar/gkab828 10.1038/nature08351 10.1093/nar/gky411 10.1111/j.1365-313X.2009.03946.x 10.1101/gr.092759.109 10.1046/j.1365-313X.2003.01667.x 10.1038/s41467-020-17874-2 10.1186/1471-2105-12-35 10.1105/tpc.111.095232 |
ContentType | Journal Article |
Copyright | 2023 Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/jipb.13555 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 2261 |
ExternalDocumentID | zwxb202310002 10_1111_jipb_13555 37555565 JIPB13555 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation funderid: 075‐15‐2019‐1667 – fundername: Russian Science Foundation funderid: 22‐74‐10055 – fundername: Russian Science Foundation grantid: 20-74-10055 – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-15-2019-1667 |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXDM AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESTFP ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 4A8 PSX |
ID | FETCH-LOGICAL-c4235-6c4bc97fa5dac28bf9b4c0914a603a4f6b9b408ec68d76bbc4970c3a1b751eab3 |
IEDL.DBID | 33P |
ISSN | 1672-9072 |
IngestDate | Wed Nov 06 04:32:49 EST 2024 Fri Oct 25 09:14:36 EDT 2024 Thu Oct 10 20:00:12 EDT 2024 Thu Nov 21 21:20:18 EST 2024 Sat Nov 02 12:14:22 EDT 2024 Sat Aug 24 00:45:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | DNA methylation Arabidopsis Nanopore sequencing transposon insertions |
Language | English |
License | 2023 Institute of Botany, Chinese Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4235-6c4bc97fa5dac28bf9b4c0914a603a4f6b9b408ec68d76bbc4970c3a1b751eab3 |
Notes | Jiamu Du, Southern University of Science and Technology, China Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6011-1376 0000-0001-6221-3659 0000-0003-3885-3837 0000-0002-9016-103X 0000-0003-1924-6708 0000-0001-5963-8111 0000-0003-4480-8776 0000-0002-0825-9418 0000-0002-0693-5363 0000-0002-0755-0801 |
OpenAccessLink | https://www.biorxiv.org/content/biorxiv/early/2022/04/06/2021.06.11.448052.full.pdf |
PMID | 37555565 |
PQID | 2881641817 |
PQPubID | 2045135 |
PageCount | 20 |
ParticipantIDs | wanfang_journals_zwxb202310002 proquest_miscellaneous_2848230513 proquest_journals_2881641817 crossref_primary_10_1111_jipb_13555 pubmed_primary_37555565 wiley_primary_10_1111_jipb_13555_JIPB13555 |
PublicationCentury | 2000 |
PublicationDate | October 2023 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia All-Russia Center for Plant Quarantine,Ramenski 140150,Russia All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia – name: All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia – name: All-Russia Center for Plant Quarantine,Ramenski 140150,Russia – name: N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia |
References | 2021b; 11 2021; 22 2019; 10 2015; 31 2020; 16 2019; 19 2011; 12 2013; 162 2020; 11 2010; 63 2018; 46 2011; 472 1998; 16 2013; 14 2010; 26 2019; 24 2020; 9 2007; 8 2020; 48 2021a; 10 2018; 34 2012; 24 2009; 19 2022; 38 2019; 8 2009; 25 2021; 49 2019; 70 2020a; 9 2020; 41 2022; 50 2009; 60 2019; 37 2020; 38 1962; 15 2020; 32 2016; 17 2011; 3 2004; 304 2020b; 21 2003; 33 2018; 19 2016; 5 2016; 6 2015; 27 2021; 53 2021; 12 2021; 11 2020 2017; 10 2011; 43 2017; 18 2008; 456 2009; 5 2009; 461 2012; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 24 start-page: 1242 year: 2012 end-page: 1255 article-title: Retrotransposons control fruit‐specific, cold‐dependent accumulation of anthocyanins in blood oranges publication-title: Plant Cell – volume: 9 year: 2020 article-title: Galactic circos: User‐friendly Circos plots within the Galaxy platform publication-title: Gigascience – volume: 32 start-page: 2687 year: 2020 end-page: 2698 article-title: Long‐read cDNA sequencing enables a “Gene‐Like” transcript annotation of transposable elements publication-title: Plant Cell – volume: 53 start-page: 564 year: 2021 end-page: 573 article-title: Chromosome‐scale genome assembly provides insights into rye biology, evolution and agronomic potential publication-title: Nat. Genet – volume: 12 year: 2011 article-title: VennDiagram: A package for the generation of highly‐customizable Venn and Euler diagrams in R publication-title: BMC Bioinformatics – volume: 304 year: 2004 article-title: Retrotransposon‐induced mutations in grape skin color publication-title: Science – volume: 456 start-page: 125 year: 2008 end-page: 129 article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks publication-title: Nature – volume: 37 start-page: 907 year: 2019 end-page: 915 article-title: Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype publication-title: Nat. Biotechnol – volume: 18 start-page: 292 year: 2017 end-page: 308 article-title: Integration site selection by retroviruses and transposable elements in eukaryotes publication-title: Nat. Rev. Genet – volume: 17 year: 2016 article-title: JBrowse: A dynamic web platform for genome visualization and analysis publication-title: Genome Biol – volume: 8 year: 2019 article-title: Constructing a reference genome in a single lab: the possibility to use Oxford Nanopore Technology publication-title: Plants (Basel) – volume: 461 start-page: 423 year: 2009 end-page: 426 article-title: Bursts of retrotransposition reproduced in Arabidopsis publication-title: Nature – volume: 50 start-page: 12309 year: 2022 end-page: 12327 article-title: Pushing the limits of HiFi assemblies reveals centromere diversity between two genomes publication-title: Nucleic Acids Res – volume: 19 year: 2018 article-title: iDEP: An integrated web application for differential expression and pathway analysis of RNA‐Seq data publication-title: BMC Bioinformatics – volume: 34 start-page: 3094 year: 2018 end-page: 3100 article-title: Minimap2: Pairwise alignment for nucleotide sequences publication-title: Bioinformatics – volume: 10 start-page: 1258 year: 2017 end-page: 1273 article-title: Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis publication-title: Mol. Plant – volume: 63 start-page: 167 year: 2010 end-page: 177 article-title: Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high‐copy Mutator lines of maize publication-title: Plant J – volume: 43 start-page: 269 year: 2011 end-page: 276 article-title: Discovery and genotyping of genome structural polymorphism by sequencing on a population scale publication-title: Nat. Genet – volume: 18 year: 2017 article-title: Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding publication-title: Genome Biol – volume: 19 start-page: 77 year: 2019 end-page: 89 article-title: Harnessing the MinION: An example of how to establish long‐read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora publication-title: Mol Ecol Resour – volume: 14 start-page: 49 year: 2013 end-page: 61 article-title: How important are transposons for plant evolution? publication-title: Nat. Rev. Genet – volume: 12 year: 2021 article-title: Cas9 targeted enrichment of mobile elements using nanopore sequencing publication-title: Nat. Commun – volume: 38 start-page: 3109 year: 2022 end-page: 3112 article-title: Methylartist: Tools for visualizing modified bases from nanopore sequence data publication-title: Bioinformatics – year: 2020 article-title: A simple high efficiency and low cost in vitro growth system for phenotypic characterization and seed propagation of publication-title: Biorxiv – volume: 25 start-page: 2078 year: 2009 end-page: 2079 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 461 start-page: 427 year: 2009 end-page: 430 article-title: Selective epigenetic control of retrotransposition in Arabidopsis publication-title: Nature – volume: 9 year: 2020a article-title: Nanopore RNA sequencing revealed long non‐coding and LTR retrotransposon‐related RNAs expressed at early stages of triticale SEED development publication-title: Plants (Basel) – volume: 33 start-page: 743 year: 2003 end-page: 749 article-title: Two means of transcriptional reactivation within heterochromatin publication-title: Plant J – volume: 19 start-page: 1639 year: 2009 end-page: 1645 article-title: Circos: An information aesthetic for comparative genomics publication-title: Genome Res – volume: 5 year: 2016 article-title: The mobilome and its impact at the species level publication-title: eLife – volume: 60 start-page: 181 year: 2009 end-page: 193 article-title: Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider publication-title: Plant J – volume: 38 start-page: 433 year: 2020 end-page: 438 article-title: Targeted nanopore sequencing with Cas9‐guided adapter ligation publication-title: Nat. Biotechnol – volume: 49 start-page: 10431 year: 2021 end-page: 10447 article-title: Genomic impact of stress‐induced transposable element mobility in Arabidopsis publication-title: Nucleic Acids Res – volume: 12 year: 2021 article-title: Genome‐wide detection of cytosine methylations in plant from Nanopore data using deep learning publication-title: Nat. Commun – volume: 8 year: 2012 article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes publication-title: PLoS Genet – volume: 15 start-page: 473 year: 1962 end-page: 497 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures publication-title: Physiol. Plant. – volume: 22 year: 2021 article-title: Genetic and environmental modulation of transposition shapes the evolutionary potential of publication-title: Genome Biol – volume: 24 start-page: 700 year: 2019 end-page: 724 article-title: Tools and strategies for long‐read sequencing and de novo assembly of plant genomes publication-title: Trends Plant Sci – volume: 10 year: 2021a article-title: Transposons hidden in genome assembly gaps and mobilization of non‐autonomous LTR retrotransposons unravelled by Nanotei pipeline publication-title: Plants (Basel) – volume: 31 start-page: 166 year: 2015 end-page: 169 article-title: HTSeq—A Python framework to work with high‐throughput sequencing data publication-title: Bioinformatics – volume: 16 year: 2020 article-title: CRISPR‐Cas9 enrichment and long read sequencing for fine mapping in plants publication-title: Plant Methods – volume: 472 start-page: 115 year: 2011 end-page: 119 article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress publication-title: Nature – volume: 5 year: 2009 article-title: Mu transposon insertion sites and meiotic recombination events co‐localize with epigenetic marks for open chromatin across the maize genome publication-title: PLoS Genet – volume: 41 start-page: 1671 year: 2020 end-page: 1679 article-title: Xdrop: Targeted sequencing of long DNA molecules from low input samples using droplet sorting publication-title: Hum. Mutat – volume: 11 year: 2021 article-title: Genome sequencing of fiber flax cultivar atlant using oxford nanopore and illumina platforms publication-title: Front. Genet – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: A simplified method for Agrobacterium‐mediated transformation of publication-title: Plant J – volume: 10 year: 2019 article-title: Transposition favors the generation of large effect mutations that may facilitate rapid adaption publication-title: Nat. Commun – volume: 21 year: 2020b article-title: Genomic and transcriptomic survey provides new insight into the organization and transposition activity of highly expressed LTR retrotransposons of sunflower ( L.) publication-title: Int. J. Mol. Sci – volume: 48 start-page: 6685 year: 2020 end-page: 6698 article-title: Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes publication-title: Nucleic Acids Res – volume: 70 start-page: 3825 year: 2019 end-page: 3833 article-title: Mapping of transgenic alleles in soybean using a nanopore‐based sequencing strategy publication-title: J. Exp. Bot – volume: 11 year: 2020 article-title: Partner independent fusion gene detection by multiplexed CRISPR‐Cas9 enrichment and long read nanopore sequencing publication-title: Nat. Commun – volume: 18 year: 2017 article-title: The histone H3 variant H3.3 regulates gene body DNA methylation in publication-title: Genome Biol – volume: 6 year: 2016 article-title: A stress‐activated transposon in Arabidopsis induces transgenerational abscisic acid insensitivity publication-title: Sci. Rep – volume: 11 year: 2021b article-title: Searching for a needle in a haystack: Cas9‐targeted nanopore sequencing and DNA methylation profiling of full‐length glutenin genes in a big cereal genome publication-title: Plants (Basel) – volume: 46 year: 2018 article-title: Selective nanopore sequencing of human BRCA1 by Cas9‐assisted targeting of chromosome segments (CATCH) publication-title: Nucleic Acids Res – volume: 11 year: 2020 article-title: The impact of transposable elements on tomato diversity publication-title: Nat. Commun – volume: 162 start-page: 116 year: 2013 end-page: 131 article-title: The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21‐22 nucleotide small interfering RNAs publication-title: Plant Physiol – volume: 8 start-page: 272 year: 2007 end-page: 285 article-title: Transposable elements and the epigenetic regulation of the genome publication-title: Nat. Rev. Genet – volume: 18 start-page: 71 year: 2017 end-page: 86 article-title: Regulatory activities of transposable elements: From conflicts to benefits publication-title: Nat. Rev. Genet – volume: 27 start-page: 67 year: 2015 end-page: 76 article-title: Silencing of active transposable elements in plants publication-title: Curr. Opin. Plant Biol – volume: 3 start-page: 180 year: 2011 end-page: 185 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-021-23918-y – ident: e_1_2_8_33_1 doi: 10.1093/jxb/erz202 – ident: e_1_2_8_51_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_8_46_1 doi: 10.1038/s41467-019-11385-5 – ident: e_1_2_8_8_1 doi: 10.1038/nrg.2016.139 – ident: e_1_2_8_27_1 doi: 10.3390/plants11010005 – ident: e_1_2_8_23_1 doi: 10.1038/s41587-019-0201-4 – ident: e_1_2_8_49_1 doi: 10.1038/s41588-021-00807-0 – ident: e_1_2_8_9_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_8_10_1 doi: 10.1371/journal.pgen.1002988 – ident: e_1_2_8_34_1 doi: 10.1038/nrg3374 – ident: e_1_2_8_4_1 doi: 10.1186/s13059-016-0924-1 – ident: e_1_2_8_18_1 doi: 10.1038/ng.768 – ident: e_1_2_8_43_1 doi: 10.1105/tpc.20.00115 – ident: e_1_2_8_16_1 doi: 10.1186/s12859-018-2486-6 – ident: e_1_2_8_3_1 doi: 10.1186/s13059-021-02348-5 – ident: e_1_2_8_42_1 doi: 10.1104/pp.113.216481 – ident: e_1_2_8_54_1 doi: 10.1038/nrg2072 – ident: e_1_2_8_62_1 doi: 10.1093/nar/gkaa370 – ident: e_1_2_8_31_1 doi: 10.1093/bioinformatics/bty191 – ident: e_1_2_8_25_1 doi: 10.3390/plants10122681 – ident: e_1_2_8_37_1 doi: 10.1002/humu.24063 – ident: e_1_2_8_61_1 doi: 10.1186/s13059-017-1221-3 – ident: e_1_2_8_20_1 doi: 10.1038/srep23181 – ident: e_1_2_8_11_1 doi: 10.1016/j.molp.2017.08.014 – ident: e_1_2_8_32_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_8_56_1 doi: 10.1038/nrg.2017.7 – ident: e_1_2_8_35_1 doi: 10.1371/journal.pgen.1000733 – ident: e_1_2_8_41_1 doi: 10.1038/s41467-021-26278-9 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-020-16641-7 – ident: e_1_2_8_28_1 doi: 10.1126/science.1095011 – ident: e_1_2_8_40_1 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: e_1_2_8_6_1 doi: 10.1093/bioinformatics/btac292 – ident: e_1_2_8_30_1 doi: 10.3390/plants8080270 – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-313X.2010.04231.x – ident: e_1_2_8_14_1 doi: 10.1016/j.pbi.2015.05.027 – ident: e_1_2_8_17_1 doi: 10.1038/s41587-020-0407-5 – ident: e_1_2_8_24_1 doi: 10.3390/plants9121794 – ident: e_1_2_8_48_1 doi: 10.1093/nar/gkac1115 – ident: e_1_2_8_36_1 doi: 10.1186/s13007-020-00661-x – ident: e_1_2_8_57_1 doi: 10.1186/s13059-017-1265-4 – ident: e_1_2_8_39_1 doi: 10.1038/nature08328 – ident: e_1_2_8_2_1 doi: 10.1093/bioinformatics/btu638 – ident: e_1_2_8_44_1 doi: 10.1101/2020.08.23.263491 – ident: e_1_2_8_63_1 doi: 10.1038/nature07324 – ident: e_1_2_8_12_1 doi: 10.3389/fgene.2020.590282 – ident: e_1_2_8_53_1 doi: 10.1111/1755-0998.12938 – ident: e_1_2_8_47_1 doi: 10.7554/eLife.15716 – ident: e_1_2_8_19_1 doi: 10.1038/nature09861 – ident: e_1_2_8_50_1 doi: 10.1093/gigascience/giaa065 – ident: e_1_2_8_26_1 doi: 10.3390/ijms21239331 – ident: e_1_2_8_22_1 doi: 10.1016/j.tplants.2019.05.003 – ident: e_1_2_8_59_1 doi: 10.1080/08935696.2011.558751 – ident: e_1_2_8_52_1 doi: 10.1093/nar/gkab828 – ident: e_1_2_8_58_1 doi: 10.1038/nature08351 – ident: e_1_2_8_15_1 doi: 10.1093/nar/gky411 – ident: e_1_2_8_21_1 doi: 10.1111/j.1365-313X.2009.03946.x – ident: e_1_2_8_29_1 doi: 10.1101/gr.092759.109 – ident: e_1_2_8_45_1 doi: 10.1046/j.1365-313X.2003.01667.x – ident: e_1_2_8_13_1 doi: 10.1038/s41467-020-17874-2 – ident: e_1_2_8_7_1 doi: 10.1186/1471-2105-12-35 – ident: e_1_2_8_5_1 doi: 10.1105/tpc.111.095232 |
SSID | ssj0038062 |
Score | 2.4150846 |
Snippet | ABSTRACT
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the... Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new... Transposable element insertions(TEIs)are an im-portant source of genomic innovation by con-tributing to plant adaptation,speciation,and the production of new... |
SourceID | wanfang proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2242 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Cans CRISPR-Cas Systems Deoxyribonucleic acid DNA DNA methylation DNA Methylation - genetics DNA Transposable Elements - genetics Genomes Heat stress Heat tolerance Insertion Nanopore Sequencing Nucleotide sequence Plants, Genetically Modified - genetics Speciation Transgenic plants Transposition transposon insertions Transposons |
Title | Cas9‐targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13555 https://www.ncbi.nlm.nih.gov/pubmed/37555565 https://www.proquest.com/docview/2881641817 https://search.proquest.com/docview/2848230513 https://d.wanfangdata.com.cn/periodical/zwxb202310002 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7S0EMvbfp2mwaV9lQweP2SDL3kSZJDCDSB3syMJJeFrb3EWdrtqb-g9Dfml3Qked2EQqDkJixZEtKM5pvRaAbgvZGlzmVFMWZk4tyqIkaWOrFmbFpZdEG-nCn78JM8-az29l2YnI-rtzAhPsRocHOc4c9rx-BI_XUmn87JZW0o3AtzVhP8-43sdHUMZyrx2UQnpUxj1gDTITapd-MZf70pjf6BmP4lT9tg--UmdvXC5-DR3aa9AQ8H0Cm2A5U8hjXbPoH7Ox0Dw-VT-LWLfXX183dwCrdG8InbMSy3YvCzZukmLnA-NbOlsLOFnjorQS8YOorLEBs9OH6J-Zi0pBfYGrF3si1ciuplcLgTQ4LwXnSN-NoRF7k_b5_sxZSrZ84p5xmcH-yf7R7GQ5qGWDMWK2LebNKVbLAwqFNFTUW5ZhiSY5lkmDcl8YdEWV0qpgwinVcy0RlOSBYTi5Q9h_W2a-1LEMSClNkWK2JlGVWJaZUWRtpUWjIJ2QjerbarnodoHPWoxfDC1n5hI9hc7WQ9cGRfp0qxZsh4RkbwdqxmXnIXJNjabuHa5O7esZhkEbwIFDAOk0numdFvBFsDSfzt-8e37-TS0Lu7kjSCD37_b5lgfXx0uuNLr_6n8Wt44EYJroSbsH55sbBv4F5vFlue9P8AzIgIoA |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yKLSXNn27eVSlPRUMXr8kH3LIk02bLoGm0JsZPVwWtvYSZ2m3p_6CkN-YX5KR5HUTAoXSm7BkSUgzmm9GoxmAd5rnKuWFDDGROkyNyEIkqRMqwqaFQRvky5qyh5_56KvYP7BhcrYXb2F8fIje4GY5w53XlsGtQfoml4-n0qZtyLJlWE1zokT7giM5WRzEiYhcPtFBzuOQdMC4i07qHHn6f2_Lozsg073lqSusv91Gr078HD76z4mvwcMOd7IdTyiPYcnUT-DebkPYcP4ULvawLa5-X3q_cKMZHboNIXPDOldrEnDsDKdjPZkzM5mpsTUUtIzQIzv34dG97xeb9nlLWoa1ZvujHWazVM-9zx3rcoS3rKnY90ZSkfpzJsqWjal6Yv1ynsGXw4PTvWHYZWoIFcGxLKT9lqrgFWYaVSxkVchUERJJMY8STKtc0odIGJULIg4pVVrwSCU4kDwbGJTJc1ipm9q8BCZJlhLnYiFJX0aRY1zEmeYm5kbqSJoA3i72q5z6gBxlr8jQwpZuYQPYWGxl2TFlW8ZCkHJIkIYH8KavJnaydyRYm2Zm26T26jEbJAG88CTQD5Nw6pkAcABbHU386fvXj5_SZqK31yVxAO8dAfxlguWHo5NdV3r1L41fw_3h6afj8vho9HEdHtgRvWfhBqycn83MJiy3erbl-OAabAAMyA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yKKWXJukrbl4q7alg8Fq2JUMvSTZL0pZloS30ZvRyWNjaJs6Sbk75BaW_sb-kI8nrJgQKpTdhyZLQaDTfjEYzAG80y1TCchkKKnWYGJ6GAqVOqBCb5kbYIF_WlH36iY2_8uGJDZPzbvkWxseH6A1uljPceW0ZvNHlbSafNtJmbUjTVVhPEIfbyPmUTpbnMOWRSyc6yFgcogoYd8FJnR9P_-9dcXQPY7qnPFUpqvO74NVJn9HG_817Ex53qJMc-m2yBSumegIPjmpEhoun8ONYtPmvm5_eK9xogkdujbjckM7RGsUbuRDNVM8WxMzmamrNBC1B7EgufXB07_lFmj5rSUtEpclwfEhsjuqF97gjXYbwltQl-VZLLGJ_zkDZkilWz6xXzjP4Mjr5fHwadnkaQoVgLA2R2lLlrBSpFirmssxlohCHJCKLqEjKTOKHiBuVcdwaUqokZ5GiYiBZOjBC0uewVtWV2QYiUZIi34pcorYseCbiPE41MzEzUkfSBPB6Sa6i8eE4il6NwYUt3MIGsLukZNGxZFvEnKNqiICGBfCqr0ZmsjckojL13LZJ7MVjOqABvPA7oB-GMuwZ4W8A-92W-NP39dV3afPQ28uSOIC3jv5_mWDx_mxy5Eov_6XxATycDEfFx7Pxhx14ZAf0boW7sHZ5MTd7sNrq-b7jgt8oewtu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cas9%E2%80%90targeted+Nanopore+sequencing+rapidly+elucidates+the+transposition+preferences+and+DNA+methylation+profiles+of+mobile+elements+in+plants&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Merkulov%2C+Pavel&rft.au=Gvaramiya%2C+Sofya&rft.au=Dudnikov%2C+Maxim&rft.au=Komakhin%2C+Roman&rft.date=2023-10-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=65&rft.issue=10&rft.spage=2242&rft.epage=2261&rft_id=info:doi/10.1111%2Fjipb.13555&rft.externalDBID=10.1111%252Fjipb.13555&rft.externalDocID=JIPB13555 |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |