A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction

We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing Vol. 21; no. 9; pp. 1913 - 1928
Main Authors: Souden, Mehrez, Araki, Shoko, Kinoshita, Keisuke, Nakatani, Tomohiro, Sawada, Hiroshi
Format: Journal Article
Language:English
Published: Piscataway, NJ IEEE 01-09-2013
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework.
AbstractList We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework.
Author Araki, Shoko
Sawada, Hiroshi
Nakatani, Tomohiro
Souden, Mehrez
Kinoshita, Keisuke
Author_xml – sequence: 1
  givenname: Mehrez
  surname: Souden
  fullname: Souden, Mehrez
  email: msouden6@ece.gatech.edu
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 2
  givenname: Shoko
  surname: Araki
  fullname: Araki, Shoko
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 3
  givenname: Keisuke
  surname: Kinoshita
  fullname: Kinoshita, Keisuke
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 4
  givenname: Tomohiro
  surname: Nakatani
  fullname: Nakatani, Tomohiro
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 5
  givenname: Hiroshi
  surname: Sawada
  fullname: Sawada, Hiroshi
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27812361$$DView record in Pascal Francis
BookMark eNo9kE1PwkAQhjcGEwH9AcbLXky8FPeru9sjElAT0MTiuVm2s6FaurjbxvjvpYFwmsnM876HZ4QGjW8AoVtKJpSS7HE9zZcTRiifMCY55eoCDWma6kRlTAzOO5VXaBTjFyGCS0GHaD3Fq65uK7s1TQM1Xq3yefJkIpR4EcwOfn34xs4HnO8B7BbnvgsWcA57E0xb-QabpsRvvoqAP6DsbH-7RpfO1BFuTnOMPhfz9ewlWb4_v86my8QKxtoESq6Vc6SUjAqiM6dLZZS1G5c6QZzNmC03LN1kKWcadCZTLYwUphQmA6c5H6OHY-8--J8OYlvsqmihrk0DvosFlZIQJVWqDyg9ojb4GAO4Yh-qnQl_BSVFb7DoDRa9weJk8JC5P9WbaE3tgmlsFc9BpjRlXNIDd3fkKgA4v2VKJVEZ_weq13rz
CODEN ITASD8
CitedBy_id crossref_primary_10_1109_TIM_2021_3061269
crossref_primary_10_1371_journal_pone_0289453
crossref_primary_10_1007_s11042_023_14649_x
crossref_primary_10_1186_s13636_021_00228_1
crossref_primary_10_3390_app11135968
crossref_primary_10_1109_TASLP_2016_2540815
crossref_primary_10_1109_TASLP_2015_2438542
crossref_primary_10_1109_TASLP_2017_2665341
crossref_primary_10_1162_NECO_a_00776
crossref_primary_10_1016_j_apacoust_2021_108509
crossref_primary_10_1016_j_specom_2017_02_003
crossref_primary_10_1109_TASLP_2023_3237172
crossref_primary_10_1109_TASLP_2019_2946043
crossref_primary_10_1109_TASLP_2014_2327294
crossref_primary_10_1109_ACCESS_2024_3410276
crossref_primary_10_1109_TASLP_2020_3013118
crossref_primary_10_1016_j_specom_2018_11_006
crossref_primary_10_1109_TASLP_2017_2750239
crossref_primary_10_1109_TASLP_2020_2975423
crossref_primary_10_1109_TASLP_2016_2647702
crossref_primary_10_1109_TASLP_2014_2304637
crossref_primary_10_3390_s23010284
crossref_primary_10_1186_s13636_021_00195_7
crossref_primary_10_1109_TASLP_2015_2479042
crossref_primary_10_1007_s10772_020_09767_y
crossref_primary_10_1016_j_neucom_2017_08_034
crossref_primary_10_1109_TASLP_2022_3155271
crossref_primary_10_1016_j_specom_2019_08_001
crossref_primary_10_1177_2331216515618903
crossref_primary_10_1587_transinf_2014EDP7130
crossref_primary_10_1109_TASLP_2021_3092838
crossref_primary_10_1109_TSP_2018_2876349
crossref_primary_10_1109_TASLP_2017_2780993
crossref_primary_10_3390_s17102224
crossref_primary_10_1109_MSP_2013_2297440
crossref_primary_10_1016_j_csl_2016_11_007
crossref_primary_10_1109_TASLP_2023_3334101
crossref_primary_10_1109_TASLP_2021_3079815
crossref_primary_10_1109_TASLP_2021_3091845
crossref_primary_10_1109_TASLP_2017_2738438
Cites_doi 10.1109/72.761722
10.1109/TASL.2010.2102754
10.1109/TASL.2011.2118205
10.1214/aoms/1177729893
10.1109/ICASSP.2012.6287829
10.1121/1.392786
10.1109/TASL.2010.2051355
10.1111/j.2517-6161.1994.tb01978.x
10.1109/ICASSP.1995.479394
10.1016/j.specom.2007.02.001
10.1109/89.622565
10.1109/TSP.2004.828896
10.1109/97.988717
10.1109/TASL.2010.2090519
10.1109/TASSP.1984.1164453
10.1109/TASL.2009.2025790
10.1109/89.928915
10.1002/0471221104
10.1109/ICASSP.2010.5495106
10.1006/csla.1995.0010
10.1109/ASPAA.2007.4393012
10.1250/ast.22.149
10.1007/978-3-662-04619-7_8
10.1016/S0167-6393(97)00061-7
10.1111/1467-9868.00210
10.1109/78.934132
10.1155/2008/784296
10.1109/TASL.2011.2164527
10.1162/neco.1995.7.6.1129
10.1109/TSA.2005.858005
10.1109/TASL.2009.2016395
10.1109/ICASSP.2010.5495994
10.1109/ICASSP.1996.543199
10.1109/TASL.2009.2020891
10.1201/9781420015836
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TASL.2013.2263137
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Statistics
EISSN 1558-7924
EndPage 1928
ExternalDocumentID 10_1109_TASL_2013_2263137
27812361
6516079
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
AETIX
ALMA_UNASSIGNED_HOLDINGS
B-7
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RIG
RNS
ATWAV
IPNFZ
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c422t-ed387ff0d6214089f8d7a7ccbf5f40fc92cdb25b95328e896584a64ad4a9ef833
IEDL.DBID RIE
ISSN 1558-7916
IngestDate Fri Aug 16 23:12:52 EDT 2024
Fri Aug 23 03:24:28 EDT 2024
Tue Sep 20 22:33:42 EDT 2022
Wed Jun 26 19:28:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Second order
Multichannel recording
Parameter estimation
Source separation
Noise reduction
Signal estimation
Blind source separation
Background noise
Mean square error
Multichannel filter
Wiener filter
Audio signal
Acoustic noise
Speech enhancement
minimum variance distortionless response
Signal detection
Additive noise
microphone arrays
Order statistic
Statistical method
Minimal variance
Posterior probability
Vocal signal
Linear filter
minimum-mean-square error
Multiple channel
Speech processing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-ed387ff0d6214089f8d7a7ccbf5f40fc92cdb25b95328e896584a64ad4a9ef833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660076758
PQPubID 23500
PageCount 16
ParticipantIDs ieee_primary_6516079
proquest_miscellaneous_1660076758
pascalfrancis_primary_27812361
crossref_primary_10_1109_TASL_2013_2263137
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway, NJ
PublicationPlace_xml – name: Piscataway, NJ
PublicationTitle IEEE transactions on audio, speech, and language processing
PublicationTitleAbbrev TASL
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref15
rennie (ref38) 2010; 27
ref14
ref11
ref10
ngo (ref12) 2008
ref16
ref19
sawada (ref21) 2005
nakatani (ref13) 2011
hori (ref49) 2004
(ref41) 0
ref46
ref48
ref47
ref44
ref43
(ref50) 0
ref7
benesty (ref8) 2008
ref9
ref3
ref6
ref5
van trees (ref34) 2002
delcroix (ref18) 2011
kent (ref37) 1994; b
ref35
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
araki (ref26) 2009
furui (ref45) 2000
fisher (ref40) 1986
varga (ref42) 1992
ref24
ref23
ref25
ref20
ref22
burshtein (ref17) 2001; 49
loizou (ref4) 2007
ref28
ref27
o'grady (ref29) 2004
References_xml – ident: ref20
  doi: 10.1109/72.761722
– ident: ref25
  doi: 10.1109/TASL.2010.2102754
– ident: ref11
  doi: 10.1109/TASL.2011.2118205
– year: 0
  ident: ref50
– ident: ref35
  doi: 10.1214/aoms/1177729893
– start-page: -6s
  year: 2004
  ident: ref49
  article-title: NTT speech recognizer with outlook on the next generation: SOLON
  publication-title: Proc NTT Workshop Commun Scene Anal
  contributor:
    fullname: hori
– year: 2008
  ident: ref12
  article-title: Variable speech distortion weighted multichannel Wiener filter based on soft output voice activity detection for noise reduction in hearing aids
  publication-title: Proc IWAENC
  contributor:
    fullname: ngo
– ident: ref1
  doi: 10.1109/ICASSP.2012.6287829
– ident: ref5
  doi: 10.1121/1.392786
– ident: ref28
  doi: 10.1109/TASL.2010.2051355
– year: 1992
  ident: ref42
  publication-title: ?The Noisex-92 study on the effect of additive noise on automatic speech recognition ? Tech Rep
  contributor:
    fullname: varga
– volume: b
  start-page: 285
  year: 1994
  ident: ref37
  article-title: The complex Bingham distribution and shape analysis
  publication-title: J R Statist Soc
  doi: 10.1111/j.2517-6161.1994.tb01978.x
  contributor:
    fullname: kent
– year: 2005
  ident: ref21
  publication-title: The Speech Enhancer
  contributor:
    fullname: sawada
– ident: ref47
  doi: 10.1109/ICASSP.1995.479394
– ident: ref7
  doi: 10.1016/j.specom.2007.02.001
– ident: ref16
  doi: 10.1109/89.622565
– ident: ref24
  doi: 10.1109/TSP.2004.828896
– volume: 27
  start-page: 66
  year: 2010
  ident: ref38
  article-title: Single channel multi-talker speech recognition: Graphical modeling approaches
  publication-title: IEEE Signal Process Mag
  contributor:
    fullname: rennie
– ident: ref15
  doi: 10.1109/97.988717
– start-page: 430
  year: 2004
  ident: ref29
  article-title: Soft-LOST: EM on a mixture of oriented lines
  publication-title: Proc ICA
  contributor:
    fullname: o'grady
– ident: ref10
  doi: 10.1109/TASL.2010.2090519
– ident: ref2
  doi: 10.1109/TASSP.1984.1164453
– start-page: 12
  year: 2011
  ident: ref18
  article-title: Speech recognition in the presence of highly non-stationary noise based on spatial, spectral and temporal speech/noise modeling combined with dynamic variance adapatation
  publication-title: Proc CHiME Workshop
  contributor:
    fullname: delcroix
– start-page: 93
  year: 1986
  ident: ref40
  article-title: The DARPA speech recognition research database: Specifications and status
  publication-title: Proc DARPA Speech Recognition Workshop
  contributor:
    fullname: fisher
– ident: ref9
  doi: 10.1109/TASL.2009.2025790
– ident: ref14
  doi: 10.1109/89.928915
– year: 2002
  ident: ref34
  publication-title: Detection Estimation and Modulation Theory Part IV Optimum Array Processing
  doi: 10.1002/0471221104
  contributor:
    fullname: van trees
– ident: ref46
  doi: 10.1109/ICASSP.2010.5495106
– ident: ref48
  doi: 10.1006/csla.1995.0010
– ident: ref27
  doi: 10.1109/ASPAA.2007.4393012
– year: 0
  ident: ref41
– ident: ref23
  doi: 10.1250/ast.22.149
– ident: ref32
  doi: 10.1007/978-3-662-04619-7_8
– ident: ref39
  doi: 10.1016/S0167-6393(97)00061-7
– ident: ref36
  doi: 10.1111/1467-9868.00210
– ident: ref6
  doi: 10.1109/78.934132
– start-page: 244
  year: 2000
  ident: ref45
  article-title: A Japanese national project on spontaneous speech corpus and processing technology
  publication-title: Proc ISCA ASR
  contributor:
    fullname: furui
– ident: ref30
  doi: 10.1155/2008/784296
– ident: ref33
  doi: 10.1109/TASL.2011.2164527
– ident: ref19
  doi: 10.1162/neco.1995.7.6.1129
– ident: ref43
  doi: 10.1109/TSA.2005.858005
– volume: 49
  start-page: 1614
  year: 2001
  ident: ref17
  article-title: Speech enhancement using a mixture-maximum model
  publication-title: IEEE Trans Signal Process
  contributor:
    fullname: burshtein
– year: 2008
  ident: ref8
  publication-title: Microphone Array Signal Processing
  contributor:
    fullname: benesty
– ident: ref22
  doi: 10.1109/TASL.2009.2016395
– ident: ref31
  doi: 10.1109/ICASSP.2010.5495994
– start-page: 1785
  year: 2011
  ident: ref13
  article-title: Reduction of highly nonstationary ambient noise by integrating spectral and locational characteristics of speech and noise for robust ASR
  publication-title: Proc ISCA Interspeech
  contributor:
    fullname: nakatani
– ident: ref3
  doi: 10.1109/ICASSP.1996.543199
– ident: ref44
  doi: 10.1109/TASL.2009.2020891
– start-page: 742
  year: 2009
  ident: ref26
  article-title: Stereo source separation and source counting with MAP estimation with Dirichlet prior considering spatial aliasing problem
  publication-title: Proc ICA
  contributor:
    fullname: araki
– year: 2007
  ident: ref4
  publication-title: Speech Enhancement Theory and Practice
  doi: 10.1201/9781420015836
  contributor:
    fullname: loizou
SSID ssj0043641
Score 2.4575415
Snippet We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1913
SubjectTerms Applied sciences
Blind source separation
Detection, estimation, filtering, equalization, prediction
Estimation
Exact sciences and technology
Information, signal and communications theory
Masking
Mathematical models
Maximization
microphone arrays
Microphones
minimum variance distortionless response
minimum-mean-square error
Multichannel
Noise
Noise measurement
Noise reduction
Separation
Signal and communications theory
Signal processing
Signal, noise
Spectra
Speech
Speech processing
Statistics
Telecommunications and information theory
Vectors
Wiener filter
Title A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction
URI https://ieeexplore.ieee.org/document/6516079
https://search.proquest.com/docview/1660076758
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI0YNw58I4YABYkToluWNG1yHLCJA9uBDolblTaOQELtxLb_T5x2Ewgu3Ko2iiq_JLZj-5mQa6-Ri5RZGTHBXRRDwiPNHURGa2ldEhsZamEes3T6qh5GSJNzu6mFAYCQfAY9fAyxfFuXK7wq6ycS6dB0h3RSrZparfWpG4skbrhRpUIKxqSNYA6Y7s-G2RMmcYmetzXEAFuef9NBoakKpkSahZeKa9pZ_DqZg7oZ7_3vR_fJbmtW0mGzDg7IFlSHZOcb2eARmQ1pqLbFUt8KPuhkko2iO6_ELB2vM7SoN2FpNgco32gWrvVpBg07eF1RU1k6rd8XQJ-R8BXfHZOX8Wh2_xi1PRWiMuZ8GYEVKnWO2YR710ppp2xq0rIsnHQxc6XmpS24LLQUXIFCapjYeMhsbDQ4JcQJ2a7qCk4JlaAHhQJvMxikBfPDtMcdmPCzM5OyLrlZSzmfN9QZeXA5mM4RkhwhyVtIuuQIxbgZ2EqwSy5_4LL5zlMVeGO65GoNVO43BkY7TAX1apEPEqTeR3_o7O-5z8n28nMFF6SzsKvLsJq-AHr2yOA
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x8QB7YMBAFNgwEk-IbK5_JPZjN1oV0faBFIm3yInPGhJKpnX9__E5aTUEL7xFiWVF99m-O9_ddwAfokauC-51xqUImcJcZFYEzJy12odcOZ1qYeZlsfphPk-JJufTvhYGEVPyGZ7TY4rl-67Z0lXZRa6JDs0ewEOtirzoq7V2566SuerZUbUhEsZ8iGGOub1YT8oFpXHJ82htyDE1Pb-nhVJbFUqKdJsol9A3tPjrbE4KZ3b8f7_6FJ4MhiWb9CvhGTzA9jkc3aMbPIH1hKV6Wyr2bfEXWy7LaXYZ1Zhns12OFotGLCtvEJtrVqaLfVZizw_etcy1nq26nxtk34jyld69gO-z6fpqng1dFbJGCXGXoZemCIH7XETnythgfOGKpqmDDoqHxorG10LXVkth0BA5jHIRNK-cxWCkfAmHbdfiK2Aa7bg2GK0GR8RgcZiNyCOXcXbuCj6CjzspVzc9eUaVnA5uK4KkIkiqAZIRnJAY9wMHCY7g7A9c9t9FYRJzzAje74Cq4tageIdrsdtuqnFO5PvkEb3-99zv4NF8vVxUiy-rr2_gsUidLih97C0c3t1u8RQONn57lpbZb4HSzkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multichannel+MMSE-Based+Framework+for+Speech+Source+Separation+and+Noise+Reduction&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Souden%2C+Mehrez&rft.au=Araki%2C+Shoko&rft.au=Kinoshita%2C+Keisuke&rft.au=Nakatani%2C+Tomohiro&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1558-7916&rft.eissn=1558-7924&rft.volume=21&rft.issue=9&rft.spage=1913&rft.epage=1928&rft_id=info:doi/10.1109%2FTASL.2013.2263137&rft.externalDocID=6516079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon