A Comparison of the Surface and Mechanical Properties of 3D Printable Denture‐Base Resin Material and Conventional Polymethylmethacrylate (PMMA)

Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA). Materials and methods Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were teste...

Full description

Saved in:
Bibliographic Details
Published in:Journal of prosthodontics Vol. 32; no. 1; pp. 40 - 48
Main Authors: Al‐Dwairi, Ziad N., Al Haj Ebrahim, Abdulkareem A., Baba, Nadim Z.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA). Materials and methods Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant. Results The conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa). Conclusions 3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA.
AbstractList To study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured polymethylmethacrylate (PMMA). Three brands of 3D printed denture-base resin materials and one conventional heat-cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three-point bending test and impact strength test, employing the Charpy configuration on un-notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one-way ANOVA and Tukey-pairwise multiple comparisons with 95% confidence interval. P-values of ≤0.05 were considered significant. The conventional heat-cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m ). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m ), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa). 3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat-polymerized PMMA.
PurposeTo study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA).Materials and methodsThree brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant.ResultsThe conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa).Conclusions3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA.
Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured polymethylmethacrylate (PMMA). Materials and methods Three brands of 3D printed denture‐base resin materials and one conventional heat‐cured PMMA were tested in this study: NextDent 3D printed resin, Dentona 3D printed resin, ASIGA 3D printed resin, and Meliodent conventional PMMA. Sixty specimens (25 × 25 × 3 mm) were fabricated (n=15 per group) to perform the following tests: wettability, surface roughness, and microhardness. One hundred twenty specimens (65 × 10 × 3 mm) were fabricated (n=30 per group) and stored in distilled water at (37 ±1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three‐point bending test and impact strength test, employing the Charpy configuration on un‐notched specimens. The morphology of the fractured specimens was studied under scanning electron microscope (SEM). Statistical analysis was performed using one‐way ANOVA and Tukey‐pairwise multiple comparisons with 95% confidence interval. P‐values of ≤0.05 were considered significant. Results The conventional heat‐cured specimens demonstrated the highest means of surface roughness (0.23 ± 0.07 μm), Vickers hardness number (18.11 ±0.65) and flexural strength (92.44 ±7.91 MPa), and the lowest mean of contact angle (66.71° ±3.38°). ASIGA group showed the highest mean of contact angle (73.44° ±2.74°) and the lowest mean of surface roughness (0.19 ±0.03 μm). The highest mean of impact strength was recorded in the Dentona group (17.98 ±1.76 kg/m2). NextDent specimens showed the lowest means of Vickers hardness number (16.20 ±0.93), flexural strength (74.89 ±8.44 MPa), impact strength (15.20 ±0.69 kg/m2), and recorded the highest mean of bending modulus (2,115.80 ±178.95 MPa). Conclusions 3D printed resin exhibited noticeable differences in surface and mechanical properties between different brands and with conventional heat‐polymerized PMMA.
Author Al‐Dwairi, Ziad N.
Baba, Nadim Z.
Al Haj Ebrahim, Abdulkareem A.
Author_xml – sequence: 1
  givenname: Ziad N.
  orcidid: 0000-0002-5471-7942
  surname: Al‐Dwairi
  fullname: Al‐Dwairi, Ziad N.
  email: Ziadd@just.edu.jo
  organization: Jordan University of Science and Technology (JUST)
– sequence: 2
  givenname: Abdulkareem A.
  surname: Al Haj Ebrahim
  fullname: Al Haj Ebrahim, Abdulkareem A.
  organization: Jordan University of Science and Technology (JUST)
– sequence: 3
  givenname: Nadim Z.
  orcidid: 0000-0002-6575-3885
  surname: Baba
  fullname: Baba, Nadim Z.
  organization: Loma Linda University, School of Dentistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35119168$$D View this record in MEDLINE/PubMed
BookMark eNp90c2K1TAYBuAgI86PbrwACbgZhY79miZpl8cz_jKHOYwKsytp-pWTQ5vUpFW68xLES_RKTD2jCxdmkXyEJy-E95QcWWeRkMeQXkBcL_Zu8BfA8hLukRPgLEuKvLw9inPKy6TM4faYnIawT1MAXsADcsw4QAmiOCE_VnTt-kF5E5ylrqXjDumHybdKI1W2oRvUO2WNVh3dejegHw2GBbLLeGHsqOoO6SXacfL489v3lyogvcFgLN2oEb2JD5ectbNfIjLOLkmum3scd3O37Er7uYuWnm83m9Wzh-R-q7qAj-7OM_Lp9auP67fJ1fWbd-vVVaLzjEECDRMF51JAIwvkrNY1F5JnvMhE2rQiBxaFUrmokbcMVJrJMoVcNrLJJGp2Rs4PuYN3nycMY9WboLHrlEU3hSoTMQgKIcpIn_5D927y8SdRSVFAVnKZRfX8oLR3IXhsq8GbXvm5grRamqqWpqrfTUX85C5yqnts_tI_1UQAB_DVdDj_J6p6f729OYT-Ahr6oKM
CitedBy_id crossref_primary_10_3390_ma15186441
crossref_primary_10_3390_polym15193926
crossref_primary_10_3897_folmed_66_e118377
crossref_primary_10_3390_nano12142451
crossref_primary_10_1016_j_prosdent_2023_06_011
crossref_primary_10_3390_medicina60020260
crossref_primary_10_3390_nano14080665
crossref_primary_10_2186_jpr_JPR_D_22_00126
crossref_primary_10_1016_j_jmbbm_2023_106221
crossref_primary_10_2174_0118742106278787240125061635
crossref_primary_10_3389_fmats_2024_1340409
crossref_primary_10_1007_s10266_023_00881_2
crossref_primary_10_3390_nano14100891
crossref_primary_10_3390_polym15132913
crossref_primary_10_4047_jap_2023_15_4_189
crossref_primary_10_3390_biomedicines11082155
crossref_primary_10_1016_j_heliyon_2024_e24095
crossref_primary_10_1155_2024_8060363
crossref_primary_10_1108_RPJ_03_2023_0096
crossref_primary_10_1016_j_prosdent_2023_06_006
crossref_primary_10_1111_jerd_13136
crossref_primary_10_1111_jopr_13803
crossref_primary_10_4047_jap_2024_16_2_126
crossref_primary_10_1016_j_prosdent_2024_02_027
crossref_primary_10_3390_biomedicines11071965
crossref_primary_10_1007_s00170_023_11632_6
crossref_primary_10_1016_j_dental_2023_10_005
crossref_primary_10_1371_journal_pone_0292430
crossref_primary_10_1557_s43578_022_00798_6
crossref_primary_10_1186_s12903_022_02654_9
crossref_primary_10_1016_j_jdent_2024_104993
crossref_primary_10_12688_f1000research_140204_1
crossref_primary_10_1007_s00784_024_05810_3
crossref_primary_10_1016_j_dental_2022_11_008
crossref_primary_10_3390_ma15196858
crossref_primary_10_1111_jopr_13733
crossref_primary_10_3390_nano13233061
crossref_primary_10_1055_s_0043_1768972
crossref_primary_10_1055_s_0043_1774319
crossref_primary_10_58711_turkishjdentres_vi_1341374
crossref_primary_10_1186_s12903_024_03991_7
crossref_primary_10_3390_biomedicines10102565
Cites_doi 10.1111/jopr.13175
10.1111/j.1741-2358.2010.00435.x
10.1016/j.prosdent.2006.08.001
10.14748/ssmd.v1i1.1446
10.3390/ma13153305
10.1016/j.prosdent.2016.03.006
10.3390/ma11030401
10.1111/jopr.12926
10.1016/j.prosdent.2016.11.004
10.4012/dmj.2017-207
10.1186/s12903-020-01328-8
10.1016/j.prosdent.2015.08.019
10.3390/ma13153405
10.1016/j.jmbbm.2019.103601
10.1111/jopr.13033
10.1016/j.jpor.2016.01.003
10.1016/S0022-3913(13)60318-2
10.4103/jpbs.JPBS_20_20
10.1177/0022034514546165
10.3109/00016357.2012.715198
10.5005/jcdp-6-4-93
10.11607/ijp.6025
10.1111/j.1532-849X.2011.00804.x
10.19082/4766
10.4047/jap.2017.9.5.402
10.1111/jicd.12125
10.1016/j.prosdent.2018.03.001
10.1016/j.jpor.2012.02.006
10.1016/j.prosdent.2018.09.001
ContentType Journal Article
Copyright 2022 by the American College of Prosthodontists
2022 by the American College of Prosthodontists.
2023 American College of Prosthodontists.
Copyright_xml – notice: 2022 by the American College of Prosthodontists
– notice: 2022 by the American College of Prosthodontists.
– notice: 2023 American College of Prosthodontists.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
K9.
7X8
DOI 10.1111/jopr.13491
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1532-849X
EndPage 48
ExternalDocumentID 10_1111_jopr_13491
35119168
JOPR13491
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CWXXS
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WQJ
WRC
WXSBR
XG1
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QP
K9.
7X8
ID FETCH-LOGICAL-c4231-1d36855761d78e53bcb5675258260df6413d36aa46be5f31a02790147d7d27ec3
IEDL.DBID 33P
ISSN 1059-941X
IngestDate Fri Aug 16 11:51:00 EDT 2024
Thu Oct 10 21:57:45 EDT 2024
Thu Nov 21 22:00:55 EST 2024
Tue Aug 27 13:50:11 EDT 2024
Sat Aug 24 01:12:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CAD-CAM
digital denture
polymethylmethacrylate
PMMA
Complete denture
3D printed resin
Language English
License 2022 by the American College of Prosthodontists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4231-1d36855761d78e53bcb5675258260df6413d36aa46be5f31a02790147d7d27ec3
Notes Conflict of interest statement
Authors declare no conflicts of interest.
:
Funding
Support for this research from the Jordan University of Science and Technology (Grant # 20200473).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6575-3885
0000-0002-5471-7942
PMID 35119168
PQID 2768129572
PQPubID 1086383
PageCount 9
ParticipantIDs proquest_miscellaneous_2626018669
proquest_journals_2768129572
crossref_primary_10_1111_jopr_13491
pubmed_primary_35119168
wiley_primary_10_1111_jopr_13491_JOPR13491
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of prosthodontics
PublicationTitleAlternate J Prosthodont
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 96
2020; 20
2013; 109
2019; 32
2013; 71
2020; 13
2020; 12
2020; 103
2012; 56
2017; 9
2017; 118
2019; 121
2016; 7
2016; 2
2019; 28
2005; 6
2012; 29
2016; 60
2016; 116
2016; 115
2018; 11
2014; 93
2014; 6
2012; 21
2018; 37
2020; 29
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_21_1
e_1_2_6_20_1
Praveen B (e_1_2_6_16_1) 2014; 6
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 11
  year: 2018
  article-title: In vitro analysis of the fracture resistance of CAD/CAM denture base resins
  publication-title: Materials (Basel)
– volume: 71
  start-page: 727
  year: 2013
  end-page: 732
  article-title: Impact strength of denture polymethyl methacrylate reinforced with different forms of E‐glass fibers
  publication-title: Acta Odontol Scand
– volume: 121
  start-page: 347
  year: 2019
  end-page: 352
  article-title: Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials
  publication-title: J Prosthet Dent
– volume: 6
  start-page: 93
  year: 2005
  end-page: 100
  article-title: Physical properties of four acrylic denture base resins
  publication-title: J Contemp Dent Pract
– volume: 60
  start-page: 72
  year: 2016
  end-page: 84
  article-title: Advancements in CAD/CAM technology. Options for practical implementation
  publication-title: J Prosthodont Res
– volume: 9
  start-page: 402
  year: 2017
  end-page: 408
  article-title: Adherence of Candida to complete denture surfaces in vitro: a comparison of conventional and CAD/CAM complete dentures
  publication-title: J Adv Prosthodont
– volume: 29
  start-page: 524
  year: 2020
  end-page: 528
  article-title: Comparison of mechanical properties of 3D‐printed, CAD/CAM, and conventional denture base materials
  publication-title: J Prosthodont
– volume: 103
  year: 2020
  article-title: Evaluation of surface roughness, hardness and elastic modulus of nanoparticle containing light‐polymerized denture glaze materials
  publication-title: J Mech Behav Biomed Mater
– volume: 109
  start-page: 361
  year: 2013
  end-page: 366
  article-title: Computer‐aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives
  publication-title: J Prosthet Dent
– volume: 121
  start-page: 637
  year: 2019
  end-page: 643
  article-title: CAD‐CAM milled versus rapidly prototyped (3D‐printed) complete dentures: an in vitro evaluation of trueness
  publication-title: J Prosthet Dent
– volume: 12
  start-page: 67
  year: 2020
  end-page: 72
  article-title: Effect of novel cycloaliphatic comonomer on surface roughness and surface hardness of heat‐cure denture base resin
  publication-title: J Pharm Bioallied Sci
– volume: 116
  start-page: 803
  year: 2016
  end-page: 810
  article-title: Evaluation of thermal conductivity and flexural strength properties of poly (methyl methacrylate) denture base material reinforced with different fillers
  publication-title: J Prosthet Dent
– volume: 115
  start-page: 363
  year: 2016
  end-page: 370
  article-title: Effect of different initial finishes and Parylene coating thickness on the surface properties of coated PMMA
  publication-title: J Prosthet Dent
– volume: 6
  start-page: 12
  year: 2014
  end-page: 16
  article-title: Comparison of impact strength and fracture morphology of different heat cure denture acrylic resins: an in vitro study
  publication-title: J Int Oral Health
– volume: 37
  start-page: 526
  year: 2018
  end-page: 533
  article-title: CAD/CAM milled complete removable dental prostheses: an in vitro evaluation of biocompatibility, mechanical properties, and surface roughness
  publication-title: Dent Mater J
– volume: 9
  start-page: 4766
  year: 2017
  end-page: 4772
  article-title: The residual monomer content and mechanical properties of CAD/CAM resins used in the fabrication of complete dentures as compared to heat cured resins
  publication-title: Electron Physician
– volume: 56
  start-page: 272
  year: 2012
  end-page: 280
  article-title: The effect of antifungal agents on surface properties of poly (methyl methacrylate) and its relation to adherence of Candida albicans
  publication-title: J Prosthodont Res
– volume: 7
  start-page: 141
  year: 2016
  end-page: 148
  article-title: Effect of surface roughness on the hydrophobicity of a denture‐base acrylic resin and Candida albicans colonization
  publication-title: J Investig Clin Dent
– volume: 93
  start-page: 959
  year: 2014
  end-page: 965
  article-title: Projections of U.S. edentulism prevalence following 5 decades of decline
  publication-title: J Dent Res
– volume: 2
  start-page: 7
  year: 2016
  end-page: 11
  article-title: 3D‐printing in contemporary prosthodontic treatment
  publication-title: Scripta Scientifica Medicinae Dentalis
– volume: 28
  start-page: 452
  year: 2019
  end-page: 457
  article-title: A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA)
  publication-title: J Prosthodont
– volume: 20
  start-page: 343
  year: 2020
  article-title: 3D printed complete removable dental prostheses: a narrative review
  publication-title: BMC Oral Health
– volume: 21
  start-page: 173
  year: 2012
  end-page: 176
  article-title: Mechanical properties of polyamide versus different PMMA denture base materials
  publication-title: J Prosthodont
– volume: 13
  start-page: 3405
  year: 2020
  article-title: Effect of printing direction on the accuracy of 3D‐printed dentures using stereolithography technology
  publication-title: Materials (Basel)
– volume: 118
  start-page: 187
  year: 2017
  end-page: 193
  article-title: A comparative study of additive and subtractive manufacturing for dental restorations
  publication-title: J Prosthet Dent
– volume: 96
  start-page: 367
  year: 2006
  end-page: 373
  article-title: Impact strength and fracture morphology of denture acrylic resins
  publication-title: J Prosthet Dent
– volume: 13
  start-page: 3305
  year: 2020
  article-title: Surface characteristics of milled and 3D printed denture base materials following polishing and coating: an in‐vitro study
  publication-title: Materials (Basel)
– volume: 29
  start-page: 155
  year: 2012
  end-page: 160
  article-title: Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement
  publication-title: Gerodontology
– volume: 29
  start-page: 341
  year: 2020
  end-page: 349
  article-title: A comparison of the flexural and impact strengths and flexural modulus of CAD/CAM and conventional heat‐cured polymethyl methacrylate (PMMA)
  publication-title: J Prosthodont
– volume: 32
  start-page: 104
  year: 2019
  end-page: 106
  article-title: Mechanical properties of CAD/CAM denture base resins
  publication-title: Int J Prosthodont
– ident: e_1_2_6_9_1
  doi: 10.1111/jopr.13175
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1741-2358.2010.00435.x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.prosdent.2006.08.001
– ident: e_1_2_6_8_1
  doi: 10.14748/ssmd.v1i1.1446
– ident: e_1_2_6_24_1
  doi: 10.3390/ma13153305
– ident: e_1_2_6_25_1
  doi: 10.1016/j.prosdent.2016.03.006
– ident: e_1_2_6_29_1
  doi: 10.3390/ma11030401
– ident: e_1_2_6_17_1
  doi: 10.1111/jopr.12926
– ident: e_1_2_6_5_1
  doi: 10.1016/j.prosdent.2016.11.004
– ident: e_1_2_6_22_1
  doi: 10.4012/dmj.2017-207
– ident: e_1_2_6_3_1
  doi: 10.1186/s12903-020-01328-8
– ident: e_1_2_6_26_1
  doi: 10.1016/j.prosdent.2015.08.019
– ident: e_1_2_6_23_1
  doi: 10.3390/ma13153405
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jmbbm.2019.103601
– ident: e_1_2_6_18_1
  doi: 10.1111/jopr.13033
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jpor.2016.01.003
– ident: e_1_2_6_7_1
  doi: 10.1016/S0022-3913(13)60318-2
– ident: e_1_2_6_27_1
  doi: 10.4103/jpbs.JPBS_20_20
– ident: e_1_2_6_2_1
  doi: 10.1177/0022034514546165
– ident: e_1_2_6_31_1
  doi: 10.3109/00016357.2012.715198
– ident: e_1_2_6_11_1
  doi: 10.5005/jcdp-6-4-93
– ident: e_1_2_6_30_1
  doi: 10.11607/ijp.6025
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1532-849X.2011.00804.x
– volume: 6
  start-page: 12
  year: 2014
  ident: e_1_2_6_16_1
  article-title: Comparison of impact strength and fracture morphology of different heat cure denture acrylic resins: an in vitro study
  publication-title: J Int Oral Health
  contributor:
    fullname: Praveen B
– ident: e_1_2_6_19_1
  doi: 10.19082/4766
– ident: e_1_2_6_13_1
  doi: 10.4047/jap.2017.9.5.402
– ident: e_1_2_6_20_1
  doi: 10.1111/jicd.12125
– ident: e_1_2_6_21_1
  doi: 10.1016/j.prosdent.2018.03.001
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jpor.2012.02.006
– ident: e_1_2_6_6_1
  doi: 10.1016/j.prosdent.2018.09.001
SSID ssj0011581
Score 2.5532668
Snippet Purpose To study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured...
To study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured polymethylmethacrylate...
PurposeTo study the surface and mechanical properties of 3D printed denture‐base resin materials and compare them with conventional heat‐cured...
PURPOSETo study the surface and mechanical properties of 3D printed denture-base resin materials and compare them with conventional heat-cured...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 40
SubjectTerms 3D printed resin
CAD‐CAM
Complete denture
Contact angle
Denture Bases
Dentures
digital denture
Flexural Strength
Heat
Impact strength
Materials Testing
Mechanical properties
PMMA
Polymethyl Methacrylate
Polymethylmethacrylate
Scanning electron microscopy
Statistical analysis
Surface Properties
Title A Comparison of the Surface and Mechanical Properties of 3D Printable Denture‐Base Resin Material and Conventional Polymethylmethacrylate (PMMA)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjopr.13491
https://www.ncbi.nlm.nih.gov/pubmed/35119168
https://www.proquest.com/docview/2768129572
https://search.proquest.com/docview/2626018669
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0L_qi9W9jq6zogwqR7m2STcCX866lCKehVehb2M3OQuFISu7u4d78CNKP2E_izOYutAiC-BJCMsmGnZnMzM7ObwDeokRrsqyOtU1snHgl48JqHyuf6aSwHlVAYjo501_P8-kRw-R82tbC9PgQw4Iba0b4X7OCG7u4qeTtZfeRwfU49qEwIdRvqHJIIcg0dChl_yEuEnm-wSYN23iGR29boz9czNseazA5xw__72N34cHG1RTjXjYewR1sHsO9KW8P4g5vT-BqLCZDG0LRekHOoDhbdd7UKEzjxAy5LpjZKEpetO8YfZUJ1ZQuXDRLrrsS02C38Prnr89kEsUpLi4aMTPLINvhPZMbW9tF2c7X3Ld6Peejqbv1nGjFu3I2G79_Cj-Oj75PTuJNj4a4JkdMxtIxgj0FLdLpHFNla5tSDDJKKWw5dD4jG0kUxiSZxZQkwVAYzJlb7bQbaazVM9hp2gb3QHiJmB2q1FmbJ47spjYqS8kw5FibxPgI3mx5VV32UBzVEMLQ_FZhfiM42LKx2qjjohpphlkrUj2K4PVwmxSJsyOmwXZFNBzaMfxfEcHznv3DMCHbKrM8gg-By38Zv_ryrTwNZy_-hXgf7nMj-35x5wB2lt0KX8LdhVu9CmL9G0R8-7Y
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQLLf8pBYzgAEhB9Saxk0MPy26rBZoStUXqLbJjW6q0Sqrs7mFvPALiEfsknXF2o1ZISIhLFCWTOPLMZGY8nm8A3llutRKiCqWOdRi7iIeZli6MnJBxpp2NPBLT5FQen6fjA4LJ2V_XwnT4EP2CG2mG_1-TgtOC9E0tby7bT4Suh8HPvVigJFIFR1T0SQSe-B6l5EGEWczPV-ikfiNP_-xte_SHk3nbZ_VG53DrPz93Gx6svE027MTjIdyx9SPYHNMOIWry9hh-D9mo70TIGsfQH2Sni9apyjJVG5ZbKg0mTrKC1u1bAmAlwmiMFy7qOZVesbE3Xfbq56_PaBXZiZ1d1CxXcy_e_j2jG7vbWdFMl9S6ejmlo6ra5RRp2fsiz4cfnsCPw4Oz0SRctWkIK_TFeMgNgdhj3MKNTG0S6UonGIYMEoxc9owTaCaRQqlYaJugMCiMhCl5K400A2mr6Cls1E1tnwNz3FqxFyVG6zQ2aDqlikSCtiG1lYqVC-DtmlnlZYfGUfZRDM5v6ec3gN01H8uVRs7KgSSktSyRgwDe9LdRlyhBomrbLJCGojtCAMwCeNbxvx_GJ1y5SAP46Nn8l_HLr9-LE3-28y_Er2FzcpYflUdfjr-9gPvU175b69mFjXm7sC_h7swsXnkZvwYhGv_e
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0gvpS62ejra7ogwqR7m2STaAv10uP-nE1tAp9C7vZXSgcyZG7e7g3_wTxT_QvcWZzF1oEQXwJIZlkw85M5mv3NwCvLbdaJUkVSh3pMHKCh5mWLhQukVGmnRUeienkXJ5epPkxweQcbvbCdPgQfcKNNMP_r0nBZ8ZdVfJm1r4ncD2MfW5F6IcTcr4QRV9D4LFvUUoORJhF_GINTurX8fTPXjdHf_iY111Wb3PG9_7va3dge-1rsmEnHPfhhq0fwJ2c1gdRi7eH8HPIRn0fQtY4ht4gO1-2TlWWqdqwiaWNwcRHVlDWviX4VSIUOV64rBe08Yrl3nDZX99_HKFNZGd2flmziVp44fbvGV1Z286KZrqixtWrKR1V1a6mSMveFJPJ8O0j-DY-_jo6CddNGsIKPTEeckMQ9hi1cCNTGwtd6RiDkEGMccuBcQkaSaRQKkq0jVEUFMbBVLqVRpqBtJV4DFt1U9tdYI5bmxyI2GidRgYNp1QiidEypLZSkXIBvNrwqpx1WBxlH8Pg_JZ-fgPY27CxXOvjvBxIwlnLYjkI4GV_GzWJyiOqts0SaSi2I_y_LIAnHfv7YXy5lSdpAO88l_8yfvnxS3Hmz57-C_ELuF3k4_Lzh9NPz-AuNbXvEj17sLVol3Yfbs7N8rmX8N8K0v6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+the+Surface+and+Mechanical+Properties+of+3D+Printable+Denture%E2%80%90Base+Resin+Material+and+Conventional+Polymethylmethacrylate+%28PMMA%29&rft.jtitle=Journal+of+prosthodontics&rft.au=Al%E2%80%90Dwairi%2C+Ziad+N.&rft.au=Al+Haj+Ebrahim%2C+Abdulkareem+A.&rft.au=Baba%2C+Nadim+Z.&rft.date=2023-01-01&rft.issn=1059-941X&rft.eissn=1532-849X&rft.volume=32&rft.issue=1&rft.spage=40&rft.epage=48&rft_id=info:doi/10.1111%2Fjopr.13491&rft.externalDBID=10.1111%252Fjopr.13491&rft.externalDocID=JOPR13491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-941X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-941X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-941X&client=summon