Cas9‐targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants

ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare so...

Full description

Saved in:
Bibliographic Details
Published in:Journal of integrative plant biology Vol. 65; no. 10; pp. 2242 - 2261
Main Authors: Merkulov, Pavel, Gvaramiya, Sofya, Dudnikov, Maxim, Komakhin, Roman, Omarov, Murad, Kocheshkova, Alina, Konstantinov, Zakhar, Soloviev, Alexander, Karlov, Gennady, Divashuk, Mikhail, Kirov, Ilya
Format: Journal Article
Language:English
Published: China (Republic : 1949- ) Wiley Subscription Services, Inc 01-10-2023
N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia
Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
All-Russia Center for Plant Quarantine,Ramenski 140150,Russia
All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants. An integrated Cas9‐targeted Nanopore sequencing (CANS)–NanoCasTE pipeline successfully detected novel transposon insertions in a plant genome, including somatic and germline variations. Our evidence indicates the pivotal role of global DNA methylation and locus transcription activity in dictating the selection of transposition sites within the genome.
AbstractList Transposable element insertions(TEIs)are an im-portant source of genomic innovation by con-tributing to plant adaptation,speciation,and the production of new varieties.The often large,complex plant genomes make identifying TEIs from short reads difficult and expensive.More-over,rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads.To address these challenges,we combined Cas9-targeted Nanopore sequencing(CANS)with the novel pipeline NanoCasTE to trace both genet-ically inherited and somatic TEIs in plants.We performed CANS of the EVADE(EVD)retro-transposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage.Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD trans-poson in the ddm1(decrease in DNA methylation 1)genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference.We also investigated somatic transposition events of the ONSEN transposon family,finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs.Finally,we detected hypomethylation of novel somatic in-sertions for two ONSENs.CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds,as well as screening T-DNA insertion mutants and transgenic plants.
ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants. An integrated Cas9‐targeted Nanopore sequencing (CANS)–NanoCasTE pipeline successfully detected novel transposon insertions in a plant genome, including somatic and germline variations. Our evidence indicates the pivotal role of global DNA methylation and locus transcription activity in dictating the selection of transposition sites within the genome.
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants.
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9‐targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ ( EVD ) retrotransposon in wild‐type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T‐DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 ( decrease in DNA methylation 1 ) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSEN s. Finally, we detected hypomethylation of novel somatic insertions for two ONSEN s. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T‐DNA insertion mutants and transgenic plants.
Author Karlov, Gennady
Divashuk, Mikhail
Omarov, Murad
Dudnikov, Maxim
Soloviev, Alexander
Merkulov, Pavel
Kocheshkova, Alina
Konstantinov, Zakhar
Gvaramiya, Sofya
Komakhin, Roman
Kirov, Ilya
AuthorAffiliation All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;All-Russia Center for Plant Quarantine,Ramenski 140150,Russia;N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia
AuthorAffiliation_xml – name: All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia;All-Russia Center for Plant Quarantine,Ramenski 140150,Russia;N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia
Author_xml – sequence: 1
  givenname: Pavel
  orcidid: 0000-0001-6011-1376
  surname: Merkulov
  fullname: Merkulov, Pavel
  organization: Moscow Institute of Physics and Technology
– sequence: 2
  givenname: Sofya
  orcidid: 0000-0002-0693-5363
  surname: Gvaramiya
  fullname: Gvaramiya, Sofya
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 3
  givenname: Maxim
  orcidid: 0000-0002-0755-0801
  surname: Dudnikov
  fullname: Dudnikov, Maxim
  organization: Moscow Institute of Physics and Technology
– sequence: 4
  givenname: Roman
  orcidid: 0000-0001-5963-8111
  surname: Komakhin
  fullname: Komakhin, Roman
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 5
  givenname: Murad
  surname: Omarov
  fullname: Omarov, Murad
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 6
  givenname: Alina
  orcidid: 0000-0003-1924-6708
  surname: Kocheshkova
  fullname: Kocheshkova, Alina
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 7
  givenname: Zakhar
  orcidid: 0000-0002-0825-9418
  surname: Konstantinov
  fullname: Konstantinov, Zakhar
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 8
  givenname: Alexander
  orcidid: 0000-0003-4480-8776
  surname: Soloviev
  fullname: Soloviev, Alexander
  organization: N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences
– sequence: 9
  givenname: Gennady
  orcidid: 0000-0002-9016-103X
  surname: Karlov
  fullname: Karlov, Gennady
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 10
  givenname: Mikhail
  orcidid: 0000-0001-6221-3659
  surname: Divashuk
  fullname: Divashuk, Mikhail
  organization: All‐Russia Research Institute of Agricultural Biotechnology
– sequence: 11
  givenname: Ilya
  orcidid: 0000-0003-3885-3837
  surname: Kirov
  fullname: Kirov, Ilya
  email: kirovez@gmail.com
  organization: Moscow Institute of Physics and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37555565$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URNuBDQ-ALCGkCinFP0mcLMvwV1QVFrC2bOdm6lFip3ZGZbriCRDPyJNwywxdsMAL-8rn87F9zzE5CDEAIU85O-U4Xq39ZE-5rKrqATniqiwL1bL2AOtaiaJlShyS45zXjMmG1eIROZQK4aqujsiPpcntr-8_Z5NWMENHL02IU0xAM1xvIDgfVjSZyXfDlsKwcb4zM2Q6XwGdkwl5itnPPgY6Jegh4QlUTejom8szOsJ8tR3MXo-9H1CMPR2jxRL9YIQwZ-pRHgxWj8nD3gwZnuzXBfn67u2X5Yfi4tP78-XZReFKIauidqV1repN1RknGtu3tnSs5aWpmTRlX1vcYA24uulUba0rW8WcNNyqioOxckFe7HxvTOhNWOl13KSAN-rbm29WMCE5YzgvyMmOw9djO_KsR58dDPhYiJusRVM2QrKKS0Sf_4Pee4qm4XXJG66QermjXIo5Y8v0lPxo0lZzpu_S1Hdp6j9pIvxsb7mxI3T36N_4EOD7b2A7t_-x0h_PP7_emf4G-DSvUQ
CitedBy_id crossref_primary_10_3390_ijms25063271
crossref_primary_10_3390_ijms242317054
Cites_doi 10.1038/s41467-021-23918-y
10.1093/jxb/erz202
10.1093/bioinformatics/btp616
10.1038/s41467-019-11385-5
10.1038/nrg.2016.139
10.3390/plants11010005
10.1038/s41587-019-0201-4
10.1038/s41588-021-00807-0
10.1046/j.1365-313x.1998.00343.x
10.1371/journal.pgen.1002988
10.1038/nrg3374
10.1186/s13059-016-0924-1
10.1038/ng.768
10.1105/tpc.20.00115
10.1186/s12859-018-2486-6
10.1186/s13059-021-02348-5
10.1104/pp.113.216481
10.1038/nrg2072
10.1093/nar/gkaa370
10.1093/bioinformatics/bty191
10.3390/plants10122681
10.1002/humu.24063
10.1186/s13059-017-1221-3
10.1038/srep23181
10.1016/j.molp.2017.08.014
10.1093/bioinformatics/btp352
10.1038/nrg.2017.7
10.1371/journal.pgen.1000733
10.1038/s41467-021-26278-9
10.1038/s41467-020-16641-7
10.1126/science.1095011
10.1111/j.1399-3054.1962.tb08052.x
10.1093/bioinformatics/btac292
10.3390/plants8080270
10.1111/j.1365-313X.2010.04231.x
10.1016/j.pbi.2015.05.027
10.1038/s41587-020-0407-5
10.3390/plants9121794
10.1093/nar/gkac1115
10.1186/s13007-020-00661-x
10.1186/s13059-017-1265-4
10.1038/nature08328
10.1093/bioinformatics/btu638
10.1101/2020.08.23.263491
10.1038/nature07324
10.3389/fgene.2020.590282
10.1111/1755-0998.12938
10.7554/eLife.15716
10.1038/nature09861
10.1093/gigascience/giaa065
10.3390/ijms21239331
10.1016/j.tplants.2019.05.003
10.1080/08935696.2011.558751
10.1093/nar/gkab828
10.1038/nature08351
10.1093/nar/gky411
10.1111/j.1365-313X.2009.03946.x
10.1101/gr.092759.109
10.1046/j.1365-313X.2003.01667.x
10.1038/s41467-020-17874-2
10.1186/1471-2105-12-35
10.1105/tpc.111.095232
ContentType Journal Article
Copyright 2023 Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/jipb.13555
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Genetics Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 2261
ExternalDocumentID zwxb202310002
10_1111_jipb_13555
37555565
JIPB13555
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  funderid: 075‐15‐2019‐1667
– fundername: Russian Science Foundation
  funderid: 22‐74‐10055
– fundername: Russian Science Foundation
  grantid: 20-74-10055
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-15-2019-1667
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
4A8
PSX
ID FETCH-LOGICAL-c4235-6c4bc97fa5dac28bf9b4c0914a603a4f6b9b408ec68d76bbc4970c3a1b751eab3
IEDL.DBID 33P
ISSN 1672-9072
IngestDate Wed Nov 06 04:32:49 EST 2024
Fri Oct 25 09:14:36 EDT 2024
Thu Oct 10 20:00:12 EDT 2024
Thu Nov 21 21:20:18 EST 2024
Sat Nov 02 12:14:22 EDT 2024
Sat Aug 24 00:45:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords DNA methylation
Arabidopsis
Nanopore sequencing
transposon insertions
Language English
License 2023 Institute of Botany, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4235-6c4bc97fa5dac28bf9b4c0914a603a4f6b9b408ec68d76bbc4970c3a1b751eab3
Notes Jiamu Du, Southern University of Science and Technology, China
Edited by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6011-1376
0000-0001-6221-3659
0000-0003-3885-3837
0000-0002-9016-103X
0000-0003-1924-6708
0000-0001-5963-8111
0000-0003-4480-8776
0000-0002-0825-9418
0000-0002-0693-5363
0000-0002-0755-0801
OpenAccessLink https://www.biorxiv.org/content/biorxiv/early/2022/04/06/2021.06.11.448052.full.pdf
PMID 37555565
PQID 2881641817
PQPubID 2045135
PageCount 20
ParticipantIDs wanfang_journals_zwxb202310002
proquest_miscellaneous_2848230513
proquest_journals_2881641817
crossref_primary_10_1111_jipb_13555
pubmed_primary_37555565
wiley_primary_10_1111_jipb_13555_JIPB13555
PublicationCentury 2000
PublicationDate October 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia
Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
All-Russia Center for Plant Quarantine,Ramenski 140150,Russia
All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Moscow Institute of Physics and Technology,Dolgoprudny 141701,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia%All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
– name: All-Russia Research Institute of Agricultural Biotechnology,Moscow 127550,Russia
– name: All-Russia Center for Plant Quarantine,Ramenski 140150,Russia
– name: N.V.Tsitsin Main Botanical Garden of the Russian Academy of Sciences,Moscow 127276,Russia
References 2021b; 11
2021; 22
2019; 10
2015; 31
2020; 16
2019; 19
2011; 12
2013; 162
2020; 11
2010; 63
2018; 46
2011; 472
1998; 16
2013; 14
2010; 26
2019; 24
2020; 9
2007; 8
2020; 48
2021a; 10
2018; 34
2012; 24
2009; 19
2022; 38
2019; 8
2009; 25
2021; 49
2019; 70
2020a; 9
2020; 41
2022; 50
2009; 60
2019; 37
2020; 38
1962; 15
2020; 32
2016; 17
2011; 3
2004; 304
2020b; 21
2003; 33
2018; 19
2016; 5
2016; 6
2015; 27
2021; 53
2021; 12
2021; 11
2020
2017; 10
2011; 43
2017; 18
2008; 456
2009; 5
2009; 461
2012; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 24
  start-page: 1242
  year: 2012
  end-page: 1255
  article-title: Retrotransposons control fruit‐specific, cold‐dependent accumulation of anthocyanins in blood oranges
  publication-title: Plant Cell
– volume: 9
  year: 2020
  article-title: Galactic circos: User‐friendly Circos plots within the Galaxy platform
  publication-title: Gigascience
– volume: 32
  start-page: 2687
  year: 2020
  end-page: 2698
  article-title: Long‐read cDNA sequencing enables a “Gene‐Like” transcript annotation of transposable elements
  publication-title: Plant Cell
– volume: 53
  start-page: 564
  year: 2021
  end-page: 573
  article-title: Chromosome‐scale genome assembly provides insights into rye biology, evolution and agronomic potential
  publication-title: Nat. Genet
– volume: 12
  year: 2011
  article-title: VennDiagram: A package for the generation of highly‐customizable Venn and Euler diagrams in R
  publication-title: BMC Bioinformatics
– volume: 304
  year: 2004
  article-title: Retrotransposon‐induced mutations in grape skin color
  publication-title: Science
– volume: 456
  start-page: 125
  year: 2008
  end-page: 129
  article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks
  publication-title: Nature
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  article-title: Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype
  publication-title: Nat. Biotechnol
– volume: 18
  start-page: 292
  year: 2017
  end-page: 308
  article-title: Integration site selection by retroviruses and transposable elements in eukaryotes
  publication-title: Nat. Rev. Genet
– volume: 17
  year: 2016
  article-title: JBrowse: A dynamic web platform for genome visualization and analysis
  publication-title: Genome Biol
– volume: 8
  year: 2019
  article-title: Constructing a reference genome in a single lab: the possibility to use Oxford Nanopore Technology
  publication-title: Plants (Basel)
– volume: 461
  start-page: 423
  year: 2009
  end-page: 426
  article-title: Bursts of retrotransposition reproduced in Arabidopsis
  publication-title: Nature
– volume: 50
  start-page: 12309
  year: 2022
  end-page: 12327
  article-title: Pushing the limits of HiFi assemblies reveals centromere diversity between two genomes
  publication-title: Nucleic Acids Res
– volume: 19
  year: 2018
  article-title: iDEP: An integrated web application for differential expression and pathway analysis of RNA‐Seq data
  publication-title: BMC Bioinformatics
– volume: 34
  start-page: 3094
  year: 2018
  end-page: 3100
  article-title: Minimap2: Pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
– volume: 10
  start-page: 1258
  year: 2017
  end-page: 1273
  article-title: Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis
  publication-title: Mol. Plant
– volume: 63
  start-page: 167
  year: 2010
  end-page: 177
  article-title: Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high‐copy Mutator lines of maize
  publication-title: Plant J
– volume: 43
  start-page: 269
  year: 2011
  end-page: 276
  article-title: Discovery and genotyping of genome structural polymorphism by sequencing on a population scale
  publication-title: Nat. Genet
– volume: 18
  year: 2017
  article-title: Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding
  publication-title: Genome Biol
– volume: 19
  start-page: 77
  year: 2019
  end-page: 89
  article-title: Harnessing the MinION: An example of how to establish long‐read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora
  publication-title: Mol Ecol Resour
– volume: 14
  start-page: 49
  year: 2013
  end-page: 61
  article-title: How important are transposons for plant evolution?
  publication-title: Nat. Rev. Genet
– volume: 12
  year: 2021
  article-title: Cas9 targeted enrichment of mobile elements using nanopore sequencing
  publication-title: Nat. Commun
– volume: 38
  start-page: 3109
  year: 2022
  end-page: 3112
  article-title: Methylartist: Tools for visualizing modified bases from nanopore sequence data
  publication-title: Bioinformatics
– year: 2020
  article-title: A simple high efficiency and low cost in vitro growth system for phenotypic characterization and seed propagation of
  publication-title: Biorxiv
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 461
  start-page: 427
  year: 2009
  end-page: 430
  article-title: Selective epigenetic control of retrotransposition in Arabidopsis
  publication-title: Nature
– volume: 9
  year: 2020a
  article-title: Nanopore RNA sequencing revealed long non‐coding and LTR retrotransposon‐related RNAs expressed at early stages of triticale SEED development
  publication-title: Plants (Basel)
– volume: 33
  start-page: 743
  year: 2003
  end-page: 749
  article-title: Two means of transcriptional reactivation within heterochromatin
  publication-title: Plant J
– volume: 19
  start-page: 1639
  year: 2009
  end-page: 1645
  article-title: Circos: An information aesthetic for comparative genomics
  publication-title: Genome Res
– volume: 5
  year: 2016
  article-title: The mobilome and its impact at the species level
  publication-title: eLife
– volume: 60
  start-page: 181
  year: 2009
  end-page: 193
  article-title: Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider
  publication-title: Plant J
– volume: 38
  start-page: 433
  year: 2020
  end-page: 438
  article-title: Targeted nanopore sequencing with Cas9‐guided adapter ligation
  publication-title: Nat. Biotechnol
– volume: 49
  start-page: 10431
  year: 2021
  end-page: 10447
  article-title: Genomic impact of stress‐induced transposable element mobility in Arabidopsis
  publication-title: Nucleic Acids Res
– volume: 12
  year: 2021
  article-title: Genome‐wide detection of cytosine methylations in plant from Nanopore data using deep learning
  publication-title: Nat. Commun
– volume: 8
  year: 2012
  article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes
  publication-title: PLoS Genet
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures
  publication-title: Physiol. Plant.
– volume: 22
  year: 2021
  article-title: Genetic and environmental modulation of transposition shapes the evolutionary potential of
  publication-title: Genome Biol
– volume: 24
  start-page: 700
  year: 2019
  end-page: 724
  article-title: Tools and strategies for long‐read sequencing and de novo assembly of plant genomes
  publication-title: Trends Plant Sci
– volume: 10
  year: 2021a
  article-title: Transposons hidden in genome assembly gaps and mobilization of non‐autonomous LTR retrotransposons unravelled by Nanotei pipeline
  publication-title: Plants (Basel)
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  article-title: HTSeq—A Python framework to work with high‐throughput sequencing data
  publication-title: Bioinformatics
– volume: 16
  year: 2020
  article-title: CRISPR‐Cas9 enrichment and long read sequencing for fine mapping in plants
  publication-title: Plant Methods
– volume: 472
  start-page: 115
  year: 2011
  end-page: 119
  article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress
  publication-title: Nature
– volume: 5
  year: 2009
  article-title: Mu transposon insertion sites and meiotic recombination events co‐localize with epigenetic marks for open chromatin across the maize genome
  publication-title: PLoS Genet
– volume: 41
  start-page: 1671
  year: 2020
  end-page: 1679
  article-title: Xdrop: Targeted sequencing of long DNA molecules from low input samples using droplet sorting
  publication-title: Hum. Mutat
– volume: 11
  year: 2021
  article-title: Genome sequencing of fiber flax cultivar atlant using oxford nanopore and illumina platforms
  publication-title: Front. Genet
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: A simplified method for Agrobacterium‐mediated transformation of
  publication-title: Plant J
– volume: 10
  year: 2019
  article-title: Transposition favors the generation of large effect mutations that may facilitate rapid adaption
  publication-title: Nat. Commun
– volume: 21
  year: 2020b
  article-title: Genomic and transcriptomic survey provides new insight into the organization and transposition activity of highly expressed LTR retrotransposons of sunflower ( L.)
  publication-title: Int. J. Mol. Sci
– volume: 48
  start-page: 6685
  year: 2020
  end-page: 6698
  article-title: Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes
  publication-title: Nucleic Acids Res
– volume: 70
  start-page: 3825
  year: 2019
  end-page: 3833
  article-title: Mapping of transgenic alleles in soybean using a nanopore‐based sequencing strategy
  publication-title: J. Exp. Bot
– volume: 11
  year: 2020
  article-title: Partner independent fusion gene detection by multiplexed CRISPR‐Cas9 enrichment and long read nanopore sequencing
  publication-title: Nat. Commun
– volume: 18
  year: 2017
  article-title: The histone H3 variant H3.3 regulates gene body DNA methylation in
  publication-title: Genome Biol
– volume: 6
  year: 2016
  article-title: A stress‐activated transposon in Arabidopsis induces transgenerational abscisic acid insensitivity
  publication-title: Sci. Rep
– volume: 11
  year: 2021b
  article-title: Searching for a needle in a haystack: Cas9‐targeted nanopore sequencing and DNA methylation profiling of full‐length glutenin genes in a big cereal genome
  publication-title: Plants (Basel)
– volume: 46
  year: 2018
  article-title: Selective nanopore sequencing of human BRCA1 by Cas9‐assisted targeting of chromosome segments (CATCH)
  publication-title: Nucleic Acids Res
– volume: 11
  year: 2020
  article-title: The impact of transposable elements on tomato diversity
  publication-title: Nat. Commun
– volume: 162
  start-page: 116
  year: 2013
  end-page: 131
  article-title: The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21‐22 nucleotide small interfering RNAs
  publication-title: Plant Physiol
– volume: 8
  start-page: 272
  year: 2007
  end-page: 285
  article-title: Transposable elements and the epigenetic regulation of the genome
  publication-title: Nat. Rev. Genet
– volume: 18
  start-page: 71
  year: 2017
  end-page: 86
  article-title: Regulatory activities of transposable elements: From conflicts to benefits
  publication-title: Nat. Rev. Genet
– volume: 27
  start-page: 67
  year: 2015
  end-page: 76
  article-title: Silencing of active transposable elements in plants
  publication-title: Curr. Opin. Plant Biol
– volume: 3
  start-page: 180
  year: 2011
  end-page: 185
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-021-23918-y
– ident: e_1_2_8_33_1
  doi: 10.1093/jxb/erz202
– ident: e_1_2_8_51_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_8_46_1
  doi: 10.1038/s41467-019-11385-5
– ident: e_1_2_8_8_1
  doi: 10.1038/nrg.2016.139
– ident: e_1_2_8_27_1
  doi: 10.3390/plants11010005
– ident: e_1_2_8_23_1
  doi: 10.1038/s41587-019-0201-4
– ident: e_1_2_8_49_1
  doi: 10.1038/s41588-021-00807-0
– ident: e_1_2_8_9_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_8_10_1
  doi: 10.1371/journal.pgen.1002988
– ident: e_1_2_8_34_1
  doi: 10.1038/nrg3374
– ident: e_1_2_8_4_1
  doi: 10.1186/s13059-016-0924-1
– ident: e_1_2_8_18_1
  doi: 10.1038/ng.768
– ident: e_1_2_8_43_1
  doi: 10.1105/tpc.20.00115
– ident: e_1_2_8_16_1
  doi: 10.1186/s12859-018-2486-6
– ident: e_1_2_8_3_1
  doi: 10.1186/s13059-021-02348-5
– ident: e_1_2_8_42_1
  doi: 10.1104/pp.113.216481
– ident: e_1_2_8_54_1
  doi: 10.1038/nrg2072
– ident: e_1_2_8_62_1
  doi: 10.1093/nar/gkaa370
– ident: e_1_2_8_31_1
  doi: 10.1093/bioinformatics/bty191
– ident: e_1_2_8_25_1
  doi: 10.3390/plants10122681
– ident: e_1_2_8_37_1
  doi: 10.1002/humu.24063
– ident: e_1_2_8_61_1
  doi: 10.1186/s13059-017-1221-3
– ident: e_1_2_8_20_1
  doi: 10.1038/srep23181
– ident: e_1_2_8_11_1
  doi: 10.1016/j.molp.2017.08.014
– ident: e_1_2_8_32_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_8_56_1
  doi: 10.1038/nrg.2017.7
– ident: e_1_2_8_35_1
  doi: 10.1371/journal.pgen.1000733
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-021-26278-9
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-020-16641-7
– ident: e_1_2_8_28_1
  doi: 10.1126/science.1095011
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_8_6_1
  doi: 10.1093/bioinformatics/btac292
– ident: e_1_2_8_30_1
  doi: 10.3390/plants8080270
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-313X.2010.04231.x
– ident: e_1_2_8_14_1
  doi: 10.1016/j.pbi.2015.05.027
– ident: e_1_2_8_17_1
  doi: 10.1038/s41587-020-0407-5
– ident: e_1_2_8_24_1
  doi: 10.3390/plants9121794
– ident: e_1_2_8_48_1
  doi: 10.1093/nar/gkac1115
– ident: e_1_2_8_36_1
  doi: 10.1186/s13007-020-00661-x
– ident: e_1_2_8_57_1
  doi: 10.1186/s13059-017-1265-4
– ident: e_1_2_8_39_1
  doi: 10.1038/nature08328
– ident: e_1_2_8_2_1
  doi: 10.1093/bioinformatics/btu638
– ident: e_1_2_8_44_1
  doi: 10.1101/2020.08.23.263491
– ident: e_1_2_8_63_1
  doi: 10.1038/nature07324
– ident: e_1_2_8_12_1
  doi: 10.3389/fgene.2020.590282
– ident: e_1_2_8_53_1
  doi: 10.1111/1755-0998.12938
– ident: e_1_2_8_47_1
  doi: 10.7554/eLife.15716
– ident: e_1_2_8_19_1
  doi: 10.1038/nature09861
– ident: e_1_2_8_50_1
  doi: 10.1093/gigascience/giaa065
– ident: e_1_2_8_26_1
  doi: 10.3390/ijms21239331
– ident: e_1_2_8_22_1
  doi: 10.1016/j.tplants.2019.05.003
– ident: e_1_2_8_59_1
  doi: 10.1080/08935696.2011.558751
– ident: e_1_2_8_52_1
  doi: 10.1093/nar/gkab828
– ident: e_1_2_8_58_1
  doi: 10.1038/nature08351
– ident: e_1_2_8_15_1
  doi: 10.1093/nar/gky411
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1365-313X.2009.03946.x
– ident: e_1_2_8_29_1
  doi: 10.1101/gr.092759.109
– ident: e_1_2_8_45_1
  doi: 10.1046/j.1365-313X.2003.01667.x
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-020-17874-2
– ident: e_1_2_8_7_1
  doi: 10.1186/1471-2105-12-35
– ident: e_1_2_8_5_1
  doi: 10.1105/tpc.111.095232
SSID ssj0038062
Score 2.4150846
Snippet ABSTRACT Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the...
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new...
Transposable element insertions(TEIs)are an im-portant source of genomic innovation by con-tributing to plant adaptation,speciation,and the production of new...
SourceID wanfang
proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2242
SubjectTerms Arabidopsis
Arabidopsis - genetics
Cans
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA methylation
DNA Methylation - genetics
DNA Transposable Elements - genetics
Genomes
Heat stress
Heat tolerance
Insertion
Nanopore Sequencing
Nucleotide sequence
Plants, Genetically Modified - genetics
Speciation
Transgenic plants
Transposition
transposon insertions
Transposons
Title Cas9‐targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13555
https://www.ncbi.nlm.nih.gov/pubmed/37555565
https://www.proquest.com/docview/2881641817
https://search.proquest.com/docview/2848230513
https://d.wanfangdata.com.cn/periodical/zwxb202310002
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7S0EMvbfp2mwaV9lQweP2SDL3kSZJDCDSB3syMJJeFrb3EWdrtqb-g9Dfml3Qked2EQqDkJixZEtKM5pvRaAbgvZGlzmVFMWZk4tyqIkaWOrFmbFpZdEG-nCn78JM8-az29l2YnI-rtzAhPsRocHOc4c9rx-BI_XUmn87JZW0o3AtzVhP8-43sdHUMZyrx2UQnpUxj1gDTITapd-MZf70pjf6BmP4lT9tg--UmdvXC5-DR3aa9AQ8H0Cm2A5U8hjXbPoH7Ox0Dw-VT-LWLfXX183dwCrdG8InbMSy3YvCzZukmLnA-NbOlsLOFnjorQS8YOorLEBs9OH6J-Zi0pBfYGrF3si1ciuplcLgTQ4LwXnSN-NoRF7k_b5_sxZSrZ84p5xmcH-yf7R7GQ5qGWDMWK2LebNKVbLAwqFNFTUW5ZhiSY5lkmDcl8YdEWV0qpgwinVcy0RlOSBYTi5Q9h_W2a-1LEMSClNkWK2JlGVWJaZUWRtpUWjIJ2QjerbarnodoHPWoxfDC1n5hI9hc7WQ9cGRfp0qxZsh4RkbwdqxmXnIXJNjabuHa5O7esZhkEbwIFDAOk0numdFvBFsDSfzt-8e37-TS0Lu7kjSCD37_b5lgfXx0uuNLr_6n8Wt44EYJroSbsH55sbBv4F5vFlue9P8AzIgIoA
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yKLSXNn27eVSlPRUMXr8kH3LIk02bLoGm0JsZPVwWtvYSZ2m3p_6CkN-YX5KR5HUTAoXSm7BkSUgzmm9GoxmAd5rnKuWFDDGROkyNyEIkqRMqwqaFQRvky5qyh5_56KvYP7BhcrYXb2F8fIje4GY5w53XlsGtQfoml4-n0qZtyLJlWE1zokT7giM5WRzEiYhcPtFBzuOQdMC4i07qHHn6f2_Lozsg073lqSusv91Gr078HD76z4mvwcMOd7IdTyiPYcnUT-DebkPYcP4ULvawLa5-X3q_cKMZHboNIXPDOldrEnDsDKdjPZkzM5mpsTUUtIzQIzv34dG97xeb9nlLWoa1ZvujHWazVM-9zx3rcoS3rKnY90ZSkfpzJsqWjal6Yv1ynsGXw4PTvWHYZWoIFcGxLKT9lqrgFWYaVSxkVchUERJJMY8STKtc0odIGJULIg4pVVrwSCU4kDwbGJTJc1ipm9q8BCZJlhLnYiFJX0aRY1zEmeYm5kbqSJoA3i72q5z6gBxlr8jQwpZuYQPYWGxl2TFlW8ZCkHJIkIYH8KavJnaydyRYm2Zm26T26jEbJAG88CTQD5Nw6pkAcABbHU386fvXj5_SZqK31yVxAO8dAfxlguWHo5NdV3r1L41fw_3h6afj8vho9HEdHtgRvWfhBqycn83MJiy3erbl-OAabAAMyA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yKKWXJukrbl4q7alg8Fq2JUMvSTZL0pZloS30ZvRyWNjaJs6Sbk75BaW_sb-kI8nrJgQKpTdhyZLQaDTfjEYzAG80y1TCchkKKnWYGJ6GAqVOqBCb5kbYIF_WlH36iY2_8uGJDZPzbvkWxseH6A1uljPceW0ZvNHlbSafNtJmbUjTVVhPEIfbyPmUTpbnMOWRSyc6yFgcogoYd8FJnR9P_-9dcXQPY7qnPFUpqvO74NVJn9HG_817Ex53qJMc-m2yBSumegIPjmpEhoun8ONYtPmvm5_eK9xogkdujbjckM7RGsUbuRDNVM8WxMzmamrNBC1B7EgufXB07_lFmj5rSUtEpclwfEhsjuqF97gjXYbwltQl-VZLLGJ_zkDZkilWz6xXzjP4Mjr5fHwadnkaQoVgLA2R2lLlrBSpFirmssxlohCHJCKLqEjKTOKHiBuVcdwaUqokZ5GiYiBZOjBC0uewVtWV2QYiUZIi34pcorYseCbiPE41MzEzUkfSBPB6Sa6i8eE4il6NwYUt3MIGsLukZNGxZFvEnKNqiICGBfCqr0ZmsjckojL13LZJ7MVjOqABvPA7oB-GMuwZ4W8A-92W-NP39dV3afPQ28uSOIC3jv5_mWDx_mxy5Eov_6XxATycDEfFx7Pxhx14ZAf0boW7sHZ5MTd7sNrq-b7jgt8oewtu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cas9%E2%80%90targeted+Nanopore+sequencing+rapidly+elucidates+the+transposition+preferences+and+DNA+methylation+profiles+of+mobile+elements+in+plants&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Merkulov%2C+Pavel&rft.au=Gvaramiya%2C+Sofya&rft.au=Dudnikov%2C+Maxim&rft.au=Komakhin%2C+Roman&rft.date=2023-10-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=65&rft.issue=10&rft.spage=2242&rft.epage=2261&rft_id=info:doi/10.1111%2Fjipb.13555&rft.externalDBID=10.1111%252Fjipb.13555&rft.externalDocID=JIPB13555
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg