Robust evaluation of deep learning-based representation methods for survival and gene essentiality prediction on bulk RNA-seq data

Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 17064 - 15
Main Authors: Gross, Baptiste, Dauvin, Antonin, Cabeli, Vincent, Kmetzsch, Virgilio, El Khoury, Jean, Dissez, Gaëtan, Ouardini, Khalil, Grouard, Simon, Davi, Alec, Loeb, Regis, Esposito, Christian, Hulot, Louis, Ghermi, Ridouane, Blum, Michael, Darhi, Yannis, Durand, Eric Y., Romagnoni, Alberto
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 24-07-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.
AbstractList Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.
Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.
Abstract Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.
ArticleNumber 17064
Author El Khoury, Jean
Cabeli, Vincent
Ouardini, Khalil
Romagnoni, Alberto
Blum, Michael
Kmetzsch, Virgilio
Davi, Alec
Dauvin, Antonin
Dissez, Gaëtan
Durand, Eric Y.
Esposito, Christian
Ghermi, Ridouane
Gross, Baptiste
Hulot, Louis
Loeb, Regis
Grouard, Simon
Darhi, Yannis
Author_xml – sequence: 1
  givenname: Baptiste
  surname: Gross
  fullname: Gross, Baptiste
  email: baptiste.gross@owkin.com
  organization: Owkin, Inc
– sequence: 2
  givenname: Antonin
  surname: Dauvin
  fullname: Dauvin, Antonin
  organization: Owkin, Inc
– sequence: 3
  givenname: Vincent
  surname: Cabeli
  fullname: Cabeli, Vincent
  organization: Owkin, Inc
– sequence: 4
  givenname: Virgilio
  surname: Kmetzsch
  fullname: Kmetzsch, Virgilio
  organization: Owkin, Inc
– sequence: 5
  givenname: Jean
  surname: El Khoury
  fullname: El Khoury, Jean
  organization: Owkin, Inc
– sequence: 6
  givenname: Gaëtan
  surname: Dissez
  fullname: Dissez, Gaëtan
  organization: Owkin, Inc
– sequence: 7
  givenname: Khalil
  surname: Ouardini
  fullname: Ouardini, Khalil
  organization: Owkin, Inc
– sequence: 8
  givenname: Simon
  surname: Grouard
  fullname: Grouard, Simon
  organization: Owkin, Inc
– sequence: 9
  givenname: Alec
  surname: Davi
  fullname: Davi, Alec
  organization: Owkin, Inc
– sequence: 10
  givenname: Regis
  surname: Loeb
  fullname: Loeb, Regis
  organization: Owkin, Inc
– sequence: 11
  givenname: Christian
  surname: Esposito
  fullname: Esposito, Christian
  organization: Owkin, Inc
– sequence: 12
  givenname: Louis
  surname: Hulot
  fullname: Hulot, Louis
  organization: Owkin, Inc
– sequence: 13
  givenname: Ridouane
  surname: Ghermi
  fullname: Ghermi, Ridouane
  organization: Owkin, Inc
– sequence: 14
  givenname: Michael
  surname: Blum
  fullname: Blum, Michael
  organization: Owkin, Inc
– sequence: 15
  givenname: Yannis
  surname: Darhi
  fullname: Darhi, Yannis
  organization: Owkin, Inc
– sequence: 16
  givenname: Eric Y.
  surname: Durand
  fullname: Durand, Eric Y.
  organization: Owkin, Inc
– sequence: 17
  givenname: Alberto
  surname: Romagnoni
  fullname: Romagnoni, Alberto
  organization: Owkin, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39048590$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFCEYhyemxtbaL-DBkHjxMsrfYTiZpmm1SaNJo2fCwDtT1lnYwswmvfrJy-7U2nqQCwSe94GX_F5XByEGqKq3BH8kmLWfMidCtTWmvG4kpqxuX1RHFHNRU0bpwZP1YXWS8wqXIajiRL2qDpnCvBUKH1W_r2M35wnB1oyzmXwMKPbIAWzQCCYFH4a6MxkcSrBJkCFMC7WG6Sa6jPqYUJ7T1hcBMsGhAQIgyDvSm9FPd6jUOW8Xd0DdPP5C199O6wy3yJnJvKle9mbMcPIwH1c_L85_nH2tr75_uTw7vaotp3SqKTBMrADeKap275dctrg3xFksJJBGWtkYqTpFJJFCCiIYk5iVjhUQg9lxdbl4XTQrvUl-bdKdjsbr_UZMgzZp8nYErZq2Fw0FCsZwyUyLLXaNkI3rKbeCF9fnxbWZuzU4W5pNZnwmfX4S_I0e4lYTQhsluSqGDw-GFG9nyJNe-2xhHE2AOGfNcMtlIzkXBX3_D7qKcwrlr_YUwS1VO4oulE0x5wT942sI1rvI6CUyukRG7yOj21L07mkfjyV_AlIAtgC5HIUB0t-7_6O9B7nAzhw
Cites_doi 10.1016/j.isci.2021.103200
10.1158/1078-0432.CCR-17-0853
10.1101/2023.10.03.560661
10.1002/sim.4780140108
10.1101/2021.07.26.453730v1
10.1126/sciadv.abh1275
10.1002/prot.26237
10.1038/s41586-023-06139-9
10.3389/fimmu.2022.914001
10.48550/ARXIV.2207.08815
10.48550/ARXIV.1712.04621
10.3390/cancers13123047
10.1038/s41467-020-20430-7
10.1126/science.1127647
10.1038/s42256-022-00541-0
10.1007/978-1-0716-3195-9_20
10.1038/s41598-021-92799-4
10.1093/bioinformatics/btr260
10.1186/s12920-020-0686-1
10.1038/s41375-020-0742-z
10.1093/bioinformatics/btz158
10.1186/s12859-020-3427-8
10.1101/2023.07.21.23292757
10.48550/ARXIV.1312.6114
10.1186/s12859-022-04609-x
10.1186/s13059-021-02533-6
10.1101/2023.04.30.538439
10.1016/j.isci.2023.106536
10.1186/s12920-023-01446-6
10.1371/journal.pcbi.1011476
10.1002/cem.2929
10.1016/j.cels.2017.09.004
10.1038/s41467-022-34277-7
10.1093/nar/gkx750
10.1093/bib/bbab315
10.1038/s41467-018-03751-6
10.1101/278739
10.1038/s41592-018-0229-2
10.1038/s43018-020-00169-2
10.1101/2023.09.13.557538
10.48550/ARXIV.1907.10902
10.1101/720243
10.1109/TPAMI.2013.50
10.1038/s41576-021-00434-9
10.1016/j.cell.2018.02.052
10.1186/s12874-018-0482-1
10.1182/blood-2023-186222
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1093/bioinformatics/btae020
10.1007/s00432-023-05000-w
10.1023/A:1024068626366
10.1101/2021.03.02.433454
10.1038/nature11003
10.1016/j.ymeth.2021.01.004
10.1038/s41576-019-0150-2
10.1109/CVPR.2009.5206848
10.3929/ETHZ-B-000565782
10.18653/v1/N19-1423
10.1109/UBMK.2019.8907003
10.1109/CVPR42600.2020.00674
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-67023-8
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_968f562e2eaa473a80c0d6576df24c54
10_1038_s41598_024_67023_8
39048590
Genre Journal Article
GrantInformation_xml – fundername: Owkin, Inc, United States
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c422t-2e301c5e4b929904874780fa1dc057e167c76a79b9171757515337034199e1a03
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:15:44 EDT 2024
Tue Sep 17 21:27:50 EDT 2024
Sat Oct 26 04:29:14 EDT 2024
Thu Oct 10 22:15:17 EDT 2024
Fri Aug 23 04:32:35 EDT 2024
Sat Nov 02 12:31:02 EDT 2024
Fri Oct 11 20:56:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Representation learning
Deep learning
Survival prediction
Benchmarking
RNAseq
Gene essentiality
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-2e301c5e4b929904874780fa1dc057e167c76a79b9171757515337034199e1a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269749/
PMID 39048590
PQID 3084108295
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_968f562e2eaa473a80c0d6576df24c54
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11269749
proquest_miscellaneous_3084767445
proquest_journals_3084108295
crossref_primary_10_1038_s41598_024_67023_8
pubmed_primary_39048590
springer_journals_10_1038_s41598_024_67023_8
PublicationCentury 2000
PublicationDate 2024-07-24
PublicationDateYYYYMMDD 2024-07-24
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chen (CR20) 2022; 13
Rampášek, Hidru, Smirnov, Haibe-Kains, Goldenberg (CR22) 2019; 35
Chaudhary, Poirion, Lu, Garmire (CR7) 2018; 24
Fang, Zheng, Li (CR39) 2024
CR34
Smith (CR29) 2020; 21
Whalen, Schreiber, Noble, Pollard (CR33) 2021
He, Liu, Wu, Xie (CR19) 2022; 4
Chen (CR13) 2022; 13
Althubaiti (CR36) 2021
Vale-Silva, Rohr (CR2) 2021; 11
Filiot (CR44) 2023
Lopez, Regier, Cole, Jordan, Yosef (CR38) 2018; 15
Perez, Wang (CR61) 2017
Chiu (CR3) 2021; 7
Kingma, Welling (CR59) 2013
Paton (CR55) 2023
CR6
Akiba, Sano, Yanase, Ohta, Koyama (CR56) 2019
CR5
Shen (CR23) 2021; 24
Theodoris (CR26) 2023; 618
Wei (CR14) 2023; 149
Zhang, Xing, Sun, Guo (CR37) 2021; 13
Hinton, Salakhutdinov (CR57) 2006; 313
De Weerd (CR17) 2023
Katzman (CR63) 2018; 18
CR41
CR40
Liu (CR12) 2018; 32
(CR43) 2020; 34
Wilks (CR48) 2021; 22
Dincer, Celik, Hiranuma, Lee (CR21) 2018
Cantini (CR30) 2021; 12
Dempster (CR50) 2019
Stark, Grzelak, Hadfield (CR1) 2019; 20
Li (CR16) 2023; 19
Faraggi, Simon (CR62) 1995; 14
Shen (CR28) 2023; 26
Sauta (CR15) 2023; 142
Liberzon (CR51) 2011; 27
CR58
CR11
Kryshtafovych, Schwede, Topf, Fidelis, Moult (CR35) 2021; 89
Bengio, Grandvalet, Thrun, Saul, Schölkopf (CR31) 2003
Huang (CR42) 2020; 13
Li (CR25) 2017; 45
Grinsztajn, Oyallon, Varoquaux (CR8) 2022
Gönen (CR10) 2017; 5
Nadeau, Bengio (CR32) 2003; 52
Ma (CR53) 2021; 2
Barretina (CR47) 2012; 483
Ramirez (CR60) 2021; 192
Withnell, Zhang, Sun, Guo (CR18) 2021; 22
Hou (CR54) 2022; 23
Bengio, Courville, Vincent (CR4) 2013; 35
Han (CR24) 2021
Liu (CR9) 2018; 173
Cui (CR27) 2023
Lachmann (CR46) 2018; 9
Harrell, Lee, Mark (CR49) 1996; 15
Rosenski, Shifman, Kaplan (CR52) 2023; 16
Varoquaux, Colliot, Colliot (CR45) 2023
J Ma (67023_CR53) 2021; 2
L Perez (67023_CR61) 2017
FE Harrell (67023_CR49) 1996; 15
L Cantini (67023_CR30) 2021; 12
A Lachmann (67023_CR46) 2018; 9
G Varoquaux (67023_CR45) 2023
L Rampášek (67023_CR22) 2019; 35
E Sauta (67023_CR15) 2023; 142
K Chaudhary (67023_CR7) 2018; 24
J Chen (67023_CR20) 2022; 13
Q Li (67023_CR16) 2023; 19
AM Smith (67023_CR29) 2020; 21
JM Dempster (67023_CR50) 2019
LA Vale-Silva (67023_CR2) 2021; 11
67023_CR34
X Li (67023_CR25) 2017; 45
C Nadeau (67023_CR32) 2003; 52
J Barretina (67023_CR47) 2012; 483
A Kryshtafovych (67023_CR35) 2021; 89
E Withnell (67023_CR18) 2021; 22
Y-C Chiu (67023_CR3) 2021; 7
67023_CR6
H Cui (67023_CR27) 2023
V Paton (67023_CR55) 2023
H Shen (67023_CR23) 2021; 24
Y Bengio (67023_CR4) 2013; 35
Z Huang (67023_CR42) 2020; 13
Q Wei (67023_CR14) 2023; 149
DP Kingma (67023_CR59) 2013
R Stark (67023_CR1) 2019; 20
C Wilks (67023_CR48) 2021; 22
67023_CR41
S Althubaiti (67023_CR36) 2021
67023_CR40
67023_CR5
J Liu (67023_CR9) 2018; 173
J Katzman (67023_CR63) 2018; 18
Z Fang (67023_CR39) 2024
M Gönen (67023_CR10) 2017; 5
HA De Weerd (67023_CR17) 2023
S Whalen (67023_CR33) 2021
J Hou (67023_CR54) 2022; 23
A Liberzon (67023_CR51) 2011; 27
L Grinsztajn (67023_CR8) 2022
67023_CR11
R Lopez (67023_CR38) 2018; 15
H Shen (67023_CR28) 2023; 26
GE Hinton (67023_CR57) 2006; 313
67023_CR58
X Zhang (67023_CR37) 2021; 13
Multiple Myeloma DREAM Consortium (67023_CR43) 2020; 34
D Faraggi (67023_CR62) 1995; 14
Y Liu (67023_CR12) 2018; 32
CV Theodoris (67023_CR26) 2023; 618
J Rosenski (67023_CR52) 2023; 16
R Ramirez (67023_CR60) 2021; 192
Y Bengio (67023_CR31) 2003
AB Dincer (67023_CR21) 2018
A Filiot (67023_CR44) 2023
W Han (67023_CR24) 2021
R Chen (67023_CR13) 2022; 13
T Akiba (67023_CR56) 2019
D He (67023_CR19) 2022; 4
References_xml – volume: 24
  start-page: 103200
  year: 2021
  ident: CR23
  article-title: Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103200
  contributor:
    fullname: Shen
– volume: 24
  start-page: 1248
  year: 2018
  end-page: 1259
  ident: CR7
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
  contributor:
    fullname: Garmire
– year: 2023
  ident: CR17
  article-title: Representational learning from healthy multi-tissue human RNA-Seq data such that latent space arithmetics extracts disease modules
  publication-title: bioRxiv
  doi: 10.1101/2023.10.03.560661
  contributor:
    fullname: De Weerd
– volume: 14
  start-page: 73
  year: 1995
  end-page: 82
  ident: CR62
  article-title: A neural network model for survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140108
  contributor:
    fullname: Simon
– year: 2021
  ident: CR24
  article-title: Self-supervised contrastive learning for integrative single cell RNA-Seq data analysis
  publication-title: bioRxiv
  doi: 10.1101/2021.07.26.453730v1
  contributor:
    fullname: Han
– volume: 7
  start-page: eabh1275
  year: 2021
  ident: CR3
  article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh1275
  contributor:
    fullname: Chiu
– volume: 89
  start-page: 1607
  year: 2021
  end-page: 1617
  ident: CR35
  article-title: Critical assessment of methods of protein structure prediction (CASP)—Round XIV
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.26237
  contributor:
    fullname: Moult
– volume: 618
  start-page: 616
  year: 2023
  end-page: 624
  ident: CR26
  article-title: Transfer learning enables predictions in network biology
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
  contributor:
    fullname: Theodoris
– ident: CR58
– volume: 13
  start-page: 914001
  year: 2022
  ident: CR13
  article-title: Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.914001
  contributor:
    fullname: Chen
– year: 2022
  ident: CR8
  article-title: Why do tree-based models still outperform deep learning on tabular data?
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.2207.08815
  contributor:
    fullname: Varoquaux
– year: 2017
  ident: CR61
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: Comput. Vis. Pattern Recognit.
  doi: 10.48550/ARXIV.1712.04621
  contributor:
    fullname: Wang
– volume: 13
  start-page: 3047
  year: 2021
  ident: CR37
  article-title: OmiEmbed: A unified multi-task deep learning framework for multi-omics data
  publication-title: Cancers
  doi: 10.3390/cancers13123047
  contributor:
    fullname: Guo
– volume: 12
  start-page: 124
  year: 2021
  ident: CR30
  article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20430-7
  contributor:
    fullname: Cantini
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR57
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: Salakhutdinov
– volume: 4
  start-page: 879
  year: 2022
  end-page: 892
  ident: CR19
  article-title: A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00541-0
  contributor:
    fullname: Xie
– start-page: 601
  year: 2023
  end-page: 630
  ident: CR45
  article-title: Evaluating machine learning models and their diagnostic value
  publication-title: Machine Learning for Brain Disorders
  doi: 10.1007/978-1-0716-3195-9_20
  contributor:
    fullname: Colliot
– volume: 11
  start-page: 13505
  year: 2021
  ident: CR2
  article-title: Long-term cancer survival prediction using multimodal deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92799-4
  contributor:
    fullname: Rohr
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: CR51
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
  contributor:
    fullname: Liberzon
– volume: 13
  start-page: 41
  year: 2020
  ident: CR42
  article-title: Deep learning-based cancer survival prognosis from RNA-seq data: Approaches and evaluations
  publication-title: BMC Med. Genom.
  doi: 10.1186/s12920-020-0686-1
  contributor:
    fullname: Huang
– volume: 34
  start-page: 1866
  year: 2020
  end-page: 1874
  ident: CR43
  article-title: Multiple myeloma DREAM challenge reveals epigenetic regulator PHF19 as marker of aggressive disease
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0742-z
– volume: 35
  start-page: 3743
  year: 2019
  end-page: 3751
  ident: CR22
  article-title: Dr.VAE: Improving drug response prediction via modeling of drug perturbation effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz158
  contributor:
    fullname: Goldenberg
– volume: 21
  start-page: 119
  year: 2020
  ident: CR29
  article-title: Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-3427-8
  contributor:
    fullname: Smith
– year: 2023
  ident: CR44
  article-title: Scaling self-supervised learning for histopathology with masked image modeling
  publication-title: medRxiv
  doi: 10.1101/2023.07.21.23292757
  contributor:
    fullname: Filiot
– ident: CR11
– year: 2013
  ident: CR59
  article-title: Auto-encoding variational Bayes
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.1312.6114
  contributor:
    fullname: Welling
– volume: 23
  start-page: 81
  year: 2022
  ident: CR54
  article-title: Distance correlation application to gene co-expression network analysis
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-022-04609-x
  contributor:
    fullname: Hou
– ident: CR5
– volume: 22
  start-page: 323
  year: 2021
  ident: CR48
  article-title: recount3: Summaries and queries for large-scale RNA-seq expression and splicing
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02533-6
  contributor:
    fullname: Wilks
– year: 2023
  ident: CR27
  article-title: scGPT: Towards building a foundation model for single-cell multi-omics using generative AI
  publication-title: bioRxiv
  doi: 10.1101/2023.04.30.538439
  contributor:
    fullname: Cui
– volume: 26
  start-page: 106536
  year: 2023
  ident: CR28
  article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering
  publication-title: iScience
  doi: 10.1016/j.isci.2023.106536
  contributor:
    fullname: Shen
– volume: 16
  start-page: 26
  year: 2023
  ident: CR52
  article-title: Predicting gene knockout effects from expression data
  publication-title: BMC Med. Genom.
  doi: 10.1186/s12920-023-01446-6
  contributor:
    fullname: Kaplan
– volume: 19
  year: 2023
  ident: CR16
  article-title: XA4C: eXplainable representation learning via autoencoders revealing critical genes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1011476
  contributor:
    fullname: Li
– volume: 32
  year: 2018
  ident: CR12
  article-title: Post-modified non-negative matrix factorization for deconvoluting the gene expression profiles of specific cell types from heterogeneous clinical samples based on RNA-sequencing data
  publication-title: J. Chemom.
  doi: 10.1002/cem.2929
  contributor:
    fullname: Liu
– volume: 5
  start-page: 485
  year: 2017
  end-page: 497.e3
  ident: CR10
  article-title: A community challenge for inferring genetic predictors of gene essentialities through analysis of a functional screen of cancer cell lines
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.09.004
  contributor:
    fullname: Gönen
– volume: 13
  start-page: 6494
  year: 2022
  ident: CR20
  article-title: Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34277-7
  contributor:
    fullname: Chen
– volume: 45
  year: 2017
  ident: CR25
  article-title: Network embedding-based representation learning for single cell RNA-seq data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx750
  contributor:
    fullname: Li
– volume: 22
  start-page: bbab315
  year: 2021
  ident: CR18
  article-title: XOmiVAE: An interpretable deep learning model for cancer classification using high-dimensional omics data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab315
  contributor:
    fullname: Guo
– volume: 9
  start-page: 1366
  year: 2018
  ident: CR46
  article-title: Massive mining of publicly available RNA-seq data from human and mouse
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03751-6
  contributor:
    fullname: Lachmann
– ident: CR6
– year: 2018
  ident: CR21
  article-title: DeepProfile: Deep learning of cancer molecular profiles for precision medicine
  publication-title: bioRxiv
  doi: 10.1101/278739
  contributor:
    fullname: Lee
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: CR38
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
  contributor:
    fullname: Yosef
– ident: CR40
– volume: 2
  start-page: 233
  year: 2021
  end-page: 244
  ident: CR53
  article-title: Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-00169-2
  contributor:
    fullname: Ma
– year: 2023
  ident: CR55
  article-title: Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results
  publication-title: bioRxiv
  doi: 10.1101/2023.09.13.557538
  contributor:
    fullname: Paton
– year: 2019
  ident: CR56
  article-title: Optuna: A next-generation hyperparameter optimization framework
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.1907.10902
  contributor:
    fullname: Koyama
– year: 2019
  ident: CR50
  article-title: Extracting biological insights from the project Achilles genome-scale CRISPR screens in cancer cell lines
  publication-title: bioRxiv
  doi: 10.1101/720243
  contributor:
    fullname: Dempster
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: CR4
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
  contributor:
    fullname: Vincent
– year: 2021
  ident: CR33
  article-title: Navigating the pitfalls of applying machine learning in genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00434-9
  contributor:
    fullname: Pollard
– volume: 173
  start-page: 400
  year: 2018
  end-page: 416.e11
  ident: CR9
  article-title: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
  contributor:
    fullname: Liu
– volume: 18
  start-page: 24
  year: 2018
  ident: CR63
  article-title: DeepSurv: Personalized treatment recommender system using a cox proportional hazards deep neural network
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0482-1
  contributor:
    fullname: Katzman
– volume: 142
  start-page: 1863
  year: 2023
  end-page: 1863
  ident: CR15
  article-title: Combining gene mutation with transcriptomic data improves outcome prediction in myelodysplastic syndromes
  publication-title: Blood
  doi: 10.1182/blood-2023-186222
  contributor:
    fullname: Sauta
– volume: 15
  start-page: 361
  year: 1996
  end-page: 387
  ident: CR49
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
  contributor:
    fullname: Mark
– ident: CR34
– year: 2024
  ident: CR39
  article-title: scMAE: A masked autoencoder for single-cell RNA-seq clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae020
  contributor:
    fullname: Li
– volume: 149
  start-page: 11351
  year: 2023
  end-page: 11368
  ident: CR14
  article-title: Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-023-05000-w
  contributor:
    fullname: Wei
– volume: 52
  start-page: 239
  year: 2003
  end-page: 281
  ident: CR32
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
  contributor:
    fullname: Bengio
– year: 2021
  ident: CR36
  article-title: DeepMOCCA: A pan-cancer prognostic model identifies personalized prognostic markers through graph attention and multi-omics data integration
  publication-title: bioRxiv
  doi: 10.1101/2021.03.02.433454
  contributor:
    fullname: Althubaiti
– ident: CR41
– volume: 483
  start-page: 603
  year: 2012
  end-page: 607
  ident: CR47
  article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
  contributor:
    fullname: Barretina
– volume: 192
  start-page: 120
  year: 2021
  end-page: 130
  ident: CR60
  article-title: Prediction and interpretation of cancer survival using graph convolution neural networks
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.01.004
  contributor:
    fullname: Ramirez
– volume: 20
  start-page: 631
  year: 2019
  end-page: 656
  ident: CR1
  article-title: RNA sequencing: The teenage years
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0150-2
  contributor:
    fullname: Hadfield
– year: 2003
  ident: CR31
  article-title: No unbiased estimator of the variance of K-fold cross-validation
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Schölkopf
– year: 2018
  ident: 67023_CR21
  publication-title: bioRxiv
  doi: 10.1101/278739
  contributor:
    fullname: AB Dincer
– ident: 67023_CR34
  doi: 10.1109/CVPR.2009.5206848
– year: 2017
  ident: 67023_CR61
  publication-title: Comput. Vis. Pattern Recognit.
  doi: 10.48550/ARXIV.1712.04621
  contributor:
    fullname: L Perez
– volume: 173
  start-page: 400
  year: 2018
  ident: 67023_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
  contributor:
    fullname: J Liu
– volume: 24
  start-page: 103200
  year: 2021
  ident: 67023_CR23
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103200
  contributor:
    fullname: H Shen
– volume: 52
  start-page: 239
  year: 2003
  ident: 67023_CR32
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
  contributor:
    fullname: C Nadeau
– year: 2021
  ident: 67023_CR33
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00434-9
  contributor:
    fullname: S Whalen
– ident: 67023_CR40
– volume: 13
  start-page: 914001
  year: 2022
  ident: 67023_CR13
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.914001
  contributor:
    fullname: R Chen
– year: 2023
  ident: 67023_CR44
  publication-title: medRxiv
  doi: 10.1101/2023.07.21.23292757
  contributor:
    fullname: A Filiot
– volume: 26
  start-page: 106536
  year: 2023
  ident: 67023_CR28
  publication-title: iScience
  doi: 10.1016/j.isci.2023.106536
  contributor:
    fullname: H Shen
– volume: 89
  start-page: 1607
  year: 2021
  ident: 67023_CR35
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.26237
  contributor:
    fullname: A Kryshtafovych
– year: 2024
  ident: 67023_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae020
  contributor:
    fullname: Z Fang
– volume: 13
  start-page: 3047
  year: 2021
  ident: 67023_CR37
  publication-title: Cancers
  doi: 10.3390/cancers13123047
  contributor:
    fullname: X Zhang
– volume: 34
  start-page: 1866
  year: 2020
  ident: 67023_CR43
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0742-z
  contributor:
    fullname: Multiple Myeloma DREAM Consortium
– volume: 4
  start-page: 879
  year: 2022
  ident: 67023_CR19
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00541-0
  contributor:
    fullname: D He
– volume: 21
  start-page: 119
  year: 2020
  ident: 67023_CR29
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-3427-8
  contributor:
    fullname: AM Smith
– volume: 142
  start-page: 1863
  year: 2023
  ident: 67023_CR15
  publication-title: Blood
  doi: 10.1182/blood-2023-186222
  contributor:
    fullname: E Sauta
– volume: 11
  start-page: 13505
  year: 2021
  ident: 67023_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92799-4
  contributor:
    fullname: LA Vale-Silva
– volume: 12
  start-page: 124
  year: 2021
  ident: 67023_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20430-7
  contributor:
    fullname: L Cantini
– volume: 483
  start-page: 603
  year: 2012
  ident: 67023_CR47
  publication-title: Nature
  doi: 10.1038/nature11003
  contributor:
    fullname: J Barretina
– ident: 67023_CR11
  doi: 10.3929/ETHZ-B-000565782
– ident: 67023_CR5
  doi: 10.18653/v1/N19-1423
– volume: 32
  year: 2018
  ident: 67023_CR12
  publication-title: J. Chemom.
  doi: 10.1002/cem.2929
  contributor:
    fullname: Y Liu
– volume: 9
  start-page: 1366
  year: 2018
  ident: 67023_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03751-6
  contributor:
    fullname: A Lachmann
– ident: 67023_CR41
  doi: 10.1109/UBMK.2019.8907003
– volume: 18
  start-page: 24
  year: 2018
  ident: 67023_CR63
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0482-1
  contributor:
    fullname: J Katzman
– volume: 149
  start-page: 11351
  year: 2023
  ident: 67023_CR14
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-023-05000-w
  contributor:
    fullname: Q Wei
– year: 2021
  ident: 67023_CR36
  publication-title: bioRxiv
  doi: 10.1101/2021.03.02.433454
  contributor:
    fullname: S Althubaiti
– volume: 24
  start-page: 1248
  year: 2018
  ident: 67023_CR7
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
  contributor:
    fullname: K Chaudhary
– volume: 15
  start-page: 361
  year: 1996
  ident: 67023_CR49
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
  contributor:
    fullname: FE Harrell
– volume: 23
  start-page: 81
  year: 2022
  ident: 67023_CR54
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-022-04609-x
  contributor:
    fullname: J Hou
– volume: 7
  start-page: eabh1275
  year: 2021
  ident: 67023_CR3
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh1275
  contributor:
    fullname: Y-C Chiu
– volume: 5
  start-page: 485
  year: 2017
  ident: 67023_CR10
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.09.004
  contributor:
    fullname: M Gönen
– volume: 22
  start-page: 323
  year: 2021
  ident: 67023_CR48
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02533-6
  contributor:
    fullname: C Wilks
– year: 2013
  ident: 67023_CR59
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.1312.6114
  contributor:
    fullname: DP Kingma
– volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: 67023_CR31
  contributor:
    fullname: Y Bengio
– volume: 13
  start-page: 41
  year: 2020
  ident: 67023_CR42
  publication-title: BMC Med. Genom.
  doi: 10.1186/s12920-020-0686-1
  contributor:
    fullname: Z Huang
– year: 2023
  ident: 67023_CR55
  publication-title: bioRxiv
  doi: 10.1101/2023.09.13.557538
  contributor:
    fullname: V Paton
– volume: 35
  start-page: 1798
  year: 2013
  ident: 67023_CR4
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
  contributor:
    fullname: Y Bengio
– volume: 19
  year: 2023
  ident: 67023_CR16
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1011476
  contributor:
    fullname: Q Li
– volume: 2
  start-page: 233
  year: 2021
  ident: 67023_CR53
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-00169-2
  contributor:
    fullname: J Ma
– start-page: 601
  volume-title: Machine Learning for Brain Disorders
  year: 2023
  ident: 67023_CR45
  doi: 10.1007/978-1-0716-3195-9_20
  contributor:
    fullname: G Varoquaux
– volume: 13
  start-page: 6494
  year: 2022
  ident: 67023_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34277-7
  contributor:
    fullname: J Chen
– volume: 192
  start-page: 120
  year: 2021
  ident: 67023_CR60
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.01.004
  contributor:
    fullname: R Ramirez
– volume: 618
  start-page: 616
  year: 2023
  ident: 67023_CR26
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
  contributor:
    fullname: CV Theodoris
– volume: 313
  start-page: 504
  year: 2006
  ident: 67023_CR57
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: GE Hinton
– year: 2022
  ident: 67023_CR8
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.2207.08815
  contributor:
    fullname: L Grinsztajn
– volume: 14
  start-page: 73
  year: 1995
  ident: 67023_CR62
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140108
  contributor:
    fullname: D Faraggi
– ident: 67023_CR58
– volume: 15
  start-page: 1053
  year: 2018
  ident: 67023_CR38
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
  contributor:
    fullname: R Lopez
– year: 2023
  ident: 67023_CR27
  publication-title: bioRxiv
  doi: 10.1101/2023.04.30.538439
  contributor:
    fullname: H Cui
– year: 2021
  ident: 67023_CR24
  publication-title: bioRxiv
  doi: 10.1101/2021.07.26.453730v1
  contributor:
    fullname: W Han
– year: 2019
  ident: 67023_CR50
  publication-title: bioRxiv
  doi: 10.1101/720243
  contributor:
    fullname: JM Dempster
– volume: 35
  start-page: 3743
  year: 2019
  ident: 67023_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz158
  contributor:
    fullname: L Rampášek
– volume: 20
  start-page: 631
  year: 2019
  ident: 67023_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0150-2
  contributor:
    fullname: R Stark
– volume: 16
  start-page: 26
  year: 2023
  ident: 67023_CR52
  publication-title: BMC Med. Genom.
  doi: 10.1186/s12920-023-01446-6
  contributor:
    fullname: J Rosenski
– year: 2019
  ident: 67023_CR56
  publication-title: Mach. Learn.
  doi: 10.48550/ARXIV.1907.10902
  contributor:
    fullname: T Akiba
– year: 2023
  ident: 67023_CR17
  publication-title: bioRxiv
  doi: 10.1101/2023.10.03.560661
  contributor:
    fullname: HA De Weerd
– volume: 22
  start-page: bbab315
  year: 2021
  ident: 67023_CR18
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab315
  contributor:
    fullname: E Withnell
– volume: 27
  start-page: 1739
  year: 2011
  ident: 67023_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
  contributor:
    fullname: A Liberzon
– ident: 67023_CR6
  doi: 10.1109/CVPR42600.2020.00674
– volume: 45
  year: 2017
  ident: 67023_CR25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx750
  contributor:
    fullname: X Li
SSID ssj0000529419
Score 2.4719877
Snippet Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding...
Abstract Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17064
SubjectTerms 631/114
631/114/1305
631/114/1314
631/114/2163
631/67
Benchmarking
Cell culture
Computational Biology - methods
Deep Learning
Gene essentiality
Genes, Essential
Humanities and Social Sciences
Humans
Medical research
multidisciplinary
Neoplasms - genetics
Neoplasms - mortality
Performance evaluation
Predictions
Representation learning
RNA-Seq - methods
RNAseq
Science
Science (multidisciplinary)
Survival
Survival prediction
Training
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxJtAQUbiBlYdx4ntY4FWPfVQQOJmOfYEKpC3kM2BK7-cmTi7ZXmIC9fYiZx5eL6RPd8w9ixKQ61PgghQW0GlmsLFOgllrU5gEJIMVDt88sacvrevj4gmZ9vqi-6EFXrgIrgD19kBYzQoCEGbJlgZZeoQJadB6dgWJlBpf0qmCqu3crp2S5WMbOzBiJGKqsmUFp3BQCXsTiSaCfv_hDJ_vyz5y4npHIiOb7IbC4Lkh2Xlt9gVyLfZtdJT8tsd9v1s1U_jml_SePPVwBPABV86RHwQFLoSn_ksN7VHmZde0iNHFMvHCXcQ_AAPOXE0MeBEMZ5xNyDUzvG9dB7LtzPvp8-f-NnpoRjhC6cbp3fZu-Ojt69OxNJoQUTUzlooQDePLejeUXTCHEYbK4dQp4hwDurORNMF43rM7RBumJZAIm4VKGEHdZDNPbaXVxkeMN4hYsAUaEgqNBpScn0D0doh6TYNtpYVe74Rur8ofBp-PgdvrC8q8qgiP6vI24q9JL1sZxIX9vwALcQvFuL_ZSEV299o1S8OOvpGWl1TXXFbsafbYXQtOi8JGVZTmUNcRxrn3C9GsF1JQ2JqHf6P3TGPnaXujuTzjzN9NxVtYRbnKvZiY0mX6_q7LB7-D1k8YtcVuYA0Qul9trf-OsFjdnVM05PZgX4A47AdSw
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust evaluation of deep learning-based representation methods for survival and gene essentiality prediction on bulk RNA-seq data
URI https://link.springer.com/article/10.1038/s41598-024-67023-8
https://www.ncbi.nlm.nih.gov/pubmed/39048590
https://www.proquest.com/docview/3084108295
https://www.proquest.com/docview/3084767445
https://pubmed.ncbi.nlm.nih.gov/PMC11269749
https://doaj.org/article/968f562e2eaa473a80c0d6576df24c54
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEJRXoFRG4gbu5uHE9rH0oV6oUAGJm-XYTlm1dZZmc-DKL2fGSbbdAheusZM4nrHnm3jmG0Le2lRg6RPDjM8kw1RNpmzmWC4ld14AJGkwd_jkszj9Jg-PkCanmnJhYtC-rRd74fJqLyy-x9jK5ZWdT3Fi808fDzDtBXCwms_IDMDhLR99YPTOFc_UmCGTFnLegZXCTLKcs0qAkWJywwpFsv6_Icw_AyXvnJZGI3T8iDwc0SPdH0b5mNzzYZvcH-pJ_nxCfp21dd-t6A2FN20b6rxf0rE6xDlDs-Vo5LKc8o4CHepIdxQQLO162D3gAdQER0G9PEV68QA7ASJ2Cve5hR2eHWjdX17Qs9N91vkfFKNNn5Kvx0dfDk7YWGSBWZDMiuUelrgtPa8VWibwX7iQaWMyZwHK-awSVlRGqBr8OoAaokSACNsEzLDymUmLZ2QrtMG_ILQCtADuT-NyU3DvnKoLb6VsHC9dI7M0Ie-mSdfLgUtDxzPwQupBRBpEpKOItEzIB5TLuifyYMcL7fW5HrVBq0o2gOB87o3hojAytamrwIdyTc5tyROyM0lVj4uz00UqeYY5xWVC3qybYVnhWYkJvu2HPshzxKHP80EJ1iMpcJpKBd8jN9RjY6ibLaDJkbp70tyEvJ806WZc_56Ll___plfkQY6KnwqW8x2ytbru_Wsy61y_G_8_7MbF8xumzh2w
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEYIL70KggJG4gbtO4sT2sZRWi2hXqBSJm-XYTlnROkuzOXDllzN2ki3L49Jr7CROZsbzjTzzDUKvDOWh9Ykm2qWChFJNIk1qSSYEs44DJKlD7fD0E599Ee_2A01OOdbCxKR9U813_Nn5jp9_jbmVi3MzGfPEJh-P9kLZC-BgOdlA18Fgaf5blN5zemeSpXKokaG5mLTgp0ItWcZIycFNEbHmhyJd_78w5t-pkn-cl0Y3dHDnqh9wF90egCfe7cfvoWvO30c3-laUPx6gn8dN1bVLfMn-jZsaW-cWeGgscUqCx7M40mCOJUse9y2oWwzgF7cdbDzwAKy9xaCZDgdmcg-bSAD7GO6zc9M_2-OqO_uGj2e7pHXfcUhUfYg-H-yf7E3J0J-BGBDqkmQOdgdTOFbJ4NQg9GFc0Fqn1gAKdGnJDS81lxWEhIBSeBGwJewwIBrpUk3zLbTpG-8eI1wC0IDIqbaZzpmzVla5M0LUlhW2FilN0OtRWmrR03CoeHyeC9XLVoFsVZStEgl6GwS6mhkotOOF5uJUDXJQshQ1gD-XOa0Zz7WghtoSwi9bZ8wULEHbozqowa5blVPB0lCOXCTo5WoYLDIcs2jvmq6fEyiSGMx51GvPaiV5-E2FhO8Ra3q1ttT1EdChyPo96kyC3owqeLmu__-LJ1d_0wt0c3pydKgO388-PEW3smA9lJOMbaPN5UXnnqGN1nbPo-39AnFGMn4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL78JCASNxAzdO4sQ2t9J2VQSsqgISN8uxnbKidZZmc-DKL2fsJFuWxwWuiZPYmRnPN_LMNwg9M5SH1ieaaJcKEko1iTSpJZkQzDoOkKQOtcOH7_nsk9g_CDQ5L8damJi0b6r5jj892_HzzzG3cnFmkjFPLDl6txfKXgAHy2Rh62QDXQajpcVPkXrP651JlsqhTobmImnBV4V6soyRkoOrImLNF0XK_j_hzN_TJX85M42uaHrjfxZxE10fACje7cfcQpecv42u9C0pv91B34-bqmuX-IIFHDc1ts4t8NBg4oQEz2dxpMMcS5c87ltRtxhAMG472IDgBVh7i0FDHQ4M5R42kwD6MTxn56Z_t8dVd_oFH892Seu-4pCwehd9nB582DskQ58GYkC4S5I52CVM4Vglg3ODEIhxQWudWgNo0KUlN7zUXFYQGgJa4UXAmLDTgHikSzXNt9Cmb7y7j3AJgAMiqNpmOmfOWlnlzghRW1bYWqR0gp6PElOLno5DxWP0XKhevgrkq6J8lZigV0Goq5GBSjteaM5P1CALJUtRAwh0mdOa8VwLaqgtIQyzdcZMwSZoe1QJNdh3q3IqWBrKkosJerq6DZYZjlu0d03XjwlUSQzG3Os1aDWTPPymQsJ6xJpurU11_Q7oUWT_HvVmgl6Mangxr7__iwf__qUn6OrR_lS9fT178xBdy4IBUU4yto02l-ede4Q2Wts9jub3Aw8SNP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+evaluation+of+deep+learning-based+representation+methods+for+survival+and+gene+essentiality+prediction+on+bulk+RNA-seq+data&rft.jtitle=Scientific+reports&rft.au=Gross%2C+Baptiste&rft.au=Dauvin%2C+Antonin&rft.au=Cabeli%2C+Vincent&rft.au=Kmetzsch%2C+Virgilio&rft.date=2024-07-24&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-67023-8&rft.externalDocID=10_1038_s41598_024_67023_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon