Evolution of tin whiskers and subsiding grains in thermal cycling
The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from −40 to 85 °C in air for up to 250 cycles and was compared with surface morphologies resultin...
Saved in:
Published in: | Journal of materials science Vol. 49; no. 3; pp. 1099 - 1113 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
01-02-2014
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from −40 to 85 °C in air for up to 250 cycles and was compared with surface morphologies resulting from room temperature aging. Multiple areas were tracked, and the areal density of whiskers and the grain morphologies within these areas were monitored over time for room temperature aging and with increasing number of thermal cycles. During room temperature aging, the whisker density increased with time until saturation ~3 weeks after plating. As for thermal cycling, the whisker density was observed first to increase but then to decrease as a result of a whisker pinch-off phenomenon. The characteristic features of whiskers formed during thermal cycling included the formation of deep grooves along the in-plane grain boundaries of whiskers (“whisker root”), a decrease in whisker radii as they grew, striation rings on whiskers perpendicular to the whisker growth direction, corresponding striations along grooved surfaces in the film, albeit at different spatial periodicities than those on their corresponding whiskers, and whisker pinch-off as whiskers became prone to fracture as their radii decreased. Whiskers formed during room temperature aging did not display such grooving or pinch-off. A whisker pinch-off model was proposed to explain the observed morphological changes and the resulting decrease in whisker density during thermal cycling, with a calculated whisker growth rate that agrees with the experimental observation. |
---|---|
AbstractList | The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from -40 to 85 °C in air for up to 250 cycles and was compared with surface morphologies resulting from room temperature aging. Multiple areas were tracked, and the areal density of whiskers and the grain morphologies within these areas were monitored over time for room temperature aging and with increasing number of thermal cycles. During room temperature aging, the whisker density increased with time until saturation *3 weeks after plating. As for thermal cycling, the whisker density was observed first to increase but then to decrease as a result of a whisker pinch-off phenomenon. The characteristic features of whiskers formed during thermal cycling included the formation of deep grooves along the in-plane grain boundaries of whiskers ("whisker root"), a decrease in whisker radii as they grew, striation rings on whiskers perpendicular to the whisker growth direction, corresponding striations along grooved surfaces in the film, albeit at different spatial periodicities than those on their corresponding whiskers, and whisker pinch-off as whiskers became prone to fracture as their radii decreased. Whiskers formed during room temperature aging did not display such grooving or pinch-off. A whisker pinch-off model was proposed to explain the observed morphological changes and the resulting decrease in whisker density during thermal cycling, with a calculated whisker growth rate that agrees with the experimental observation. The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from −40 to 85 °C in air for up to 250 cycles and was compared with surface morphologies resulting from room temperature aging. Multiple areas were tracked, and the areal density of whiskers and the grain morphologies within these areas were monitored over time for room temperature aging and with increasing number of thermal cycles. During room temperature aging, the whisker density increased with time until saturation ~3 weeks after plating. As for thermal cycling, the whisker density was observed first to increase but then to decrease as a result of a whisker pinch-off phenomenon. The characteristic features of whiskers formed during thermal cycling included the formation of deep grooves along the in-plane grain boundaries of whiskers (“whisker root”), a decrease in whisker radii as they grew, striation rings on whiskers perpendicular to the whisker growth direction, corresponding striations along grooved surfaces in the film, albeit at different spatial periodicities than those on their corresponding whiskers, and whisker pinch-off as whiskers became prone to fracture as their radii decreased. Whiskers formed during room temperature aging did not display such grooving or pinch-off. A whisker pinch-off model was proposed to explain the observed morphological changes and the resulting decrease in whisker density during thermal cycling, with a calculated whisker growth rate that agrees with the experimental observation. The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from −40 to 85 °C in air for up to 250 cycles and was compared with surface morphologies resulting from room temperature aging. Multiple areas were tracked, and the areal density of whiskers and the grain morphologies within these areas were monitored over time for room temperature aging and with increasing number of thermal cycles. During room temperature aging, the whisker density increased with time until saturation ~3 weeks after plating. As for thermal cycling, the whisker density was observed first to increase but then to decrease as a result of a whisker pinch-off phenomenon. The characteristic features of whiskers formed during thermal cycling included the formation of deep grooves along the in-plane grain boundaries of whiskers (“whisker root”), a decrease in whisker radii as they grew, striation rings on whiskers perpendicular to the whisker growth direction, corresponding striations along grooved surfaces in the film, albeit at different spatial periodicities than those on their corresponding whiskers, and whisker pinch-off as whiskers became prone to fracture as their radii decreased. Whiskers formed during room temperature aging did not display such grooving or pinch-off. A whisker pinch-off model was proposed to explain the observed morphological changes and the resulting decrease in whisker density during thermal cycling, with a calculated whisker growth rate that agrees with the experimental observation. The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates with a Cu interlayer during thermal cycling from a40 to 85 degree C in air for up to 250 cycles and was compared with surface morphologies resulting from room temperature aging. Multiple areas were tracked, and the areal density of whiskers and the grain morphologies within these areas were monitored over time for room temperature aging and with increasing number of thermal cycles. During room temperature aging, the whisker density increased with time until saturation ~3 weeks after plating. As for thermal cycling, the whisker density was observed first to increase but then to decrease as a result of a whisker pinch-off phenomenon. The characteristic features of whiskers formed during thermal cycling included the formation of deep grooves along the in-plane grain boundaries of whiskers (awhisker roota), a decrease in whisker radii as they grew, striation rings on whiskers perpendicular to the whisker growth direction, corresponding striations along grooved surfaces in the film, albeit at different spatial periodicities than those on their corresponding whiskers, and whisker pinch-off as whiskers became prone to fracture as their radii decreased. Whiskers formed during room temperature aging did not display such grooving or pinch-off. A whisker pinch-off model was proposed to explain the observed morphological changes and the resulting decrease in whisker density during thermal cycling, with a calculated whisker growth rate that agrees with the experimental observation. |
Audience | Academic |
Author | Wang, Ying Blendell, John E. Handwerker, Carol A. |
Author_xml | – sequence: 1 givenname: Ying surname: Wang fullname: Wang, Ying email: wang544@purdue.edu organization: School of Materials Engineering, Purdue University – sequence: 2 givenname: John E. surname: Blendell fullname: Blendell, John E. organization: School of Materials Engineering, Purdue University – sequence: 3 givenname: Carol A. surname: Handwerker fullname: Handwerker, Carol A. organization: School of Materials Engineering, Purdue University |
BookMark | eNp1kUFr3DAQhUVJoZu0P6A3Qy_twemMJFv2cQlJEwgU2uQstLLkKPVKqcZuk39fLS6EFIoOA5rvDW_mHbOjmKJj7D3CKQKoz4TQNaIGFLVSXVc3r9gGGyVq2YE4YhsAzmsuW3zDjonuAaBRHDdse_4rTcscUqySr-YQq993gX64TJWJQ0XLjsIQ4liN2YRIVQHmO5f3Zqrsk51K5y177c1E7t3fesJuL85vzi7r669frs6217WVnM-184NUxgnOuxaMkuhRwoCw6_3gLUdEAYq7HvygLBopht5jC51H3--w7HbCPq5zH3L6uTia9T6QddNkoksLaWygFV1ZrC3oh3_Q-7TkWNxpzpu-lcibw8DTlRrN5HSIPs3Z2PIGtw-2nNeH8r8VreiVaGRfBJ9eCAozu8d5NAuRvvr-7SWLK2tzIsrO64cc9iY_aQR9SEyviemSmD4kpg-G-KqhwsbR5Wfb_xf9AXKml8A |
CitedBy_id | crossref_primary_10_1007_s10853_015_9680_y crossref_primary_10_1016_j_tsf_2021_139027 crossref_primary_10_1007_s11837_016_2070_3 crossref_primary_10_1039_D0EE02525A crossref_primary_10_1016_j_jallcom_2015_09_266 crossref_primary_10_1007_s10854_015_3230_x crossref_primary_10_1007_s11664_017_5802_4 crossref_primary_10_1007_s11664_021_09158_2 crossref_primary_10_1007_s11837_023_06366_5 crossref_primary_10_1016_j_jmst_2015_04_001 crossref_primary_10_1007_s11664_022_10080_4 crossref_primary_10_1016_j_physleta_2017_06_050 crossref_primary_10_1007_s11664_018_6391_6 crossref_primary_10_1007_s11664_020_08440_z crossref_primary_10_3390_nano11092429 crossref_primary_10_1007_s10854_019_02646_6 crossref_primary_10_1016_j_scriptamat_2020_06_033 crossref_primary_10_1016_j_microrel_2015_02_014 crossref_primary_10_1063_1_5029933 crossref_primary_10_1016_j_jmst_2019_03_042 |
Cites_doi | 10.1007/s11661-012-1488-7 10.1016/S1359-6454(98)00045-7 10.1016/0040-6090(85)90215-9 10.1109/ECTC.2009.5074028 10.1149/1.2428013 10.1109/TEPM.2006.890645 10.1103/PhysRevB.49.2030 10.1557/jmr.2009.0172 10.1007/s11837-010-0105-8 10.1016/j.scriptamat.2006.02.024 10.1016/j.actamat.2012.12.019 10.1023/B:JMSE.0000012461.69417.75 10.1063/1.1652982 10.1007/s11664-002-0004-z 10.1109/TEPM.2006.890637 10.1016/j.actamat.2011.08.017 10.1103/PhysRev.120.1658 10.1557/JMR.2003.0076 10.1109/EPTC.2003.1271513 10.1016/j.microrel.2007.01.091 10.1007/s11837-005-0135-9 10.1016/j.tsf.2011.08.040 10.1016/j.actamat.2005.07.016 10.1109/TEPM.2010.2043847 10.1016/S0921-5093(03)00470-2 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2013 COPYRIGHT 2014 Springer Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2013 – notice: COPYRIGHT 2014 Springer – notice: Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PQEST PQQKQ PQUKI PRINS PTHSS 7SR 8BQ 8FD JG9 |
DOI | 10.1007/s10853-013-7788-5 |
DatabaseName | CrossRef Gale in Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic Engineering Collection Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | ProQuest Materials Science Collection Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 1113 |
ExternalDocumentID | A363973549 10_1007_s10853_013_7788_5 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z G8K GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ABDPE ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c422t-efd47ae322860a741f140d10b9fdfc21113072e90fd7c1a43d9f1608f1f9b1853 |
IEDL.DBID | AEJHL |
ISSN | 0022-2461 |
IngestDate | Fri Oct 25 04:12:25 EDT 2024 Fri Oct 18 23:42:20 EDT 2024 Tue Nov 12 22:49:31 EST 2024 Thu Aug 01 20:35:12 EDT 2024 Thu Nov 21 23:45:46 EST 2024 Sat Dec 16 12:19:40 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep Groof Room Temperature Aging Whisker Formation Whisker Growth Whisker Density |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-efd47ae322860a741f140d10b9fdfc21113072e90fd7c1a43d9f1608f1f9b1853 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 2259641255 |
PQPubID | 2043599 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1506380006 proquest_journals_2259641255 gale_infotracacademiconefile_A363973549 gale_incontextgauss_ISR_A363973549 crossref_primary_10_1007_s10853_013_7788_5 springer_journals_10_1007_s10853_013_7788_5 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationSubtitle | Full Set - Includes `Journal of Materials Science Letters |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2014 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | HorváthaBIllésBShinoharaTHarsányiGThin Solid Films2011520138410.1016/j.tsf.2011.08.0402011TSF...520..384H TuKNPhys Rev B1994493203010.1103/PhysRevB.49.20301:CAS:528:DyaK2cXhsVWit7g%3D1994PhRvB..49.2030T SarobolPBlendellJEHandwerkerCAActa Mater2013616199110.1016/j.actamat.2012.12.0191:CAS:528:DC%2BC3sXhs1Okt7Y%3D SmetanaJIEEE Trans Electron Packag Manuf20073011110.1109/TEPM.2006.8906451:CAS:528:DC%2BD2sXktFCjtbo%3D Zhang W, Ruythooren W (2009) Characterization of oxidation of electroplated Sn for advanced flip-chip bonding. In: european microelectronics package conference (EPMC 2009), vol 1–2. p 597–600 SusanDMichaelJGrantRPMckenzieBYeltonWGMetall Mater Trans A201344A3148510.1007/s11661-012-1488-72013MMTA...44.1485S SchulzUTerrySGLeviCGMater Sci Eng A20033601–231910.1016/S0921-5093(03)00470-2 Dittes M, Oberndorff P, Crema P, Schroeder V (2003) Tin whisker formation in thermal cycling conditions. In: 5th electronic packaging technology conference (EPTC 2003). IEEE, Singapore, pp 183–188 Association JSST (2006) Solid State Technol Assoc JESD201 SubramanianKNLeeJGJ Mater Sci Mater Electron200415423510.1023/B:JMSE.0000012461.69417.751:CAS:528:DC%2BD2cXkt12jsw%3D%3D OsenbachJWDeLuccaJMPotteigerBDAminAShookRLBaiocchiFAIEEE Trans Electron Packag Manuf20073012310.1109/TEPM.2006.8906371:CAS:528:DC%2BD2sXktFCjtbs%3D SuganumaKBaatedAKimK-SHamasakiKNemotoNNakagawaTYamadaTActa Mater20115919725510.1016/j.actamat.2011.08.0171:CAS:528:DC%2BC3MXht1OqtrrJ JadhavNBuchoveckyEChasonEBowerAJOM2010623010.1007/s11837-010-0105-81:CAS:528:DC%2BC3cXovFKnu7g%3D Terasaki T, Iwasaki T, Okura Y, Suzuki T, Kato T, Nakamura M, Hashimoto T (2009) Evaluation of tin whisker growth during thermal cycle testing using stress- and mass-diffusion analysis. In: 2009 IEEE 59th electronic components and technology conference, vol 1–4. p 277–284 JadhavNBuchoveckyEJReinboldLKumarSBowerAFChasonEIEEE Trans Electron Packag Manuf201033318310.1109/TEPM.2010.20438471:CAS:528:DC%2BC3cXht1WhurfI LeeBZLeeDNActa Mater19984610370110.1016/S1359-6454(98)00045-71:CAS:528:DyaK1cXktlWksbo%3D Jadhav N (2011) Understanding the mechanisms of whisker formation in Sn-based coatings. PhD Thesis, Brown University, Providence HwangS-JLeeY-DParkY-BLeeJ-HJeongC-OJooY-CScr Mater20065411184110.1016/j.scriptamat.2006.02.0241:CAS:528:DC%2BD28XivVSgsbs%3D NakadairaYJeongSShimJSeoJMinSChoTKangSOhSMicroelectron Reliab20084818310.1016/j.microrel.2007.01.0911:CAS:528:DC%2BD1cXitlKrsrw%3D HutchinsonBOliverJNylenMHagstromJRecryst Grain Growth2004467-470Pts 1 and 24651:CAS:528:DC%2BD2cXps1Khsbg%3D StrangmanTEThin Solid Films19851271–29310.1016/0040-6090(85)90215-91:CAS:528:DyaL2MXlvVanurg%3D1985TSF...127...93S BoettingerWJJohnsonCEBenderskyLAMoonKWWilliamsMEStaffordGRActa Mater20055319503310.1016/j.actamat.2005.07.0161:CAS:528:DC%2BD2MXhtFShsrvP ShinJWChasonEJ Mater Res2009244152210.1557/jmr.2009.01721:CAS:528:DC%2BD1MXktlaqsbw%3D2009JMatR..24.1522S RayneJAChandrasekharBSPhys Rev19601205165810.1103/PhysRev.120.16581:CAS:528:DyaF3MXis1ejsw%3D%3D1960PhRv..120.1658R LideDRThermal and physical properties of pure metals. CRC handbook of chemistry and physics2003Boca RatonCRC Press TelangAUBielerTRJOM20055764410.1007/s11837-005-0135-91:CAS:528:DC%2BD2MXlvVSjsr8%3D LeBretJBNortonMGJ Mater Res200318358510.1557/JMR.2003.00761:CAS:528:DC%2BD3sXitlCkt7c%3D2003JMatR..18..585L KaurIGustWHandbook of grain and interphase boundary diffusion data1989StuttgartZiegler Press FrearBurchettSNMorganHSLauJHMechanics of solder alloy interconnects springer1994New YorkVan Nostrand Reinhold LahiriSKWellsOCAppl Phys Lett196915723410.1063/1.16529821969ApPhL..15..234L LeeJGTelangASubramanianKNBielerTRJ Electron Mater20023111115210.1007/s11664-002-0004-z1:CAS:528:DC%2BD38XptVemtLc%3D2002JEMat..31.1152L BoggsWEKachikRHPellissierGEJ Electrochem Soc19611081610.1149/1.24280131:CAS:528:DyaF3MXkt1Kltg%3D%3D TuKNChenCWuATJ Mater Sci2007181–32691:CAS:528:DC%2BD28XhtlWntL3E Y Nakadaira (7788_CR7) 2008; 48 JB LeBret (7788_CR24) 2003; 18 WE Boggs (7788_CR30) 1961; 108 K Suganuma (7788_CR8) 2011; 59 JW Shin (7788_CR11) 2009; 24 KN Tu (7788_CR31) 1994; 49 WJ Boettinger (7788_CR2) 2005; 53 KN Subramanian (7788_CR27) 2004; 15 7788_CR16 I Kaur (7788_CR33) 1989 DR Frear (7788_CR19) 1994 B Horvátha (7788_CR5) 2011; 520 KN Tu (7788_CR3) 2007; 18 7788_CR10 AU Telang (7788_CR20) 2005; 57 N Jadhav (7788_CR17) 2010; 62 D Susan (7788_CR25) 2013; 44A BZ Lee (7788_CR4) 1998; 46 SK Lahiri (7788_CR13) 1969; 15 7788_CR9 B Hutchinson (7788_CR32) 2004; 467-470 JW Osenbach (7788_CR6) 2007; 30 P Sarobol (7788_CR14) 2013; 61 7788_CR1 JG Lee (7788_CR26) 2002; 31 DR Lide (7788_CR21) 2003 7788_CR29 J Smetana (7788_CR28) 2007; 30 S-J Hwang (7788_CR12) 2006; 54 N Jadhav (7788_CR15) 2010; 33 JA Rayne (7788_CR18) 1960; 120 U Schulz (7788_CR23) 2003; 360 TE Strangman (7788_CR22) 1985; 127 |
References_xml | – volume: 44A start-page: 1485 issue: 3 year: 2013 ident: 7788_CR25 publication-title: Metall Mater Trans A doi: 10.1007/s11661-012-1488-7 contributor: fullname: D Susan – volume: 46 start-page: 3701 issue: 10 year: 1998 ident: 7788_CR4 publication-title: Acta Mater doi: 10.1016/S1359-6454(98)00045-7 contributor: fullname: BZ Lee – volume: 127 start-page: 93 issue: 1–2 year: 1985 ident: 7788_CR22 publication-title: Thin Solid Films doi: 10.1016/0040-6090(85)90215-9 contributor: fullname: TE Strangman – ident: 7788_CR1 – ident: 7788_CR9 doi: 10.1109/ECTC.2009.5074028 – volume: 108 start-page: 6 issue: 1 year: 1961 ident: 7788_CR30 publication-title: J Electrochem Soc doi: 10.1149/1.2428013 contributor: fullname: WE Boggs – volume: 467-470 start-page: 465 issue: Pts 1 and 2 year: 2004 ident: 7788_CR32 publication-title: Recryst Grain Growth contributor: fullname: B Hutchinson – volume: 30 start-page: 11 issue: 1 year: 2007 ident: 7788_CR28 publication-title: IEEE Trans Electron Packag Manuf doi: 10.1109/TEPM.2006.890645 contributor: fullname: J Smetana – volume: 49 start-page: 2030 issue: 3 year: 1994 ident: 7788_CR31 publication-title: Phys Rev B doi: 10.1103/PhysRevB.49.2030 contributor: fullname: KN Tu – ident: 7788_CR29 – volume: 24 start-page: 1522 issue: 4 year: 2009 ident: 7788_CR11 publication-title: J Mater Res doi: 10.1557/jmr.2009.0172 contributor: fullname: JW Shin – volume: 62 start-page: 30 year: 2010 ident: 7788_CR17 publication-title: JOM doi: 10.1007/s11837-010-0105-8 contributor: fullname: N Jadhav – volume: 54 start-page: 1841 issue: 11 year: 2006 ident: 7788_CR12 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2006.02.024 contributor: fullname: S-J Hwang – volume: 61 start-page: 1991 issue: 6 year: 2013 ident: 7788_CR14 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.12.019 contributor: fullname: P Sarobol – volume: 15 start-page: 235 issue: 4 year: 2004 ident: 7788_CR27 publication-title: J Mater Sci Mater Electron doi: 10.1023/B:JMSE.0000012461.69417.75 contributor: fullname: KN Subramanian – volume: 15 start-page: 234 issue: 7 year: 1969 ident: 7788_CR13 publication-title: Appl Phys Lett doi: 10.1063/1.1652982 contributor: fullname: SK Lahiri – volume-title: Mechanics of solder alloy interconnects springer year: 1994 ident: 7788_CR19 contributor: fullname: DR Frear – volume-title: Thermal and physical properties of pure metals. CRC handbook of chemistry and physics year: 2003 ident: 7788_CR21 contributor: fullname: DR Lide – volume: 31 start-page: 1152 issue: 11 year: 2002 ident: 7788_CR26 publication-title: J Electron Mater doi: 10.1007/s11664-002-0004-z contributor: fullname: JG Lee – volume: 30 start-page: 23 issue: 1 year: 2007 ident: 7788_CR6 publication-title: IEEE Trans Electron Packag Manuf doi: 10.1109/TEPM.2006.890637 contributor: fullname: JW Osenbach – volume: 59 start-page: 7255 issue: 19 year: 2011 ident: 7788_CR8 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.08.017 contributor: fullname: K Suganuma – volume: 120 start-page: 1658 issue: 5 year: 1960 ident: 7788_CR18 publication-title: Phys Rev doi: 10.1103/PhysRev.120.1658 contributor: fullname: JA Rayne – volume: 18 start-page: 585 issue: 3 year: 2003 ident: 7788_CR24 publication-title: J Mater Res doi: 10.1557/JMR.2003.0076 contributor: fullname: JB LeBret – volume: 18 start-page: 269 issue: 1–3 year: 2007 ident: 7788_CR3 publication-title: J Mater Sci contributor: fullname: KN Tu – ident: 7788_CR10 doi: 10.1109/EPTC.2003.1271513 – ident: 7788_CR16 – volume-title: Handbook of grain and interphase boundary diffusion data year: 1989 ident: 7788_CR33 contributor: fullname: I Kaur – volume: 48 start-page: 83 issue: 1 year: 2008 ident: 7788_CR7 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2007.01.091 contributor: fullname: Y Nakadaira – volume: 57 start-page: 44 issue: 6 year: 2005 ident: 7788_CR20 publication-title: JOM doi: 10.1007/s11837-005-0135-9 contributor: fullname: AU Telang – volume: 520 start-page: 384 issue: 1 year: 2011 ident: 7788_CR5 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.08.040 contributor: fullname: B Horvátha – volume: 53 start-page: 5033 issue: 19 year: 2005 ident: 7788_CR2 publication-title: Acta Mater doi: 10.1016/j.actamat.2005.07.016 contributor: fullname: WJ Boettinger – volume: 33 start-page: 183 issue: 3 year: 2010 ident: 7788_CR15 publication-title: IEEE Trans Electron Packag Manuf doi: 10.1109/TEPM.2010.2043847 contributor: fullname: N Jadhav – volume: 360 start-page: 319 issue: 1–2 year: 2003 ident: 7788_CR23 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00470-2 contributor: fullname: U Schulz |
SSID | ssj0005721 |
Score | 2.2581906 |
Snippet | The evolution of surface morphology, including whisker formation, grain boundary cracking, and subsiding grains, was studied in Sn thin films on Si substrates... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1099 |
SubjectTerms | Aging Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Comparative analysis Copper Crystallography and Scattering Methods Density Dielectric films Evolution Grain boundaries Grooves Interlayers Materials Science Morphology Polymer Sciences Silicon substrates Solid Mechanics Striations Thermal cycling Thin films Tin |
Title | Evolution of tin whiskers and subsiding grains in thermal cycling |
URI | https://link.springer.com/article/10.1007/s10853-013-7788-5 https://www.proquest.com/docview/2259641255 https://search.proquest.com/docview/1506380006 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4t9AIHWBYQhYLMCgkJZJSHG9fHii3qIsSBh8TNcuy4VBUpIi2If89Mm1Bee1iOUUaONR7PN5OxvwHYswjjCJSWpyYIuMAHrkQaceVskoaJctmk12H3Up7ftP50iCYnev11kQ-OqorkxFG_ueuGyMKpGYHEtI0356CG0NNE2661O6fds9nBDhmFFUc4saVVtcyvBnmHRh998qfi6ARzTpa_M9ufsFRGmKw9NYkV-JHlv2DxDe_gKrQ7j6XFsaFno37Onm77xQAjQWZyxwp0Jn3CNNajBhIFQwGKE-9wWPtMdyl7a3B90rk67vKylwK3IopGPPNOSJPh9m0lgcEwwmNm5cIgVd55G1HD-UBGmQq8kzY0InbKh0nQ8qFXKWH6OsznwzzbAObSwAgZ28QaJWziUokpizRWGemJb74OB5VO9f2UMkPPyJFJLxr1okkvulmH36R1TVQUOZ116ZlxUei_lxe6HVPRMcYEtg77pZAfjh6MNeXVAZwPsVe9k2xUq6fLzVhodFkqERjJ4dd2X1_jNqLaiMmz4bjQRLQYtwi863BYLelsiH_Of_O_pLdgAQMuMT313YD50cM424a5wo13Sit-AXF66Uk |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaW9ND1sEe7oumyTS0KFNggwA_Fio7BlizBuhyaFOhNkCUrDYo6RZx02L8fmdhLs8dhOxomZIGm-FEg-RHgzCKMI1Banpog4AIfuBJpxJWzSRomymWrWYf9kRxetz91iSYnrnphVtXuVUpy5akfNbshtHCaRiDx3sZbNdgRKhFoyjudwfhzb1PZIaOwIgknurQqmfmnRbbg6Fen_Ft2dAU6vef_td0X8KyMMVlnbRQv4UmW78PeI-bBA-h0H0qbYzPPFtOcfbuZFrcYCzKTO1agO5kSqrEJjZAoGApQpHiHy9rv1E05eQVXve74Y5-X0xS4FVG04Jl3QpoMD3A7CQwGEh7vVi4MUuWdtxGNnA9klKnAO2lDI2KnfJgEbR96lRKqH0I9n-XZETCXBkbI2CbWKGETl0q8tEhjlZGeGOcb8L5Sqr5fk2boDT0y6UWjXjTpRbcacEpq10RGkVO1y8Qsi0IPRpe6E1PaMcYrbAPOSyE_W8yNNWXzAO6H-Ku2JJvV79PlcSw0Oi20FIzl8GsnP1_jQaLsiMmz2bLQRLUYtwm-G_Ch-qWbJf66_-N_kn4Hu_3x1wt9MRh-eQ1PMfwS6xrwJtQX82X2BmqFW74tTfoHgObtOQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rSyMxEB98wHF-UO8h1vM0yoGgBPcRN80nKdpSH8hx3oHfQjbZ1CJuxd0q_vc30-5efX6Q-1g6ZMNkkt8MM_MbgB8WYRyB0vLUBAEX-IMrkUZcOZukYaJcNpp12D2XZxfNwzbR5OzXvTCjavc6JTnuaSCWprzcvXF-91HjG8IMp8kEEmM4vjcNswIDGTT02Vb7uHs6qfKQUVgThhN1Wp3YfG2RJ9D0_IF-kSkdAVBn4b-3vgjzle_JWmNj-QRTWf4Z5h4xEn6BVvuuskU28Kzs5-z-sl9coY_ITO5Ygc9Mn9CO9Wi0RMFQgDzIa1zWPlCXZe8r_Om0fx90eTVlgVsRRSXPvBPSZHixm0lg0MHwGHO5MEiVd95GNIo-kFGmAu-kDY2InfJhEjR96FVKaL8EM_kgz5aBuTQwQsY2sUYJm7hUYjAjjVVGemKib8B2rWB9MybT0BPaZNKLRr1o0ovea8AmHYEmkoqcqmB6ZlgU-uj8l27FlI6MMbRtwFYl5AflrbGmairA_RCv1RPJ1foodXVNC42PmUoE-nj4tY1_f-MFo6yJybPBsNBEwRg3CdYbsFMf72SJN_e_8i7pdfjw87CjT4_OTr7BR_TKxLg0fBVmytth9h2mCzdcq6z7Lxlb9fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+tin+whiskers+and+subsiding+grains+in+thermal+cycling&rft.jtitle=Journal+of+materials+science&rft.au=Wang%2C+Ying&rft.au=Blendell%2C+John+E.&rft.au=Handwerker%2C+Carol+A.&rft.date=2014-02-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=49&rft.issue=3&rft.spage=1099&rft.epage=1113&rft_id=info:doi/10.1007%2Fs10853-013-7788-5&rft.externalDocID=10_1007_s10853_013_7788_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |