A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction
We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of...
Saved in:
Published in: | IEEE transactions on audio, speech, and language processing Vol. 21; no. 9; pp. 1913 - 1928 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway, NJ
IEEE
01-09-2013
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework. |
---|---|
AbstractList | We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework. |
Author | Araki, Shoko Sawada, Hiroshi Nakatani, Tomohiro Souden, Mehrez Kinoshita, Keisuke |
Author_xml | – sequence: 1 givenname: Mehrez surname: Souden fullname: Souden, Mehrez email: msouden6@ece.gatech.edu organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan – sequence: 2 givenname: Shoko surname: Araki fullname: Araki, Shoko organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan – sequence: 3 givenname: Keisuke surname: Kinoshita fullname: Kinoshita, Keisuke organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan – sequence: 4 givenname: Tomohiro surname: Nakatani fullname: Nakatani, Tomohiro organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan – sequence: 5 givenname: Hiroshi surname: Sawada fullname: Sawada, Hiroshi organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27812361$$DView record in Pascal Francis |
BookMark | eNo9kE1PwkAQhjcGEwH9AcbLXky8FPeru9sjElAT0MTiuVm2s6FaurjbxvjvpYFwmsnM876HZ4QGjW8AoVtKJpSS7HE9zZcTRiifMCY55eoCDWma6kRlTAzOO5VXaBTjFyGCS0GHaD3Fq65uK7s1TQM1Xq3yefJkIpR4EcwOfn34xs4HnO8B7BbnvgsWcA57E0xb-QabpsRvvoqAP6DsbH-7RpfO1BFuTnOMPhfz9ewlWb4_v86my8QKxtoESq6Vc6SUjAqiM6dLZZS1G5c6QZzNmC03LN1kKWcadCZTLYwUphQmA6c5H6OHY-8--J8OYlvsqmihrk0DvosFlZIQJVWqDyg9ojb4GAO4Yh-qnQl_BSVFb7DoDRa9weJk8JC5P9WbaE3tgmlsFc9BpjRlXNIDd3fkKgA4v2VKJVEZ_weq13rz |
CODEN | ITASD8 |
CitedBy_id | crossref_primary_10_1109_TIM_2021_3061269 crossref_primary_10_1371_journal_pone_0289453 crossref_primary_10_1007_s11042_023_14649_x crossref_primary_10_1186_s13636_021_00228_1 crossref_primary_10_3390_app11135968 crossref_primary_10_1109_TASLP_2016_2540815 crossref_primary_10_1109_TASLP_2015_2438542 crossref_primary_10_1109_TASLP_2017_2665341 crossref_primary_10_1162_NECO_a_00776 crossref_primary_10_1016_j_apacoust_2021_108509 crossref_primary_10_1016_j_specom_2017_02_003 crossref_primary_10_1109_TASLP_2023_3237172 crossref_primary_10_1109_TASLP_2019_2946043 crossref_primary_10_1109_TASLP_2014_2327294 crossref_primary_10_1109_ACCESS_2024_3410276 crossref_primary_10_1109_TASLP_2020_3013118 crossref_primary_10_1016_j_specom_2018_11_006 crossref_primary_10_1109_TASLP_2017_2750239 crossref_primary_10_1109_TASLP_2020_2975423 crossref_primary_10_1109_TASLP_2016_2647702 crossref_primary_10_1109_TASLP_2014_2304637 crossref_primary_10_3390_s23010284 crossref_primary_10_1186_s13636_021_00195_7 crossref_primary_10_1109_TASLP_2015_2479042 crossref_primary_10_1007_s10772_020_09767_y crossref_primary_10_1016_j_neucom_2017_08_034 crossref_primary_10_1109_TASLP_2022_3155271 crossref_primary_10_1016_j_specom_2019_08_001 crossref_primary_10_1177_2331216515618903 crossref_primary_10_1587_transinf_2014EDP7130 crossref_primary_10_1109_TASLP_2021_3092838 crossref_primary_10_1109_TSP_2018_2876349 crossref_primary_10_1109_TASLP_2017_2780993 crossref_primary_10_3390_s17102224 crossref_primary_10_1109_MSP_2013_2297440 crossref_primary_10_1016_j_csl_2016_11_007 crossref_primary_10_1109_TASLP_2023_3334101 crossref_primary_10_1109_TASLP_2021_3079815 crossref_primary_10_1109_TASLP_2021_3091845 crossref_primary_10_1109_TASLP_2017_2738438 |
Cites_doi | 10.1109/72.761722 10.1109/TASL.2010.2102754 10.1109/TASL.2011.2118205 10.1214/aoms/1177729893 10.1109/ICASSP.2012.6287829 10.1121/1.392786 10.1109/TASL.2010.2051355 10.1111/j.2517-6161.1994.tb01978.x 10.1109/ICASSP.1995.479394 10.1016/j.specom.2007.02.001 10.1109/89.622565 10.1109/TSP.2004.828896 10.1109/97.988717 10.1109/TASL.2010.2090519 10.1109/TASSP.1984.1164453 10.1109/TASL.2009.2025790 10.1109/89.928915 10.1002/0471221104 10.1109/ICASSP.2010.5495106 10.1006/csla.1995.0010 10.1109/ASPAA.2007.4393012 10.1250/ast.22.149 10.1007/978-3-662-04619-7_8 10.1016/S0167-6393(97)00061-7 10.1111/1467-9868.00210 10.1109/78.934132 10.1155/2008/784296 10.1109/TASL.2011.2164527 10.1162/neco.1995.7.6.1129 10.1109/TSA.2005.858005 10.1109/TASL.2009.2016395 10.1109/ICASSP.2010.5495994 10.1109/ICASSP.1996.543199 10.1109/TASL.2009.2020891 10.1201/9781420015836 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TASL.2013.2263137 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online Pascal-Francis CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Statistics |
EISSN | 1558-7924 |
EndPage | 1928 |
ExternalDocumentID | 10_1109_TASL_2013_2263137 27812361 6516079 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG AETIX ALMA_UNASSIGNED_HOLDINGS B-7 BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RIG RNS ATWAV IPNFZ IQODW AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c422t-ed387ff0d6214089f8d7a7ccbf5f40fc92cdb25b95328e896584a64ad4a9ef833 |
IEDL.DBID | RIE |
ISSN | 1558-7916 |
IngestDate | Fri Aug 16 23:12:52 EDT 2024 Fri Aug 23 03:24:28 EDT 2024 Tue Sep 20 22:33:42 EDT 2022 Wed Jun 26 19:28:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Second order Multichannel recording Parameter estimation Source separation Noise reduction Signal estimation Blind source separation Background noise Mean square error Multichannel filter Wiener filter Audio signal Acoustic noise Speech enhancement minimum variance distortionless response Signal detection Additive noise microphone arrays Order statistic Statistical method Minimal variance Posterior probability Vocal signal Linear filter minimum-mean-square error Multiple channel Speech processing |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-ed387ff0d6214089f8d7a7ccbf5f40fc92cdb25b95328e896584a64ad4a9ef833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1660076758 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | ieee_primary_6516079 proquest_miscellaneous_1660076758 pascalfrancis_primary_27812361 crossref_primary_10_1109_TASL_2013_2263137 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway, NJ |
PublicationPlace_xml | – name: Piscataway, NJ |
PublicationTitle | IEEE transactions on audio, speech, and language processing |
PublicationTitleAbbrev | TASL |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref15 rennie (ref38) 2010; 27 ref14 ref11 ref10 ngo (ref12) 2008 ref16 ref19 sawada (ref21) 2005 nakatani (ref13) 2011 hori (ref49) 2004 (ref41) 0 ref46 ref48 ref47 ref44 ref43 (ref50) 0 ref7 benesty (ref8) 2008 ref9 ref3 ref6 ref5 van trees (ref34) 2002 delcroix (ref18) 2011 kent (ref37) 1994; b ref35 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 araki (ref26) 2009 furui (ref45) 2000 fisher (ref40) 1986 varga (ref42) 1992 ref24 ref23 ref25 ref20 ref22 burshtein (ref17) 2001; 49 loizou (ref4) 2007 ref28 ref27 o'grady (ref29) 2004 |
References_xml | – ident: ref20 doi: 10.1109/72.761722 – ident: ref25 doi: 10.1109/TASL.2010.2102754 – ident: ref11 doi: 10.1109/TASL.2011.2118205 – year: 0 ident: ref50 – ident: ref35 doi: 10.1214/aoms/1177729893 – start-page: -6s year: 2004 ident: ref49 article-title: NTT speech recognizer with outlook on the next generation: SOLON publication-title: Proc NTT Workshop Commun Scene Anal contributor: fullname: hori – year: 2008 ident: ref12 article-title: Variable speech distortion weighted multichannel Wiener filter based on soft output voice activity detection for noise reduction in hearing aids publication-title: Proc IWAENC contributor: fullname: ngo – ident: ref1 doi: 10.1109/ICASSP.2012.6287829 – ident: ref5 doi: 10.1121/1.392786 – ident: ref28 doi: 10.1109/TASL.2010.2051355 – year: 1992 ident: ref42 publication-title: ?The Noisex-92 study on the effect of additive noise on automatic speech recognition ? Tech Rep contributor: fullname: varga – volume: b start-page: 285 year: 1994 ident: ref37 article-title: The complex Bingham distribution and shape analysis publication-title: J R Statist Soc doi: 10.1111/j.2517-6161.1994.tb01978.x contributor: fullname: kent – year: 2005 ident: ref21 publication-title: The Speech Enhancer contributor: fullname: sawada – ident: ref47 doi: 10.1109/ICASSP.1995.479394 – ident: ref7 doi: 10.1016/j.specom.2007.02.001 – ident: ref16 doi: 10.1109/89.622565 – ident: ref24 doi: 10.1109/TSP.2004.828896 – volume: 27 start-page: 66 year: 2010 ident: ref38 article-title: Single channel multi-talker speech recognition: Graphical modeling approaches publication-title: IEEE Signal Process Mag contributor: fullname: rennie – ident: ref15 doi: 10.1109/97.988717 – start-page: 430 year: 2004 ident: ref29 article-title: Soft-LOST: EM on a mixture of oriented lines publication-title: Proc ICA contributor: fullname: o'grady – ident: ref10 doi: 10.1109/TASL.2010.2090519 – ident: ref2 doi: 10.1109/TASSP.1984.1164453 – start-page: 12 year: 2011 ident: ref18 article-title: Speech recognition in the presence of highly non-stationary noise based on spatial, spectral and temporal speech/noise modeling combined with dynamic variance adapatation publication-title: Proc CHiME Workshop contributor: fullname: delcroix – start-page: 93 year: 1986 ident: ref40 article-title: The DARPA speech recognition research database: Specifications and status publication-title: Proc DARPA Speech Recognition Workshop contributor: fullname: fisher – ident: ref9 doi: 10.1109/TASL.2009.2025790 – ident: ref14 doi: 10.1109/89.928915 – year: 2002 ident: ref34 publication-title: Detection Estimation and Modulation Theory Part IV Optimum Array Processing doi: 10.1002/0471221104 contributor: fullname: van trees – ident: ref46 doi: 10.1109/ICASSP.2010.5495106 – ident: ref48 doi: 10.1006/csla.1995.0010 – ident: ref27 doi: 10.1109/ASPAA.2007.4393012 – year: 0 ident: ref41 – ident: ref23 doi: 10.1250/ast.22.149 – ident: ref32 doi: 10.1007/978-3-662-04619-7_8 – ident: ref39 doi: 10.1016/S0167-6393(97)00061-7 – ident: ref36 doi: 10.1111/1467-9868.00210 – ident: ref6 doi: 10.1109/78.934132 – start-page: 244 year: 2000 ident: ref45 article-title: A Japanese national project on spontaneous speech corpus and processing technology publication-title: Proc ISCA ASR contributor: fullname: furui – ident: ref30 doi: 10.1155/2008/784296 – ident: ref33 doi: 10.1109/TASL.2011.2164527 – ident: ref19 doi: 10.1162/neco.1995.7.6.1129 – ident: ref43 doi: 10.1109/TSA.2005.858005 – volume: 49 start-page: 1614 year: 2001 ident: ref17 article-title: Speech enhancement using a mixture-maximum model publication-title: IEEE Trans Signal Process contributor: fullname: burshtein – year: 2008 ident: ref8 publication-title: Microphone Array Signal Processing contributor: fullname: benesty – ident: ref22 doi: 10.1109/TASL.2009.2016395 – ident: ref31 doi: 10.1109/ICASSP.2010.5495994 – start-page: 1785 year: 2011 ident: ref13 article-title: Reduction of highly nonstationary ambient noise by integrating spectral and locational characteristics of speech and noise for robust ASR publication-title: Proc ISCA Interspeech contributor: fullname: nakatani – ident: ref3 doi: 10.1109/ICASSP.1996.543199 – ident: ref44 doi: 10.1109/TASL.2009.2020891 – start-page: 742 year: 2009 ident: ref26 article-title: Stereo source separation and source counting with MAP estimation with Dirichlet prior considering spatial aliasing problem publication-title: Proc ICA contributor: fullname: araki – year: 2007 ident: ref4 publication-title: Speech Enhancement Theory and Practice doi: 10.1201/9781420015836 contributor: fullname: loizou |
SSID | ssj0043641 |
Score | 2.4575415 |
Snippet | We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1913 |
SubjectTerms | Applied sciences Blind source separation Detection, estimation, filtering, equalization, prediction Estimation Exact sciences and technology Information, signal and communications theory Masking Mathematical models Maximization microphone arrays Microphones minimum variance distortionless response minimum-mean-square error Multichannel Noise Noise measurement Noise reduction Separation Signal and communications theory Signal processing Signal, noise Spectra Speech Speech processing Statistics Telecommunications and information theory Vectors Wiener filter |
Title | A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction |
URI | https://ieeexplore.ieee.org/document/6516079 https://search.proquest.com/docview/1660076758 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI0YNw58I4YABYkToluWNG1yHLCJA9uBDolblTaOQELtxLb_T5x2Ewgu3Ko2iiq_JLZj-5mQa6-Ri5RZGTHBXRRDwiPNHURGa2ldEhsZamEes3T6qh5GSJNzu6mFAYCQfAY9fAyxfFuXK7wq6ycS6dB0h3RSrZparfWpG4skbrhRpUIKxqSNYA6Y7s-G2RMmcYmetzXEAFuef9NBoakKpkSahZeKa9pZ_DqZg7oZ7_3vR_fJbmtW0mGzDg7IFlSHZOcb2eARmQ1pqLbFUt8KPuhkko2iO6_ELB2vM7SoN2FpNgco32gWrvVpBg07eF1RU1k6rd8XQJ-R8BXfHZOX8Wh2_xi1PRWiMuZ8GYEVKnWO2YR710ppp2xq0rIsnHQxc6XmpS24LLQUXIFCapjYeMhsbDQ4JcQJ2a7qCk4JlaAHhQJvMxikBfPDtMcdmPCzM5OyLrlZSzmfN9QZeXA5mM4RkhwhyVtIuuQIxbgZ2EqwSy5_4LL5zlMVeGO65GoNVO43BkY7TAX1apEPEqTeR3_o7O-5z8n28nMFF6SzsKvLsJq-AHr2yOA |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x8QB7YMBAFNgwEk-IbK5_JPZjN1oV0faBFIm3yInPGhJKpnX9__E5aTUEL7xFiWVF99m-O9_ddwAfokauC-51xqUImcJcZFYEzJy12odcOZ1qYeZlsfphPk-JJufTvhYGEVPyGZ7TY4rl-67Z0lXZRa6JDs0ewEOtirzoq7V2566SuerZUbUhEsZ8iGGOub1YT8oFpXHJ82htyDE1Pb-nhVJbFUqKdJsol9A3tPjrbE4KZ3b8f7_6FJ4MhiWb9CvhGTzA9jkc3aMbPIH1hKV6Wyr2bfEXWy7LaXYZ1Zhns12OFotGLCtvEJtrVqaLfVZizw_etcy1nq26nxtk34jyld69gO-z6fpqng1dFbJGCXGXoZemCIH7XETnythgfOGKpqmDDoqHxorG10LXVkth0BA5jHIRNK-cxWCkfAmHbdfiK2Aa7bg2GK0GR8RgcZiNyCOXcXbuCj6CjzspVzc9eUaVnA5uK4KkIkiqAZIRnJAY9wMHCY7g7A9c9t9FYRJzzAje74Cq4tageIdrsdtuqnFO5PvkEb3-99zv4NF8vVxUiy-rr2_gsUidLih97C0c3t1u8RQONn57lpbZb4HSzkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multichannel+MMSE-Based+Framework+for+Speech+Source+Separation+and+Noise+Reduction&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Souden%2C+Mehrez&rft.au=Araki%2C+Shoko&rft.au=Kinoshita%2C+Keisuke&rft.au=Nakatani%2C+Tomohiro&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1558-7916&rft.eissn=1558-7924&rft.volume=21&rft.issue=9&rft.spage=1913&rft.epage=1928&rft_id=info:doi/10.1109%2FTASL.2013.2263137&rft.externalDocID=6516079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon |