Robust evaluation of deep learning-based representation methods for survival and gene essentiality prediction on bulk RNA-seq data
Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 17064 - 15 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
24-07-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community. |
---|---|
AbstractList | Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community. Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community. Abstract Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community. |
ArticleNumber | 17064 |
Author | El Khoury, Jean Cabeli, Vincent Ouardini, Khalil Romagnoni, Alberto Blum, Michael Kmetzsch, Virgilio Davi, Alec Dauvin, Antonin Dissez, Gaëtan Durand, Eric Y. Esposito, Christian Ghermi, Ridouane Gross, Baptiste Hulot, Louis Loeb, Regis Grouard, Simon Darhi, Yannis |
Author_xml | – sequence: 1 givenname: Baptiste surname: Gross fullname: Gross, Baptiste email: baptiste.gross@owkin.com organization: Owkin, Inc – sequence: 2 givenname: Antonin surname: Dauvin fullname: Dauvin, Antonin organization: Owkin, Inc – sequence: 3 givenname: Vincent surname: Cabeli fullname: Cabeli, Vincent organization: Owkin, Inc – sequence: 4 givenname: Virgilio surname: Kmetzsch fullname: Kmetzsch, Virgilio organization: Owkin, Inc – sequence: 5 givenname: Jean surname: El Khoury fullname: El Khoury, Jean organization: Owkin, Inc – sequence: 6 givenname: Gaëtan surname: Dissez fullname: Dissez, Gaëtan organization: Owkin, Inc – sequence: 7 givenname: Khalil surname: Ouardini fullname: Ouardini, Khalil organization: Owkin, Inc – sequence: 8 givenname: Simon surname: Grouard fullname: Grouard, Simon organization: Owkin, Inc – sequence: 9 givenname: Alec surname: Davi fullname: Davi, Alec organization: Owkin, Inc – sequence: 10 givenname: Regis surname: Loeb fullname: Loeb, Regis organization: Owkin, Inc – sequence: 11 givenname: Christian surname: Esposito fullname: Esposito, Christian organization: Owkin, Inc – sequence: 12 givenname: Louis surname: Hulot fullname: Hulot, Louis organization: Owkin, Inc – sequence: 13 givenname: Ridouane surname: Ghermi fullname: Ghermi, Ridouane organization: Owkin, Inc – sequence: 14 givenname: Michael surname: Blum fullname: Blum, Michael organization: Owkin, Inc – sequence: 15 givenname: Yannis surname: Darhi fullname: Darhi, Yannis organization: Owkin, Inc – sequence: 16 givenname: Eric Y. surname: Durand fullname: Durand, Eric Y. organization: Owkin, Inc – sequence: 17 givenname: Alberto surname: Romagnoni fullname: Romagnoni, Alberto organization: Owkin, Inc |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39048590$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFCEYhyemxtbaL-DBkHjxMsrfYTiZpmm1SaNJo2fCwDtT1lnYwswmvfrJy-7U2nqQCwSe94GX_F5XByEGqKq3BH8kmLWfMidCtTWmvG4kpqxuX1RHFHNRU0bpwZP1YXWS8wqXIajiRL2qDpnCvBUKH1W_r2M35wnB1oyzmXwMKPbIAWzQCCYFH4a6MxkcSrBJkCFMC7WG6Sa6jPqYUJ7T1hcBMsGhAQIgyDvSm9FPd6jUOW8Xd0DdPP5C199O6wy3yJnJvKle9mbMcPIwH1c_L85_nH2tr75_uTw7vaotp3SqKTBMrADeKap275dctrg3xFksJJBGWtkYqTpFJJFCCiIYk5iVjhUQg9lxdbl4XTQrvUl-bdKdjsbr_UZMgzZp8nYErZq2Fw0FCsZwyUyLLXaNkI3rKbeCF9fnxbWZuzU4W5pNZnwmfX4S_I0e4lYTQhsluSqGDw-GFG9nyJNe-2xhHE2AOGfNcMtlIzkXBX3_D7qKcwrlr_YUwS1VO4oulE0x5wT942sI1rvI6CUyukRG7yOj21L07mkfjyV_AlIAtgC5HIUB0t-7_6O9B7nAzhw |
Cites_doi | 10.1016/j.isci.2021.103200 10.1158/1078-0432.CCR-17-0853 10.1101/2023.10.03.560661 10.1002/sim.4780140108 10.1101/2021.07.26.453730v1 10.1126/sciadv.abh1275 10.1002/prot.26237 10.1038/s41586-023-06139-9 10.3389/fimmu.2022.914001 10.48550/ARXIV.2207.08815 10.48550/ARXIV.1712.04621 10.3390/cancers13123047 10.1038/s41467-020-20430-7 10.1126/science.1127647 10.1038/s42256-022-00541-0 10.1007/978-1-0716-3195-9_20 10.1038/s41598-021-92799-4 10.1093/bioinformatics/btr260 10.1186/s12920-020-0686-1 10.1038/s41375-020-0742-z 10.1093/bioinformatics/btz158 10.1186/s12859-020-3427-8 10.1101/2023.07.21.23292757 10.48550/ARXIV.1312.6114 10.1186/s12859-022-04609-x 10.1186/s13059-021-02533-6 10.1101/2023.04.30.538439 10.1016/j.isci.2023.106536 10.1186/s12920-023-01446-6 10.1371/journal.pcbi.1011476 10.1002/cem.2929 10.1016/j.cels.2017.09.004 10.1038/s41467-022-34277-7 10.1093/nar/gkx750 10.1093/bib/bbab315 10.1038/s41467-018-03751-6 10.1101/278739 10.1038/s41592-018-0229-2 10.1038/s43018-020-00169-2 10.1101/2023.09.13.557538 10.48550/ARXIV.1907.10902 10.1101/720243 10.1109/TPAMI.2013.50 10.1038/s41576-021-00434-9 10.1016/j.cell.2018.02.052 10.1186/s12874-018-0482-1 10.1182/blood-2023-186222 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1093/bioinformatics/btae020 10.1007/s00432-023-05000-w 10.1023/A:1024068626366 10.1101/2021.03.02.433454 10.1038/nature11003 10.1016/j.ymeth.2021.01.004 10.1038/s41576-019-0150-2 10.1109/CVPR.2009.5206848 10.3929/ETHZ-B-000565782 10.18653/v1/N19-1423 10.1109/UBMK.2019.8907003 10.1109/CVPR42600.2020.00674 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-67023-8 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_968f562e2eaa473a80c0d6576df24c54 10_1038_s41598_024_67023_8 39048590 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Owkin, Inc, United States |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7XB 8FK K9. M48 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c422t-2e301c5e4b929904874780fa1dc057e167c76a79b9171757515337034199e1a03 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:15:44 EDT 2024 Tue Sep 17 21:27:50 EDT 2024 Sat Oct 26 04:29:14 EDT 2024 Thu Oct 10 22:15:17 EDT 2024 Fri Aug 23 04:32:35 EDT 2024 Sat Nov 02 12:31:02 EDT 2024 Fri Oct 11 20:56:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Representation learning Deep learning Survival prediction Benchmarking RNAseq Gene essentiality |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-2e301c5e4b929904874780fa1dc057e167c76a79b9171757515337034199e1a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269749/ |
PMID | 39048590 |
PQID | 3084108295 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_968f562e2eaa473a80c0d6576df24c54 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11269749 proquest_miscellaneous_3084767445 proquest_journals_3084108295 crossref_primary_10_1038_s41598_024_67023_8 pubmed_primary_39048590 springer_journals_10_1038_s41598_024_67023_8 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-24 |
PublicationDateYYYYMMDD | 2024-07-24 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chen (CR20) 2022; 13 Rampášek, Hidru, Smirnov, Haibe-Kains, Goldenberg (CR22) 2019; 35 Chaudhary, Poirion, Lu, Garmire (CR7) 2018; 24 Fang, Zheng, Li (CR39) 2024 CR34 Smith (CR29) 2020; 21 Whalen, Schreiber, Noble, Pollard (CR33) 2021 He, Liu, Wu, Xie (CR19) 2022; 4 Chen (CR13) 2022; 13 Althubaiti (CR36) 2021 Vale-Silva, Rohr (CR2) 2021; 11 Filiot (CR44) 2023 Lopez, Regier, Cole, Jordan, Yosef (CR38) 2018; 15 Perez, Wang (CR61) 2017 Chiu (CR3) 2021; 7 Kingma, Welling (CR59) 2013 Paton (CR55) 2023 CR6 Akiba, Sano, Yanase, Ohta, Koyama (CR56) 2019 CR5 Shen (CR23) 2021; 24 Theodoris (CR26) 2023; 618 Wei (CR14) 2023; 149 Zhang, Xing, Sun, Guo (CR37) 2021; 13 Hinton, Salakhutdinov (CR57) 2006; 313 De Weerd (CR17) 2023 Katzman (CR63) 2018; 18 CR41 CR40 Liu (CR12) 2018; 32 (CR43) 2020; 34 Wilks (CR48) 2021; 22 Dincer, Celik, Hiranuma, Lee (CR21) 2018 Cantini (CR30) 2021; 12 Dempster (CR50) 2019 Stark, Grzelak, Hadfield (CR1) 2019; 20 Li (CR16) 2023; 19 Faraggi, Simon (CR62) 1995; 14 Shen (CR28) 2023; 26 Sauta (CR15) 2023; 142 Liberzon (CR51) 2011; 27 CR58 CR11 Kryshtafovych, Schwede, Topf, Fidelis, Moult (CR35) 2021; 89 Bengio, Grandvalet, Thrun, Saul, Schölkopf (CR31) 2003 Huang (CR42) 2020; 13 Li (CR25) 2017; 45 Grinsztajn, Oyallon, Varoquaux (CR8) 2022 Gönen (CR10) 2017; 5 Nadeau, Bengio (CR32) 2003; 52 Ma (CR53) 2021; 2 Barretina (CR47) 2012; 483 Ramirez (CR60) 2021; 192 Withnell, Zhang, Sun, Guo (CR18) 2021; 22 Hou (CR54) 2022; 23 Bengio, Courville, Vincent (CR4) 2013; 35 Han (CR24) 2021 Liu (CR9) 2018; 173 Cui (CR27) 2023 Lachmann (CR46) 2018; 9 Harrell, Lee, Mark (CR49) 1996; 15 Rosenski, Shifman, Kaplan (CR52) 2023; 16 Varoquaux, Colliot, Colliot (CR45) 2023 J Ma (67023_CR53) 2021; 2 L Perez (67023_CR61) 2017 FE Harrell (67023_CR49) 1996; 15 L Cantini (67023_CR30) 2021; 12 A Lachmann (67023_CR46) 2018; 9 G Varoquaux (67023_CR45) 2023 L Rampášek (67023_CR22) 2019; 35 E Sauta (67023_CR15) 2023; 142 K Chaudhary (67023_CR7) 2018; 24 J Chen (67023_CR20) 2022; 13 Q Li (67023_CR16) 2023; 19 AM Smith (67023_CR29) 2020; 21 JM Dempster (67023_CR50) 2019 LA Vale-Silva (67023_CR2) 2021; 11 67023_CR34 X Li (67023_CR25) 2017; 45 C Nadeau (67023_CR32) 2003; 52 J Barretina (67023_CR47) 2012; 483 A Kryshtafovych (67023_CR35) 2021; 89 E Withnell (67023_CR18) 2021; 22 Y-C Chiu (67023_CR3) 2021; 7 67023_CR6 H Cui (67023_CR27) 2023 V Paton (67023_CR55) 2023 H Shen (67023_CR23) 2021; 24 Y Bengio (67023_CR4) 2013; 35 Z Huang (67023_CR42) 2020; 13 Q Wei (67023_CR14) 2023; 149 DP Kingma (67023_CR59) 2013 R Stark (67023_CR1) 2019; 20 C Wilks (67023_CR48) 2021; 22 67023_CR41 S Althubaiti (67023_CR36) 2021 67023_CR40 67023_CR5 J Liu (67023_CR9) 2018; 173 J Katzman (67023_CR63) 2018; 18 Z Fang (67023_CR39) 2024 M Gönen (67023_CR10) 2017; 5 HA De Weerd (67023_CR17) 2023 S Whalen (67023_CR33) 2021 J Hou (67023_CR54) 2022; 23 A Liberzon (67023_CR51) 2011; 27 L Grinsztajn (67023_CR8) 2022 67023_CR11 R Lopez (67023_CR38) 2018; 15 H Shen (67023_CR28) 2023; 26 GE Hinton (67023_CR57) 2006; 313 67023_CR58 X Zhang (67023_CR37) 2021; 13 Multiple Myeloma DREAM Consortium (67023_CR43) 2020; 34 D Faraggi (67023_CR62) 1995; 14 Y Liu (67023_CR12) 2018; 32 CV Theodoris (67023_CR26) 2023; 618 J Rosenski (67023_CR52) 2023; 16 R Ramirez (67023_CR60) 2021; 192 Y Bengio (67023_CR31) 2003 AB Dincer (67023_CR21) 2018 A Filiot (67023_CR44) 2023 W Han (67023_CR24) 2021 R Chen (67023_CR13) 2022; 13 T Akiba (67023_CR56) 2019 D He (67023_CR19) 2022; 4 |
References_xml | – volume: 24 start-page: 103200 year: 2021 ident: CR23 article-title: Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome publication-title: iScience doi: 10.1016/j.isci.2021.103200 contributor: fullname: Shen – volume: 24 start-page: 1248 year: 2018 end-page: 1259 ident: CR7 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 contributor: fullname: Garmire – year: 2023 ident: CR17 article-title: Representational learning from healthy multi-tissue human RNA-Seq data such that latent space arithmetics extracts disease modules publication-title: bioRxiv doi: 10.1101/2023.10.03.560661 contributor: fullname: De Weerd – volume: 14 start-page: 73 year: 1995 end-page: 82 ident: CR62 article-title: A neural network model for survival data publication-title: Stat. Med. doi: 10.1002/sim.4780140108 contributor: fullname: Simon – year: 2021 ident: CR24 article-title: Self-supervised contrastive learning for integrative single cell RNA-Seq data analysis publication-title: bioRxiv doi: 10.1101/2021.07.26.453730v1 contributor: fullname: Han – volume: 7 start-page: eabh1275 year: 2021 ident: CR3 article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning publication-title: Sci. Adv. doi: 10.1126/sciadv.abh1275 contributor: fullname: Chiu – volume: 89 start-page: 1607 year: 2021 end-page: 1617 ident: CR35 article-title: Critical assessment of methods of protein structure prediction (CASP)—Round XIV publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.26237 contributor: fullname: Moult – volume: 618 start-page: 616 year: 2023 end-page: 624 ident: CR26 article-title: Transfer learning enables predictions in network biology publication-title: Nature doi: 10.1038/s41586-023-06139-9 contributor: fullname: Theodoris – ident: CR58 – volume: 13 start-page: 914001 year: 2022 ident: CR13 article-title: Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.914001 contributor: fullname: Chen – year: 2022 ident: CR8 article-title: Why do tree-based models still outperform deep learning on tabular data? publication-title: Mach. Learn. doi: 10.48550/ARXIV.2207.08815 contributor: fullname: Varoquaux – year: 2017 ident: CR61 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: Comput. Vis. Pattern Recognit. doi: 10.48550/ARXIV.1712.04621 contributor: fullname: Wang – volume: 13 start-page: 3047 year: 2021 ident: CR37 article-title: OmiEmbed: A unified multi-task deep learning framework for multi-omics data publication-title: Cancers doi: 10.3390/cancers13123047 contributor: fullname: Guo – volume: 12 start-page: 124 year: 2021 ident: CR30 article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer publication-title: Nat. Commun. doi: 10.1038/s41467-020-20430-7 contributor: fullname: Cantini – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR57 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: Salakhutdinov – volume: 4 start-page: 879 year: 2022 end-page: 892 ident: CR19 article-title: A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00541-0 contributor: fullname: Xie – start-page: 601 year: 2023 end-page: 630 ident: CR45 article-title: Evaluating machine learning models and their diagnostic value publication-title: Machine Learning for Brain Disorders doi: 10.1007/978-1-0716-3195-9_20 contributor: fullname: Colliot – volume: 11 start-page: 13505 year: 2021 ident: CR2 article-title: Long-term cancer survival prediction using multimodal deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-92799-4 contributor: fullname: Rohr – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: CR51 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 contributor: fullname: Liberzon – volume: 13 start-page: 41 year: 2020 ident: CR42 article-title: Deep learning-based cancer survival prognosis from RNA-seq data: Approaches and evaluations publication-title: BMC Med. Genom. doi: 10.1186/s12920-020-0686-1 contributor: fullname: Huang – volume: 34 start-page: 1866 year: 2020 end-page: 1874 ident: CR43 article-title: Multiple myeloma DREAM challenge reveals epigenetic regulator PHF19 as marker of aggressive disease publication-title: Leukemia doi: 10.1038/s41375-020-0742-z – volume: 35 start-page: 3743 year: 2019 end-page: 3751 ident: CR22 article-title: Dr.VAE: Improving drug response prediction via modeling of drug perturbation effects publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz158 contributor: fullname: Goldenberg – volume: 21 start-page: 119 year: 2020 ident: CR29 article-title: Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data publication-title: BMC Bioinform. doi: 10.1186/s12859-020-3427-8 contributor: fullname: Smith – year: 2023 ident: CR44 article-title: Scaling self-supervised learning for histopathology with masked image modeling publication-title: medRxiv doi: 10.1101/2023.07.21.23292757 contributor: fullname: Filiot – ident: CR11 – year: 2013 ident: CR59 article-title: Auto-encoding variational Bayes publication-title: Mach. Learn. doi: 10.48550/ARXIV.1312.6114 contributor: fullname: Welling – volume: 23 start-page: 81 year: 2022 ident: CR54 article-title: Distance correlation application to gene co-expression network analysis publication-title: BMC Bioinform. doi: 10.1186/s12859-022-04609-x contributor: fullname: Hou – ident: CR5 – volume: 22 start-page: 323 year: 2021 ident: CR48 article-title: recount3: Summaries and queries for large-scale RNA-seq expression and splicing publication-title: Genome Biol. doi: 10.1186/s13059-021-02533-6 contributor: fullname: Wilks – year: 2023 ident: CR27 article-title: scGPT: Towards building a foundation model for single-cell multi-omics using generative AI publication-title: bioRxiv doi: 10.1101/2023.04.30.538439 contributor: fullname: Cui – volume: 26 start-page: 106536 year: 2023 ident: CR28 article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering publication-title: iScience doi: 10.1016/j.isci.2023.106536 contributor: fullname: Shen – volume: 16 start-page: 26 year: 2023 ident: CR52 article-title: Predicting gene knockout effects from expression data publication-title: BMC Med. Genom. doi: 10.1186/s12920-023-01446-6 contributor: fullname: Kaplan – volume: 19 year: 2023 ident: CR16 article-title: XA4C: eXplainable representation learning via autoencoders revealing critical genes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1011476 contributor: fullname: Li – volume: 32 year: 2018 ident: CR12 article-title: Post-modified non-negative matrix factorization for deconvoluting the gene expression profiles of specific cell types from heterogeneous clinical samples based on RNA-sequencing data publication-title: J. Chemom. doi: 10.1002/cem.2929 contributor: fullname: Liu – volume: 5 start-page: 485 year: 2017 end-page: 497.e3 ident: CR10 article-title: A community challenge for inferring genetic predictors of gene essentialities through analysis of a functional screen of cancer cell lines publication-title: Cell Syst. doi: 10.1016/j.cels.2017.09.004 contributor: fullname: Gönen – volume: 13 start-page: 6494 year: 2022 ident: CR20 article-title: Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data publication-title: Nat. Commun. doi: 10.1038/s41467-022-34277-7 contributor: fullname: Chen – volume: 45 year: 2017 ident: CR25 article-title: Network embedding-based representation learning for single cell RNA-seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx750 contributor: fullname: Li – volume: 22 start-page: bbab315 year: 2021 ident: CR18 article-title: XOmiVAE: An interpretable deep learning model for cancer classification using high-dimensional omics data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab315 contributor: fullname: Guo – volume: 9 start-page: 1366 year: 2018 ident: CR46 article-title: Massive mining of publicly available RNA-seq data from human and mouse publication-title: Nat. Commun. doi: 10.1038/s41467-018-03751-6 contributor: fullname: Lachmann – ident: CR6 – year: 2018 ident: CR21 article-title: DeepProfile: Deep learning of cancer molecular profiles for precision medicine publication-title: bioRxiv doi: 10.1101/278739 contributor: fullname: Lee – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: CR38 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 contributor: fullname: Yosef – ident: CR40 – volume: 2 start-page: 233 year: 2021 end-page: 244 ident: CR53 article-title: Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients publication-title: Nat. Cancer doi: 10.1038/s43018-020-00169-2 contributor: fullname: Ma – year: 2023 ident: CR55 article-title: Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results publication-title: bioRxiv doi: 10.1101/2023.09.13.557538 contributor: fullname: Paton – year: 2019 ident: CR56 article-title: Optuna: A next-generation hyperparameter optimization framework publication-title: Mach. Learn. doi: 10.48550/ARXIV.1907.10902 contributor: fullname: Koyama – year: 2019 ident: CR50 article-title: Extracting biological insights from the project Achilles genome-scale CRISPR screens in cancer cell lines publication-title: bioRxiv doi: 10.1101/720243 contributor: fullname: Dempster – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: CR4 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 contributor: fullname: Vincent – year: 2021 ident: CR33 article-title: Navigating the pitfalls of applying machine learning in genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00434-9 contributor: fullname: Pollard – volume: 173 start-page: 400 year: 2018 end-page: 416.e11 ident: CR9 article-title: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics publication-title: Cell doi: 10.1016/j.cell.2018.02.052 contributor: fullname: Liu – volume: 18 start-page: 24 year: 2018 ident: CR63 article-title: DeepSurv: Personalized treatment recommender system using a cox proportional hazards deep neural network publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 contributor: fullname: Katzman – volume: 142 start-page: 1863 year: 2023 end-page: 1863 ident: CR15 article-title: Combining gene mutation with transcriptomic data improves outcome prediction in myelodysplastic syndromes publication-title: Blood doi: 10.1182/blood-2023-186222 contributor: fullname: Sauta – volume: 15 start-page: 361 year: 1996 end-page: 387 ident: CR49 article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 contributor: fullname: Mark – ident: CR34 – year: 2024 ident: CR39 article-title: scMAE: A masked autoencoder for single-cell RNA-seq clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae020 contributor: fullname: Li – volume: 149 start-page: 11351 year: 2023 end-page: 11368 ident: CR14 article-title: Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-023-05000-w contributor: fullname: Wei – volume: 52 start-page: 239 year: 2003 end-page: 281 ident: CR32 article-title: Inference for the generalization error publication-title: Mach. Learn. doi: 10.1023/A:1024068626366 contributor: fullname: Bengio – year: 2021 ident: CR36 article-title: DeepMOCCA: A pan-cancer prognostic model identifies personalized prognostic markers through graph attention and multi-omics data integration publication-title: bioRxiv doi: 10.1101/2021.03.02.433454 contributor: fullname: Althubaiti – ident: CR41 – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: CR47 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 contributor: fullname: Barretina – volume: 192 start-page: 120 year: 2021 end-page: 130 ident: CR60 article-title: Prediction and interpretation of cancer survival using graph convolution neural networks publication-title: Methods doi: 10.1016/j.ymeth.2021.01.004 contributor: fullname: Ramirez – volume: 20 start-page: 631 year: 2019 end-page: 656 ident: CR1 article-title: RNA sequencing: The teenage years publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0150-2 contributor: fullname: Hadfield – year: 2003 ident: CR31 article-title: No unbiased estimator of the variance of K-fold cross-validation publication-title: Advances in Neural Information Processing Systems contributor: fullname: Schölkopf – year: 2018 ident: 67023_CR21 publication-title: bioRxiv doi: 10.1101/278739 contributor: fullname: AB Dincer – ident: 67023_CR34 doi: 10.1109/CVPR.2009.5206848 – year: 2017 ident: 67023_CR61 publication-title: Comput. Vis. Pattern Recognit. doi: 10.48550/ARXIV.1712.04621 contributor: fullname: L Perez – volume: 173 start-page: 400 year: 2018 ident: 67023_CR9 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 contributor: fullname: J Liu – volume: 24 start-page: 103200 year: 2021 ident: 67023_CR23 publication-title: iScience doi: 10.1016/j.isci.2021.103200 contributor: fullname: H Shen – volume: 52 start-page: 239 year: 2003 ident: 67023_CR32 publication-title: Mach. Learn. doi: 10.1023/A:1024068626366 contributor: fullname: C Nadeau – year: 2021 ident: 67023_CR33 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00434-9 contributor: fullname: S Whalen – ident: 67023_CR40 – volume: 13 start-page: 914001 year: 2022 ident: 67023_CR13 publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.914001 contributor: fullname: R Chen – year: 2023 ident: 67023_CR44 publication-title: medRxiv doi: 10.1101/2023.07.21.23292757 contributor: fullname: A Filiot – volume: 26 start-page: 106536 year: 2023 ident: 67023_CR28 publication-title: iScience doi: 10.1016/j.isci.2023.106536 contributor: fullname: H Shen – volume: 89 start-page: 1607 year: 2021 ident: 67023_CR35 publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.26237 contributor: fullname: A Kryshtafovych – year: 2024 ident: 67023_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae020 contributor: fullname: Z Fang – volume: 13 start-page: 3047 year: 2021 ident: 67023_CR37 publication-title: Cancers doi: 10.3390/cancers13123047 contributor: fullname: X Zhang – volume: 34 start-page: 1866 year: 2020 ident: 67023_CR43 publication-title: Leukemia doi: 10.1038/s41375-020-0742-z contributor: fullname: Multiple Myeloma DREAM Consortium – volume: 4 start-page: 879 year: 2022 ident: 67023_CR19 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00541-0 contributor: fullname: D He – volume: 21 start-page: 119 year: 2020 ident: 67023_CR29 publication-title: BMC Bioinform. doi: 10.1186/s12859-020-3427-8 contributor: fullname: AM Smith – volume: 142 start-page: 1863 year: 2023 ident: 67023_CR15 publication-title: Blood doi: 10.1182/blood-2023-186222 contributor: fullname: E Sauta – volume: 11 start-page: 13505 year: 2021 ident: 67023_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-021-92799-4 contributor: fullname: LA Vale-Silva – volume: 12 start-page: 124 year: 2021 ident: 67023_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20430-7 contributor: fullname: L Cantini – volume: 483 start-page: 603 year: 2012 ident: 67023_CR47 publication-title: Nature doi: 10.1038/nature11003 contributor: fullname: J Barretina – ident: 67023_CR11 doi: 10.3929/ETHZ-B-000565782 – ident: 67023_CR5 doi: 10.18653/v1/N19-1423 – volume: 32 year: 2018 ident: 67023_CR12 publication-title: J. Chemom. doi: 10.1002/cem.2929 contributor: fullname: Y Liu – volume: 9 start-page: 1366 year: 2018 ident: 67023_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03751-6 contributor: fullname: A Lachmann – ident: 67023_CR41 doi: 10.1109/UBMK.2019.8907003 – volume: 18 start-page: 24 year: 2018 ident: 67023_CR63 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 contributor: fullname: J Katzman – volume: 149 start-page: 11351 year: 2023 ident: 67023_CR14 publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-023-05000-w contributor: fullname: Q Wei – year: 2021 ident: 67023_CR36 publication-title: bioRxiv doi: 10.1101/2021.03.02.433454 contributor: fullname: S Althubaiti – volume: 24 start-page: 1248 year: 2018 ident: 67023_CR7 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 contributor: fullname: K Chaudhary – volume: 15 start-page: 361 year: 1996 ident: 67023_CR49 publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 contributor: fullname: FE Harrell – volume: 23 start-page: 81 year: 2022 ident: 67023_CR54 publication-title: BMC Bioinform. doi: 10.1186/s12859-022-04609-x contributor: fullname: J Hou – volume: 7 start-page: eabh1275 year: 2021 ident: 67023_CR3 publication-title: Sci. Adv. doi: 10.1126/sciadv.abh1275 contributor: fullname: Y-C Chiu – volume: 5 start-page: 485 year: 2017 ident: 67023_CR10 publication-title: Cell Syst. doi: 10.1016/j.cels.2017.09.004 contributor: fullname: M Gönen – volume: 22 start-page: 323 year: 2021 ident: 67023_CR48 publication-title: Genome Biol. doi: 10.1186/s13059-021-02533-6 contributor: fullname: C Wilks – year: 2013 ident: 67023_CR59 publication-title: Mach. Learn. doi: 10.48550/ARXIV.1312.6114 contributor: fullname: DP Kingma – volume-title: Advances in Neural Information Processing Systems year: 2003 ident: 67023_CR31 contributor: fullname: Y Bengio – volume: 13 start-page: 41 year: 2020 ident: 67023_CR42 publication-title: BMC Med. Genom. doi: 10.1186/s12920-020-0686-1 contributor: fullname: Z Huang – year: 2023 ident: 67023_CR55 publication-title: bioRxiv doi: 10.1101/2023.09.13.557538 contributor: fullname: V Paton – volume: 35 start-page: 1798 year: 2013 ident: 67023_CR4 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 contributor: fullname: Y Bengio – volume: 19 year: 2023 ident: 67023_CR16 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1011476 contributor: fullname: Q Li – volume: 2 start-page: 233 year: 2021 ident: 67023_CR53 publication-title: Nat. Cancer doi: 10.1038/s43018-020-00169-2 contributor: fullname: J Ma – start-page: 601 volume-title: Machine Learning for Brain Disorders year: 2023 ident: 67023_CR45 doi: 10.1007/978-1-0716-3195-9_20 contributor: fullname: G Varoquaux – volume: 13 start-page: 6494 year: 2022 ident: 67023_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34277-7 contributor: fullname: J Chen – volume: 192 start-page: 120 year: 2021 ident: 67023_CR60 publication-title: Methods doi: 10.1016/j.ymeth.2021.01.004 contributor: fullname: R Ramirez – volume: 618 start-page: 616 year: 2023 ident: 67023_CR26 publication-title: Nature doi: 10.1038/s41586-023-06139-9 contributor: fullname: CV Theodoris – volume: 313 start-page: 504 year: 2006 ident: 67023_CR57 publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: GE Hinton – year: 2022 ident: 67023_CR8 publication-title: Mach. Learn. doi: 10.48550/ARXIV.2207.08815 contributor: fullname: L Grinsztajn – volume: 14 start-page: 73 year: 1995 ident: 67023_CR62 publication-title: Stat. Med. doi: 10.1002/sim.4780140108 contributor: fullname: D Faraggi – ident: 67023_CR58 – volume: 15 start-page: 1053 year: 2018 ident: 67023_CR38 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 contributor: fullname: R Lopez – year: 2023 ident: 67023_CR27 publication-title: bioRxiv doi: 10.1101/2023.04.30.538439 contributor: fullname: H Cui – year: 2021 ident: 67023_CR24 publication-title: bioRxiv doi: 10.1101/2021.07.26.453730v1 contributor: fullname: W Han – year: 2019 ident: 67023_CR50 publication-title: bioRxiv doi: 10.1101/720243 contributor: fullname: JM Dempster – volume: 35 start-page: 3743 year: 2019 ident: 67023_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz158 contributor: fullname: L Rampášek – volume: 20 start-page: 631 year: 2019 ident: 67023_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0150-2 contributor: fullname: R Stark – volume: 16 start-page: 26 year: 2023 ident: 67023_CR52 publication-title: BMC Med. Genom. doi: 10.1186/s12920-023-01446-6 contributor: fullname: J Rosenski – year: 2019 ident: 67023_CR56 publication-title: Mach. Learn. doi: 10.48550/ARXIV.1907.10902 contributor: fullname: T Akiba – year: 2023 ident: 67023_CR17 publication-title: bioRxiv doi: 10.1101/2023.10.03.560661 contributor: fullname: HA De Weerd – volume: 22 start-page: bbab315 year: 2021 ident: 67023_CR18 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab315 contributor: fullname: E Withnell – volume: 27 start-page: 1739 year: 2011 ident: 67023_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 contributor: fullname: A Liberzon – ident: 67023_CR6 doi: 10.1109/CVPR42600.2020.00674 – volume: 45 year: 2017 ident: 67023_CR25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx750 contributor: fullname: X Li |
SSID | ssj0000529419 |
Score | 2.4719877 |
Snippet | Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding... Abstract Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 17064 |
SubjectTerms | 631/114 631/114/1305 631/114/1314 631/114/2163 631/67 Benchmarking Cell culture Computational Biology - methods Deep Learning Gene essentiality Genes, Essential Humanities and Social Sciences Humans Medical research multidisciplinary Neoplasms - genetics Neoplasms - mortality Performance evaluation Predictions Representation learning RNA-Seq - methods RNAseq Science Science (multidisciplinary) Survival Survival prediction Training |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxJtAQUbiBlYdx4ntY4FWPfVQQOJmOfYEKpC3kM2BK7-cmTi7ZXmIC9fYiZx5eL6RPd8w9ixKQ61PgghQW0GlmsLFOgllrU5gEJIMVDt88sacvrevj4gmZ9vqi-6EFXrgIrgD19kBYzQoCEGbJlgZZeoQJadB6dgWJlBpf0qmCqu3crp2S5WMbOzBiJGKqsmUFp3BQCXsTiSaCfv_hDJ_vyz5y4npHIiOb7IbC4Lkh2Xlt9gVyLfZtdJT8tsd9v1s1U_jml_SePPVwBPABV86RHwQFLoSn_ksN7VHmZde0iNHFMvHCXcQ_AAPOXE0MeBEMZ5xNyDUzvG9dB7LtzPvp8-f-NnpoRjhC6cbp3fZu-Ojt69OxNJoQUTUzlooQDePLejeUXTCHEYbK4dQp4hwDurORNMF43rM7RBumJZAIm4VKGEHdZDNPbaXVxkeMN4hYsAUaEgqNBpScn0D0doh6TYNtpYVe74Rur8ofBp-PgdvrC8q8qgiP6vI24q9JL1sZxIX9vwALcQvFuL_ZSEV299o1S8OOvpGWl1TXXFbsafbYXQtOi8JGVZTmUNcRxrn3C9GsF1JQ2JqHf6P3TGPnaXujuTzjzN9NxVtYRbnKvZiY0mX6_q7LB7-D1k8YtcVuYA0Qul9trf-OsFjdnVM05PZgX4A47AdSw priority: 102 providerName: Directory of Open Access Journals |
Title | Robust evaluation of deep learning-based representation methods for survival and gene essentiality prediction on bulk RNA-seq data |
URI | https://link.springer.com/article/10.1038/s41598-024-67023-8 https://www.ncbi.nlm.nih.gov/pubmed/39048590 https://www.proquest.com/docview/3084108295 https://www.proquest.com/docview/3084767445 https://pubmed.ncbi.nlm.nih.gov/PMC11269749 https://doaj.org/article/968f562e2eaa473a80c0d6576df24c54 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEJRXoFRG4gbu5uHE9rH0oV6oUAGJm-XYTlm1dZZmc-DKL2fGSbbdAheusZM4nrHnm3jmG0Le2lRg6RPDjM8kw1RNpmzmWC4ld14AJGkwd_jkszj9Jg-PkCanmnJhYtC-rRd74fJqLyy-x9jK5ZWdT3Fi808fDzDtBXCwms_IDMDhLR99YPTOFc_UmCGTFnLegZXCTLKcs0qAkWJywwpFsv6_Icw_AyXvnJZGI3T8iDwc0SPdH0b5mNzzYZvcH-pJ_nxCfp21dd-t6A2FN20b6rxf0rE6xDlDs-Vo5LKc8o4CHepIdxQQLO162D3gAdQER0G9PEV68QA7ASJ2Cve5hR2eHWjdX17Qs9N91vkfFKNNn5Kvx0dfDk7YWGSBWZDMiuUelrgtPa8VWibwX7iQaWMyZwHK-awSVlRGqBr8OoAaokSACNsEzLDymUmLZ2QrtMG_ILQCtADuT-NyU3DvnKoLb6VsHC9dI7M0Ie-mSdfLgUtDxzPwQupBRBpEpKOItEzIB5TLuifyYMcL7fW5HrVBq0o2gOB87o3hojAytamrwIdyTc5tyROyM0lVj4uz00UqeYY5xWVC3qybYVnhWYkJvu2HPshzxKHP80EJ1iMpcJpKBd8jN9RjY6ibLaDJkbp70tyEvJ806WZc_56Ll___plfkQY6KnwqW8x2ytbru_Wsy61y_G_8_7MbF8xumzh2w |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEYIL70KggJG4gbtO4sT2sZRWi2hXqBSJm-XYTlnROkuzOXDllzN2ki3L49Jr7CROZsbzjTzzDUKvDOWh9Ykm2qWChFJNIk1qSSYEs44DJKlD7fD0E599Ee_2A01OOdbCxKR9U813_Nn5jp9_jbmVi3MzGfPEJh-P9kLZC-BgOdlA18Fgaf5blN5zemeSpXKokaG5mLTgp0ItWcZIycFNEbHmhyJd_78w5t-pkn-cl0Y3dHDnqh9wF90egCfe7cfvoWvO30c3-laUPx6gn8dN1bVLfMn-jZsaW-cWeGgscUqCx7M40mCOJUse9y2oWwzgF7cdbDzwAKy9xaCZDgdmcg-bSAD7GO6zc9M_2-OqO_uGj2e7pHXfcUhUfYg-H-yf7E3J0J-BGBDqkmQOdgdTOFbJ4NQg9GFc0Fqn1gAKdGnJDS81lxWEhIBSeBGwJewwIBrpUk3zLbTpG-8eI1wC0IDIqbaZzpmzVla5M0LUlhW2FilN0OtRWmrR03CoeHyeC9XLVoFsVZStEgl6GwS6mhkotOOF5uJUDXJQshQ1gD-XOa0Zz7WghtoSwi9bZ8wULEHbozqowa5blVPB0lCOXCTo5WoYLDIcs2jvmq6fEyiSGMx51GvPaiV5-E2FhO8Ra3q1ttT1EdChyPo96kyC3owqeLmu__-LJ1d_0wt0c3pydKgO388-PEW3smA9lJOMbaPN5UXnnqGN1nbPo-39AnFGMn4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL78JCASNxAzdO4sQ2t9J2VQSsqgISN8uxnbKidZZmc-DKL2fsJFuWxwWuiZPYmRnPN_LMNwg9M5SH1ieaaJcKEko1iTSpJZkQzDoOkKQOtcOH7_nsk9g_CDQ5L8damJi0b6r5jj892_HzzzG3cnFmkjFPLDl6txfKXgAHy2Rh62QDXQajpcVPkXrP651JlsqhTobmImnBV4V6soyRkoOrImLNF0XK_j_hzN_TJX85M42uaHrjfxZxE10fACje7cfcQpecv42u9C0pv91B34-bqmuX-IIFHDc1ts4t8NBg4oQEz2dxpMMcS5c87ltRtxhAMG472IDgBVh7i0FDHQ4M5R42kwD6MTxn56Z_t8dVd_oFH892Seu-4pCwehd9nB582DskQ58GYkC4S5I52CVM4Vglg3ODEIhxQWudWgNo0KUlN7zUXFYQGgJa4UXAmLDTgHikSzXNt9Cmb7y7j3AJgAMiqNpmOmfOWlnlzghRW1bYWqR0gp6PElOLno5DxWP0XKhevgrkq6J8lZigV0Goq5GBSjteaM5P1CALJUtRAwh0mdOa8VwLaqgtIQyzdcZMwSZoe1QJNdh3q3IqWBrKkosJerq6DZYZjlu0d03XjwlUSQzG3Os1aDWTPPymQsJ6xJpurU11_Q7oUWT_HvVmgl6Mangxr7__iwf__qUn6OrR_lS9fT178xBdy4IBUU4yto02l-ede4Q2Wts9jub3Aw8SNP4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+evaluation+of+deep+learning-based+representation+methods+for+survival+and+gene+essentiality+prediction+on+bulk+RNA-seq+data&rft.jtitle=Scientific+reports&rft.au=Gross%2C+Baptiste&rft.au=Dauvin%2C+Antonin&rft.au=Cabeli%2C+Vincent&rft.au=Kmetzsch%2C+Virgilio&rft.date=2024-07-24&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-67023-8&rft.externalDocID=10_1038_s41598_024_67023_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |