A Comparison of the Surface and Mechanical Properties of 3D Printable Denture‐Base Resin Material and Conventional Polymethylmethacrylate (PMMA)
Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA). Materials and methods Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were teste...
Saved in:
Published in: | Journal of prosthodontics Vol. 32; no. 1; pp. 40 - 48 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA).
Materials and methods
Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant.
Results
The conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa).
Conclusions
3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA. |
---|---|
AbstractList | To study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured polymethylmethacrylate (PMMA).
Three brands of 3D printed denture-base resin materials and one conventional heat-cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three-point bending test and impact strength test, employing the Charpy configuration on un-notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one-way ANOVA and Tukey-pairwise multiple comparisons with 95% confidence interval. P-values of ≤0.05 were considered significant.
The conventional heat-cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m
). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m
), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa).
3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat-polymerized PMMA. PurposeTo study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA).Materials and methodsThree brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant.ResultsThe conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa).Conclusions3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA. Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA). Materials and methods Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant. Results The conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa). Conclusions 3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA. |
Author | Al‐Dwairi, Ziad N. Baba, Nadim Z. Al Haj Ebrahim, Abdulkareem A. |
Author_xml | – sequence: 1 givenname: Ziad N. orcidid: 0000-0002-5471-7942 surname: Al‐Dwairi fullname: Al‐Dwairi, Ziad N. email: Ziadd@just.edu.jo organization: Jordan University of Science and Technology (JUST) – sequence: 2 givenname: Abdulkareem A. surname: Al Haj Ebrahim fullname: Al Haj Ebrahim, Abdulkareem A. organization: Jordan University of Science and Technology (JUST) – sequence: 3 givenname: Nadim Z. orcidid: 0000-0002-6575-3885 surname: Baba fullname: Baba, Nadim Z. organization: Loma Linda University, School of Dentistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35119168$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c2K1TAYBuAgI86PbrwACbgZhY79miZpl8cz_jKHOYwKsytp-pWTQ5vUpFW68xLES_RKTD2jCxdmkXyEJy-E95QcWWeRkMeQXkBcL_Zu8BfA8hLukRPgLEuKvLw9inPKy6TM4faYnIawT1MAXsADcsw4QAmiOCE_VnTt-kF5E5ylrqXjDumHybdKI1W2oRvUO2WNVh3dejegHw2GBbLLeGHsqOoO6SXacfL489v3lyogvcFgLN2oEb2JD5ectbNfIjLOLkmum3scd3O37Er7uYuWnm83m9Wzh-R-q7qAj-7OM_Lp9auP67fJ1fWbd-vVVaLzjEECDRMF51JAIwvkrNY1F5JnvMhE2rQiBxaFUrmokbcMVJrJMoVcNrLJJGp2Rs4PuYN3nycMY9WboLHrlEU3hSoTMQgKIcpIn_5D927y8SdRSVFAVnKZRfX8oLR3IXhsq8GbXvm5grRamqqWpqrfTUX85C5yqnts_tI_1UQAB_DVdDj_J6p6f729OYT-Ahr6oKM |
CitedBy_id | crossref_primary_10_3390_ma15186441 crossref_primary_10_3390_polym15193926 crossref_primary_10_3897_folmed_66_e118377 crossref_primary_10_3390_nano12142451 crossref_primary_10_1016_j_prosdent_2023_06_011 crossref_primary_10_3390_medicina60020260 crossref_primary_10_3390_nano14080665 crossref_primary_10_2186_jpr_JPR_D_22_00126 crossref_primary_10_1016_j_jmbbm_2023_106221 crossref_primary_10_2174_0118742106278787240125061635 crossref_primary_10_3389_fmats_2024_1340409 crossref_primary_10_1007_s10266_023_00881_2 crossref_primary_10_3390_nano14100891 crossref_primary_10_3390_polym15132913 crossref_primary_10_4047_jap_2023_15_4_189 crossref_primary_10_3390_biomedicines11082155 crossref_primary_10_1016_j_heliyon_2024_e24095 crossref_primary_10_1155_2024_8060363 crossref_primary_10_1108_RPJ_03_2023_0096 crossref_primary_10_1016_j_prosdent_2023_06_006 crossref_primary_10_1111_jerd_13136 crossref_primary_10_1111_jopr_13803 crossref_primary_10_4047_jap_2024_16_2_126 crossref_primary_10_1016_j_prosdent_2024_02_027 crossref_primary_10_3390_biomedicines11071965 crossref_primary_10_1007_s00170_023_11632_6 crossref_primary_10_1016_j_dental_2023_10_005 crossref_primary_10_1371_journal_pone_0292430 crossref_primary_10_1557_s43578_022_00798_6 crossref_primary_10_1186_s12903_022_02654_9 crossref_primary_10_1016_j_jdent_2024_104993 crossref_primary_10_12688_f1000research_140204_1 crossref_primary_10_1007_s00784_024_05810_3 crossref_primary_10_1016_j_dental_2022_11_008 crossref_primary_10_3390_ma15196858 crossref_primary_10_1111_jopr_13733 crossref_primary_10_3390_nano13233061 crossref_primary_10_1055_s_0043_1768972 crossref_primary_10_1055_s_0043_1774319 crossref_primary_10_58711_turkishjdentres_vi_1341374 crossref_primary_10_1186_s12903_024_03991_7 crossref_primary_10_3390_biomedicines10102565 |
Cites_doi | 10.1111/jopr.13175 10.1111/j.1741-2358.2010.00435.x 10.1016/j.prosdent.2006.08.001 10.14748/ssmd.v1i1.1446 10.3390/ma13153305 10.1016/j.prosdent.2016.03.006 10.3390/ma11030401 10.1111/jopr.12926 10.1016/j.prosdent.2016.11.004 10.4012/dmj.2017-207 10.1186/s12903-020-01328-8 10.1016/j.prosdent.2015.08.019 10.3390/ma13153405 10.1016/j.jmbbm.2019.103601 10.1111/jopr.13033 10.1016/j.jpor.2016.01.003 10.1016/S0022-3913(13)60318-2 10.4103/jpbs.JPBS_20_20 10.1177/0022034514546165 10.3109/00016357.2012.715198 10.5005/jcdp-6-4-93 10.11607/ijp.6025 10.1111/j.1532-849X.2011.00804.x 10.19082/4766 10.4047/jap.2017.9.5.402 10.1111/jicd.12125 10.1016/j.prosdent.2018.03.001 10.1016/j.jpor.2012.02.006 10.1016/j.prosdent.2018.09.001 |
ContentType | Journal Article |
Copyright | 2022 by the American College of Prosthodontists 2022 by the American College of Prosthodontists. 2023 American College of Prosthodontists. |
Copyright_xml | – notice: 2022 by the American College of Prosthodontists – notice: 2022 by the American College of Prosthodontists. – notice: 2023 American College of Prosthodontists. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP K9. 7X8 |
DOI | 10.1111/jopr.13491 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1532-849X |
EndPage | 48 |
ExternalDocumentID | 10_1111_jopr_13491 35119168 JOPR13491 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 34H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CWXXS D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WBNRW WIH WIJ WIK WOHZO WPGGZ WQJ WRC WXSBR XG1 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QP K9. 7X8 |
ID | FETCH-LOGICAL-c4231-1d36855761d78e53bcb5675258260df6413d36aa46be5f31a02790147d7d27ec3 |
IEDL.DBID | 33P |
ISSN | 1059-941X |
IngestDate | Fri Aug 16 11:51:00 EDT 2024 Thu Oct 10 21:57:45 EDT 2024 Thu Nov 21 22:00:55 EST 2024 Tue Aug 27 13:50:11 EDT 2024 Sat Aug 24 01:12:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CAD-CAM digital denture polymethylmethacrylate PMMA Complete denture 3D printed resin |
Language | English |
License | 2022 by the American College of Prosthodontists. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4231-1d36855761d78e53bcb5675258260df6413d36aa46be5f31a02790147d7d27ec3 |
Notes | Conflict of interest statement Authors declare no conflicts of interest. : Funding Support for this research from the Jordan University of Science and Technology (Grant # 20200473). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6575-3885 0000-0002-5471-7942 |
PMID | 35119168 |
PQID | 2768129572 |
PQPubID | 1086383 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2626018669 proquest_journals_2768129572 crossref_primary_10_1111_jopr_13491 pubmed_primary_35119168 wiley_primary_10_1111_jopr_13491_JOPR13491 |
PublicationCentury | 2000 |
PublicationDate | January 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of prosthodontics |
PublicationTitleAlternate | J Prosthodont |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 96 2020; 20 2013; 109 2019; 32 2013; 71 2020; 13 2020; 12 2020; 103 2012; 56 2017; 9 2017; 118 2019; 121 2016; 7 2016; 2 2019; 28 2005; 6 2012; 29 2016; 60 2016; 116 2016; 115 2018; 11 2014; 93 2014; 6 2012; 21 2018; 37 2020; 29 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_21_1 e_1_2_6_20_1 Praveen B (e_1_2_6_16_1) 2014; 6 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 11 year: 2018 article-title: In vitro analysis of the fracture resistance of CAD/CAM denture base resins publication-title: Materials (Basel) – volume: 71 start-page: 727 year: 2013 end-page: 732 article-title: Impact strength of denture polymethyl methacrylate reinforced with different forms of E‐glass fibers publication-title: Acta Odontol Scand – volume: 121 start-page: 347 year: 2019 end-page: 352 article-title: Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials publication-title: J Prosthet Dent – volume: 6 start-page: 93 year: 2005 end-page: 100 article-title: Physical properties of four acrylic denture base resins publication-title: J Contemp Dent Pract – volume: 60 start-page: 72 year: 2016 end-page: 84 article-title: Advancements in CAD/CAM technology. Options for practical implementation publication-title: J Prosthodont Res – volume: 9 start-page: 402 year: 2017 end-page: 408 article-title: Adherence of Candida to complete denture surfaces in vitro: a comparison of conventional and CAD/CAM complete dentures publication-title: J Adv Prosthodont – volume: 29 start-page: 524 year: 2020 end-page: 528 article-title: Comparison of mechanical properties of 3D‐printed, CAD/CAM, and conventional denture base materials publication-title: J Prosthodont – volume: 103 year: 2020 article-title: Evaluation of surface roughness, hardness and elastic modulus of nanoparticle containing light‐polymerized denture glaze materials publication-title: J Mech Behav Biomed Mater – volume: 109 start-page: 361 year: 2013 end-page: 366 article-title: Computer‐aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives publication-title: J Prosthet Dent – volume: 121 start-page: 637 year: 2019 end-page: 643 article-title: CAD‐CAM milled versus rapidly prototyped (3D‐printed) complete dentures: an in vitro evaluation of trueness publication-title: J Prosthet Dent – volume: 12 start-page: 67 year: 2020 end-page: 72 article-title: Effect of novel cycloaliphatic comonomer on surface roughness and surface hardness of heat‐cure denture base resin publication-title: J Pharm Bioallied Sci – volume: 116 start-page: 803 year: 2016 end-page: 810 article-title: Evaluation of thermal conductivity and flexural strength properties of poly (methyl methacrylate) denture base material reinforced with different fillers publication-title: J Prosthet Dent – volume: 115 start-page: 363 year: 2016 end-page: 370 article-title: Effect of different initial finishes and Parylene coating thickness on the surface properties of coated PMMA publication-title: J Prosthet Dent – volume: 6 start-page: 12 year: 2014 end-page: 16 article-title: Comparison of impact strength and fracture morphology of different heat cure denture acrylic resins: an in vitro study publication-title: J Int Oral Health – volume: 37 start-page: 526 year: 2018 end-page: 533 article-title: CAD/CAM milled complete removable dental prostheses: an in vitro evaluation of biocompatibility, mechanical properties, and surface roughness publication-title: Dent Mater J – volume: 9 start-page: 4766 year: 2017 end-page: 4772 article-title: The residual monomer content and mechanical properties of CAD/CAM resins used in the fabrication of complete dentures as compared to heat cured resins publication-title: Electron Physician – volume: 56 start-page: 272 year: 2012 end-page: 280 article-title: The effect of antifungal agents on surface properties of poly (methyl methacrylate) and its relation to adherence of Candida albicans publication-title: J Prosthodont Res – volume: 7 start-page: 141 year: 2016 end-page: 148 article-title: Effect of surface roughness on the hydrophobicity of a denture‐base acrylic resin and Candida albicans colonization publication-title: J Investig Clin Dent – volume: 93 start-page: 959 year: 2014 end-page: 965 article-title: Projections of U.S. edentulism prevalence following 5 decades of decline publication-title: J Dent Res – volume: 2 start-page: 7 year: 2016 end-page: 11 article-title: 3D‐printing in contemporary prosthodontic treatment publication-title: Scripta Scientifica Medicinae Dentalis – volume: 28 start-page: 452 year: 2019 end-page: 457 article-title: A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA) publication-title: J Prosthodont – volume: 20 start-page: 343 year: 2020 article-title: 3D printed complete removable dental prostheses: a narrative review publication-title: BMC Oral Health – volume: 21 start-page: 173 year: 2012 end-page: 176 article-title: Mechanical properties of polyamide versus different PMMA denture base materials publication-title: J Prosthodont – volume: 13 start-page: 3405 year: 2020 article-title: Effect of printing direction on the accuracy of 3D‐printed dentures using stereolithography technology publication-title: Materials (Basel) – volume: 118 start-page: 187 year: 2017 end-page: 193 article-title: A comparative study of additive and subtractive manufacturing for dental restorations publication-title: J Prosthet Dent – volume: 96 start-page: 367 year: 2006 end-page: 373 article-title: Impact strength and fracture morphology of denture acrylic resins publication-title: J Prosthet Dent – volume: 13 start-page: 3305 year: 2020 article-title: Surface characteristics of milled and 3D printed denture base materials following polishing and coating: an in‐vitro study publication-title: Materials (Basel) – volume: 29 start-page: 155 year: 2012 end-page: 160 article-title: Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement publication-title: Gerodontology – volume: 29 start-page: 341 year: 2020 end-page: 349 article-title: A comparison of the flexural and impact strengths and flexural modulus of CAD/CAM and conventional heat‐cured polymethyl methacrylate (PMMA) publication-title: J Prosthodont – volume: 32 start-page: 104 year: 2019 end-page: 106 article-title: Mechanical properties of CAD/CAM denture base resins publication-title: Int J Prosthodont – ident: e_1_2_6_9_1 doi: 10.1111/jopr.13175 – ident: e_1_2_6_28_1 doi: 10.1111/j.1741-2358.2010.00435.x – ident: e_1_2_6_12_1 doi: 10.1016/j.prosdent.2006.08.001 – ident: e_1_2_6_8_1 doi: 10.14748/ssmd.v1i1.1446 – ident: e_1_2_6_24_1 doi: 10.3390/ma13153305 – ident: e_1_2_6_25_1 doi: 10.1016/j.prosdent.2016.03.006 – ident: e_1_2_6_29_1 doi: 10.3390/ma11030401 – ident: e_1_2_6_17_1 doi: 10.1111/jopr.12926 – ident: e_1_2_6_5_1 doi: 10.1016/j.prosdent.2016.11.004 – ident: e_1_2_6_22_1 doi: 10.4012/dmj.2017-207 – ident: e_1_2_6_3_1 doi: 10.1186/s12903-020-01328-8 – ident: e_1_2_6_26_1 doi: 10.1016/j.prosdent.2015.08.019 – ident: e_1_2_6_23_1 doi: 10.3390/ma13153405 – ident: e_1_2_6_14_1 doi: 10.1016/j.jmbbm.2019.103601 – ident: e_1_2_6_18_1 doi: 10.1111/jopr.13033 – ident: e_1_2_6_4_1 doi: 10.1016/j.jpor.2016.01.003 – ident: e_1_2_6_7_1 doi: 10.1016/S0022-3913(13)60318-2 – ident: e_1_2_6_27_1 doi: 10.4103/jpbs.JPBS_20_20 – ident: e_1_2_6_2_1 doi: 10.1177/0022034514546165 – ident: e_1_2_6_31_1 doi: 10.3109/00016357.2012.715198 – ident: e_1_2_6_11_1 doi: 10.5005/jcdp-6-4-93 – ident: e_1_2_6_30_1 doi: 10.11607/ijp.6025 – ident: e_1_2_6_15_1 doi: 10.1111/j.1532-849X.2011.00804.x – volume: 6 start-page: 12 year: 2014 ident: e_1_2_6_16_1 article-title: Comparison of impact strength and fracture morphology of different heat cure denture acrylic resins: an in vitro study publication-title: J Int Oral Health contributor: fullname: Praveen B – ident: e_1_2_6_19_1 doi: 10.19082/4766 – ident: e_1_2_6_13_1 doi: 10.4047/jap.2017.9.5.402 – ident: e_1_2_6_20_1 doi: 10.1111/jicd.12125 – ident: e_1_2_6_21_1 doi: 10.1016/j.prosdent.2018.03.001 – ident: e_1_2_6_10_1 doi: 10.1016/j.jpor.2012.02.006 – ident: e_1_2_6_6_1 doi: 10.1016/j.prosdent.2018.09.001 |
SSID | ssj0011581 |
Score | 2.5532668 |
Snippet | Purpose
To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured... To study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured polymethylmethacrylate... PurposeTo study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured... PURPOSETo study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 40 |
SubjectTerms | 3D printed resin CAD‐CAM Complete denture Contact angle Denture Bases Dentures digital denture Flexural Strength Heat Impact strength Materials Testing Mechanical properties PMMA Polymethyl Methacrylate Polymethylmethacrylate Scanning electron microscopy Statistical analysis Surface Properties |
Title | A Comparison of the Surface and Mechanical Properties of 3D Printable Denture‐Base Resin Material and Conventional Polymethylmethacrylate (PMMA) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjopr.13491 https://www.ncbi.nlm.nih.gov/pubmed/35119168 https://www.proquest.com/docview/2768129572 https://search.proquest.com/docview/2626018669 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0L_qi9W9jq6zogwqR7m2STcCX866lCKehVehb2M3OQuFISu7u4d78CNKP2E_izOYutAiC-BJCMsmGnZnMzM7ObwDeokRrsqyOtU1snHgl48JqHyuf6aSwHlVAYjo501_P8-kRw-R82tbC9PgQw4Iba0b4X7OCG7u4qeTtZfeRwfU49qEwIdRvqHJIIcg0dChl_yEuEnm-wSYN23iGR29boz9czNseazA5xw__72N34cHG1RTjXjYewR1sHsO9KW8P4g5vT-BqLCZDG0LRekHOoDhbdd7UKEzjxAy5LpjZKEpetO8YfZUJ1ZQuXDRLrrsS02C38Prnr89kEsUpLi4aMTPLINvhPZMbW9tF2c7X3Ld6Peejqbv1nGjFu3I2G79_Cj-Oj75PTuJNj4a4JkdMxtIxgj0FLdLpHFNla5tSDDJKKWw5dD4jG0kUxiSZxZQkwVAYzJlb7bQbaazVM9hp2gb3QHiJmB2q1FmbJ47spjYqS8kw5FibxPgI3mx5VV32UBzVEMLQ_FZhfiM42LKx2qjjohpphlkrUj2K4PVwmxSJsyOmwXZFNBzaMfxfEcHznv3DMCHbKrM8gg-By38Zv_ryrTwNZy_-hXgf7nMj-35x5wB2lt0KX8LdhVu9CmL9G0R8-7Y |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQLLf8pBYzgAEhB9Saxk0MPy26rBZoStUXqLbJjW6q0Sqrs7mFvPALiEfsknXF2o1ZISIhLFCWTOPLMZGY8nm8A3llutRKiCqWOdRi7iIeZli6MnJBxpp2NPBLT5FQen6fjA4LJ2V_XwnT4EP2CG2mG_1-TgtOC9E0tby7bT4Suh8HPvVigJFIFR1T0SQSe-B6l5EGEWczPV-ikfiNP_-xte_SHk3nbZ_VG53DrPz93Gx6svE027MTjIdyx9SPYHNMOIWry9hh-D9mo70TIGsfQH2Sni9apyjJVG5ZbKg0mTrKC1u1bAmAlwmiMFy7qOZVesbE3Xfbq56_PaBXZiZ1d1CxXcy_e_j2jG7vbWdFMl9S6ejmlo6ra5RRp2fsiz4cfnsCPw4Oz0SRctWkIK_TFeMgNgdhj3MKNTG0S6UonGIYMEoxc9owTaCaRQqlYaJugMCiMhCl5K400A2mr6Cls1E1tnwNz3FqxFyVG6zQ2aDqlikSCtiG1lYqVC-DtmlnlZYfGUfZRDM5v6ec3gN01H8uVRs7KgSSktSyRgwDe9LdRlyhBomrbLJCGojtCAMwCeNbxvx_GJ1y5SAP46Nn8l_HLr9-LE3-28y_Er2FzcpYflUdfjr-9gPvU175b69mFjXm7sC_h7swsXnkZvwYhGv_e |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0gvpS62ejra7ogwqR7m2STaAv10uP-nE1tAp9C7vZXSgcyZG7e7g3_wTxT_QvcWZzF1oEQXwJIZlkw85M5mv3NwCvLbdaJUkVSh3pMHKCh5mWLhQukVGmnRUeienkXJ5epPkxweQcbvbCdPgQfcKNNMP_r0nBZ8ZdVfJm1r4ncD2MfW5F6IcTcr4QRV9D4LFvUUoORJhF_GINTurX8fTPXjdHf_iY111Wb3PG9_7va3dge-1rsmEnHPfhhq0fwJ2c1gdRi7eH8HPIRn0fQtY4ht4gO1-2TlWWqdqwiaWNwcRHVlDWviX4VSIUOV64rBe08Yrl3nDZX99_HKFNZGd2flmziVp44fbvGV1Z286KZrqixtWrKR1V1a6mSMveFJPJ8O0j-DY-_jo6CddNGsIKPTEeckMQ9hi1cCNTGwtd6RiDkEGMccuBcQkaSaRQKkq0jVEUFMbBVLqVRpqBtJV4DFt1U9tdYI5bmxyI2GidRgYNp1QiidEypLZSkXIBvNrwqpx1WBxlH8Pg_JZ-fgPY27CxXOvjvBxIwlnLYjkI4GV_GzWJyiOqts0SaSi2I_y_LIAnHfv7YXy5lSdpAO88l_8yfvnxS3Hmz57-C_ELuF3k4_Lzh9NPz-AuNbXvEj17sLVol3Yfbs7N8rmX8N8K0v6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+the+Surface+and+Mechanical+Properties+of+3D+Printable+Denture%E2%80%90Base+Resin+Material+and+Conventional+Polymethylmethacrylate+%28PMMA%29&rft.jtitle=Journal+of+prosthodontics&rft.au=Al%E2%80%90Dwairi%2C+Ziad+N.&rft.au=Al+Haj+Ebrahim%2C+Abdulkareem+A.&rft.au=Baba%2C+Nadim+Z.&rft.date=2023-01-01&rft.issn=1059-941X&rft.eissn=1532-849X&rft.volume=32&rft.issue=1&rft.spage=40&rft.epage=48&rft_id=info:doi/10.1111%2Fjopr.13491&rft.externalDBID=10.1111%252Fjopr.13491&rft.externalDocID=JOPR13491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-941X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-941X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-941X&client=summon |