Modeling large protein–glycosaminoglycan complexes using a fragment‐based approach

Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine....

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 40; no. 14; pp. 1429 - 1439
Main Authors: Samsonov, Sergey A., Zacharias, Martin, Chauvot de Beauchene, Isaure
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 30-05-2019
Wiley Subscription Services, Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc. The high flexibility of GAGs makes their conformational sampling challenging above a GAG certain length, which is a main bottleneck in GAG–protein docking. A fragment‐based approach can tackle this problem in successive steps: local sampling by flexible fragment docking, assembly of the docked fragments based on sequence and spacial compatibility, and merging the assembled fragments. This method reveals a better initial placement of long GAGs on a protein binding site than classical docking methods.
AbstractList Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc.
Glycosaminoglycans (GAGs), a major constituant of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on protein-GAG interactions is crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG-protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG-specific computational tools. We present for the first-time an automated fragment-based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full-ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems.
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc. The high flexibility of GAGs makes their conformational sampling challenging above a GAG certain length, which is a main bottleneck in GAG–protein docking. A fragment‐based approach can tackle this problem in successive steps: local sampling by flexible fragment docking, assembly of the docked fragments based on sequence and spacial compatibility, and merging the assembled fragments. This method reveals a better initial placement of long GAGs on a protein binding site than classical docking methods.
Author Samsonov, Sergey A.
Zacharias, Martin
Chauvot de Beauchene, Isaure
Author_xml – sequence: 1
  givenname: Sergey A.
  orcidid: 0000-0002-5166-4849
  surname: Samsonov
  fullname: Samsonov, Sergey A.
  email: sergey.samsonov@ug.edu.pl
  organization: University of Gdańsk
– sequence: 2
  givenname: Martin
  surname: Zacharias
  fullname: Zacharias, Martin
  organization: Technical University of Munich
– sequence: 3
  givenname: Isaure
  orcidid: 0000-0002-7035-3042
  surname: Chauvot de Beauchene
  fullname: Chauvot de Beauchene, Isaure
  email: isaure.chauvot-de-beauchene@loria.fr
  organization: CNRS, LORIA (CNRS, Inria NGE, Université de Lorraine)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30768805$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02088192$$DView record in HAL
BookMark eNp1kLtOwzAUQC0EglIY-AEUiYkh5dpJbGdEFU8VsQBis24cp02VxCVugW58AhJ_yJfgEigTky3r3KPrs0s2G9sYQg4oDCgAO5lqPWCJSMUG6VFIeZhK8bhJekBTFkqe0B2y69wUAKKEx9tkJwLBpYSkRx5ubG6qshkHFbZjE8xaOzdl8_n2Ma6W2jqsy8aurtgE2tazyrwaFyzcagKDosVxbZr559t7hs7kAc68APVkj2wVWDmz_3P2yf352d3wMhzdXlwNT0ehjhkTIcs1x8ykcQQszoFn3OiYM8GTBJFRGqPO8jTXRkgWRQK5jDH3E_6vGBcooz457rwTrNSsLWtsl8piqS5PR2r1Bgyk9BmeqWePOtav-LQwbq6mdtE2fj3FGICIBEvZn1G31rnWFGstBbWqrXxt9V3bs4c_xkVWm3xN_ub1wEkHvJSVWf5vUtfDYaf8Ak2kjMQ
CitedBy_id crossref_primary_10_3390_biom11050739
crossref_primary_10_3390_polym15030676
crossref_primary_10_1021_acs_chemrev_2c00060
crossref_primary_10_3390_biom11091349
crossref_primary_10_1021_acs_jcim_0c00373
crossref_primary_10_1016_j_sbi_2022_102332
crossref_primary_10_1002_jcc_26496
crossref_primary_10_1021_acs_jcim_2c01472
crossref_primary_10_3390_ijms241813831
crossref_primary_10_1021_acs_jcim_1c00664
crossref_primary_10_1021_acs_jpcb_1c00910
crossref_primary_10_1093_glycob_cwab025
crossref_primary_10_1515_hsz_2021_0119
crossref_primary_10_3390_ijms20205021
Cites_doi 10.1021/ci1003366
10.1038/nchembio810
10.1146/annurev.biochem.68.1.729
10.1093/glycob/cww055
10.1073/pnas.1102962108
10.1023/B:GLYC.0000043747.87325.5e
10.1093/glycob/cwr095
10.1002/jcc.20820
10.1021/jm060092o
10.1007/s10719-016-9745-4
10.1021/ci500669w
10.1016/j.carres.2013.09.005
10.1016/j.ymeth.2015.02.011
10.1109/TCBB.2010.70
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
10.1002/jcc.20290
10.1038/35008000
10.1073/pnas.94.26.14683
10.1016/j.carres.2006.12.019
10.1016/S0304-3940(99)00432-2
10.1083/jcb.122.1.257
10.1002/jcc.540160106
10.1126/science.271.5252.1116
10.1093/glycob/cwr120
10.1021/ci4006047
10.1093/bioinformatics/btp036
10.1093/nar/gkw328
10.1007/s10856-015-5563-7
10.1128/IAI.65.1.1-8.1997
10.1083/jcb.200604035
10.1074/jbc.M111.337030
10.1093/glycob/cwu045
10.1002/prot.24343
10.1016/j.molimm.2009.09.031
10.1371/journal.pcbi.1004697
10.1074/jbc.M112.368241
10.1021/ja905029t
10.1021/bm5006855
10.1073/pnas.1715093115
10.1021/ja983319g
10.1016/j.jmgm.2013.01.001
10.1021/bm400067g
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1002/jcc.25797
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

PubMed

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Computer Science
EISSN 1096-987X
EndPage 1439
ExternalDocumentID oai_HAL_hal_02088192v1
10_1002_jcc_25797
30768805
JCC25797
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAMNL
AAYXX
CITATION
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c4227-2dc6abe943024d06b6ec4627655aa2114acbd9dce782337a684ad6ab579a4fa83
IEDL.DBID 33P
ISSN 0192-8651
IngestDate Fri Nov 15 06:44:23 EST 2024
Tue Nov 19 05:13:30 EST 2024
Thu Nov 21 22:18:53 EST 2024
Sat Sep 28 08:27:13 EDT 2024
Sat Aug 24 00:57:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords glycans modeling
glycosaminoglycans-protein complex
glycosaminoglycans docking
fragment-based docking
Glycosaminoglycans-protein complex
Glycosaminoglycans docking
Language English
License 2019 Wiley Periodicals, Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4227-2dc6abe943024d06b6ec4627655aa2114acbd9dce782337a684ad6ab579a4fa83
ORCID 0000-0002-5166-4849
0000-0002-7035-3042
OpenAccessLink https://hal.science/hal-02088192
PMID 30768805
PQID 2200737292
PQPubID 48816
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02088192v1
proquest_journals_2200737292
crossref_primary_10_1002_jcc_25797
pubmed_primary_30768805
wiley_primary_10_1002_jcc_25797_JCC25797
PublicationCentury 2000
PublicationDate May 30, 2019
PublicationDateYYYYMMDD 2019-05-30
PublicationDate_xml – month: 05
  year: 2019
  text: May 30, 2019
  day: 30
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2004; 21
2009; 47
2009; 25
24
2012; 287
1997; 65
1995; 16
2013; 40
2007; 342
2015; 55
2006; 174
1999; 68
1999; 121
2006; 2
2009; 131
2005; 26
1999; 269
2013; 381
2017; 114
2011; 8
2016; 12
1993; 122
2015; 89
2015; 26
1997; 94
2011; 108
1998; 19
2013; 14
2008; 29
2006; 49
2000; 404
2011; 51
2017; 34
2014; 15
1996; 271
2013; 81
2016; 26
2012; 22
2016; 8
2014; 54
2016; 44
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Nivedha A. (e_1_2_7_41_1) 2016; 8
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 22
  start-page: 35
  year: 2012
  publication-title: Glycobiology
– volume: 269
  start-page: 125
  year: 1999
  publication-title: Neurosci. Lett.
– volume: 108
  start-page: 9747
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 1639
  year: 1998
  publication-title: J. Comput. Chem.
– volume: 29
  start-page: 622
  year: 2008
  publication-title: J. Comput. Chem.
– volume: 94
  start-page: 14683
  year: 1997
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 44
  start-page: 4565
  year: 2016
  end-page: 4580
– volume: 404
  start-page: 725
  year: 2000
  publication-title: Nature
– volume: 22
  start-page: 134
  year: 2012
  publication-title: Glycobiology
– volume: 121
  start-page: 3004
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 381
  start-page: 133
  year: 2013
  publication-title: Carbohydr. Res.
– volume: 287
  start-page: 10853
  year: 2012
  publication-title: J. Biol. Chem.
– volume: 54
  start-page: 582
  year: 2014
  publication-title: J. Chem. Inf. Model.
– volume: 25
  start-page: 621
  year: 2009
  publication-title: Bioinformatics
– volume: 122
  start-page: 257
  year: 1993
  publication-title: J. Cell Biol.
– volume: 89
  start-page: 45
  year: 2015
  publication-title: Methods
– volume: 271
  start-page: 1116
  year: 1996
  publication-title: Science
– volume: 2
  start-page: 467
  year: 2006
  publication-title: Nat. Chem. Biol.
– volume: 26
  start-page: 1
  year: 2016
  publication-title: Glycobiology
– volume: 8
  start-page: 1120
  year: 2011
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 8
  start-page: 583
  year: 2016
  publication-title: J. Chem. Theory Comput
– volume: 40
  start-page: 80
  year: 2013
  publication-title: J. Mol. Graph. Model.
– volume: 65
  start-page: 1
  year: 1997
  publication-title: Infect. Immun.
– volume: 81
  start-page: 1874
  year: 2013
– volume: 68
  start-page: 729
  year: 1999
  publication-title: Annu. Rev. Biochem.
– volume: 16
  start-page: 56
  year: 1995
  publication-title: J. Comput. Chem.
– volume: 34
  start-page: 427
  year: 2017
  publication-title: Glycoconj. J.
– volume: 47
  start-page: 233
  year: 2009
  publication-title: Mol. Immunol.
– volume: 114
  start-page: 13697
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 232
  year: 2015
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 12
  year: 2016
– volume: 49
  start-page: 3553
  year: 2006
  publication-title: J. Med. Chem.
– volume: 287
  start-page: 22691
  year: 2012
  publication-title: J. Biol. Chem.
– volume: 51
  start-page: 335
  year: 2011
  publication-title: J. Chem. Inf. Model.
– volume: 342
  start-page: 430
  year: 2007
  publication-title: Carbohydr. Res.
– volume: 131
  start-page: 12430
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3083
  year: 2014
  publication-title: Biomacromolecules
– volume: 26
  start-page: 1668
  year: 2005
  publication-title: J. Comput. Chem.
– volume: 55
  start-page: 114
  year: 2015
  publication-title: J. Chem. Inf. Model.
– volume: 174
  start-page: 323
  year: 2006
  publication-title: J. Cell Biol.
– volume: 21
  start-page: 47
  year: 2004
  publication-title: Glycoconj. J.
– volume: 14
  start-page: 1149
  year: 2013
  publication-title: Biomacromolecules
– volume: 24
  start-page: 840
  publication-title: Glycobiology
– ident: e_1_2_7_23_1
  doi: 10.1021/ci1003366
– ident: e_1_2_7_11_1
  doi: 10.1038/nchembio810
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.biochem.68.1.729
– ident: e_1_2_7_15_1
  doi: 10.1093/glycob/cww055
– volume: 8
  start-page: 583
  year: 2016
  ident: e_1_2_7_41_1
  publication-title: J. Chem. Theory Comput
  contributor:
    fullname: Nivedha A.
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1102962108
– ident: e_1_2_7_3_1
  doi: 10.1023/B:GLYC.0000043747.87325.5e
– ident: e_1_2_7_16_1
  doi: 10.1093/glycob/cwr095
– ident: e_1_2_7_34_1
  doi: 10.1002/jcc.20820
– ident: e_1_2_7_40_1
  doi: 10.1021/jm060092o
– ident: e_1_2_7_31_1
  doi: 10.1007/s10719-016-9745-4
– ident: e_1_2_7_38_1
  doi: 10.1021/ci500669w
– ident: e_1_2_7_37_1
  doi: 10.1016/j.carres.2013.09.005
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ymeth.2015.02.011
– ident: e_1_2_7_29_1
  doi: 10.1109/TCBB.2010.70
– ident: e_1_2_7_19_1
  doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
– ident: e_1_2_7_36_1
  doi: 10.1002/jcc.20290
– ident: e_1_2_7_1_1
  doi: 10.1038/35008000
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.94.26.14683
– ident: e_1_2_7_14_1
  doi: 10.1016/j.carres.2006.12.019
– ident: e_1_2_7_10_1
  doi: 10.1016/S0304-3940(99)00432-2
– ident: e_1_2_7_13_1
  doi: 10.1083/jcb.122.1.257
– ident: e_1_2_7_35_1
  doi: 10.1002/jcc.540160106
– ident: e_1_2_7_43_1
  doi: 10.1126/science.271.5252.1116
– ident: e_1_2_7_21_1
  doi: 10.1093/glycob/cwr120
– ident: e_1_2_7_26_1
  doi: 10.1021/ci4006047
– ident: e_1_2_7_27_1
  doi: 10.1093/bioinformatics/btp036
– ident: e_1_2_7_32_1
  doi: 10.1093/nar/gkw328
– ident: e_1_2_7_5_1
  doi: 10.1007/s10856-015-5563-7
– ident: e_1_2_7_9_1
  doi: 10.1128/IAI.65.1.1-8.1997
– ident: e_1_2_7_2_1
  doi: 10.1083/jcb.200604035
– ident: e_1_2_7_6_1
  doi: 10.1074/jbc.M111.337030
– ident: e_1_2_7_30_1
  doi: 10.1093/glycob/cwu045
– ident: e_1_2_7_42_1
  doi: 10.1002/prot.24343
– ident: e_1_2_7_18_1
  doi: 10.1016/j.molimm.2009.09.031
– ident: e_1_2_7_33_1
  doi: 10.1371/journal.pcbi.1004697
– ident: e_1_2_7_7_1
  doi: 10.1074/jbc.M112.368241
– ident: e_1_2_7_28_1
  doi: 10.1021/ja905029t
– ident: e_1_2_7_22_1
  doi: 10.1021/bm5006855
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1715093115
– ident: e_1_2_7_24_1
  doi: 10.1021/ja983319g
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jmgm.2013.01.001
– ident: e_1_2_7_39_1
  doi: 10.1021/bm400067g
SSID ssj0003564
Score 2.4121764
Snippet Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on...
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on...
Glycosaminoglycans (GAGs), a major constituant of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1429
SubjectTerms Binding sites
Biochemistry, Molecular Biology
Bioinformatics
Chemical Sciences
Cheminformatics
Computer Science
Docking
Fragmentation
fragment‐based docking
glycans modeling
Glycosaminoglycans
glycosaminoglycans docking
glycosaminoglycans‐protein complex
Life Sciences
Molecular dynamics
Proteins
Signaling
Structural Biology
Title Modeling large protein–glycosaminoglycan complexes using a fragment‐based approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25797
https://www.ncbi.nlm.nih.gov/pubmed/30768805
https://www.proquest.com/docview/2200737292
https://hal.science/hal-02088192
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62F734flSrBPHgZe02m33hqdSWIiKCD7wts0laK3UrXSt6608Q_If9JWay3ZUiguAt7Cb7yOTxzWTmG0KOJCibScWt2AZucekJC8IwtlxgUgP2uopNFH_n2r-8D85aSJNzmsfCZPwQhcENZ4ZZr3GCQ5zWvklDH4U40eMtxEhyrSWY8A3nqliFHTejjtIIxgo8t56zCtmsVrSc24tKD-gJ-RNmzqNWs-20V_71watkeYY2aSMbHmtkQSXrZLGZJ3nbIHeYCw0j0ukAXcKpoW3oJ9PJZ2_wLoYpPPWTIRYhocb7XL2plKKzfI8C7Y6gh9bF6eQDd0NJc4byTXLbbt00O9Ys1YIlOGO-xaTwIFbIxc64tL3YU4J7zPdcF0DriBxELEMplAYUjuODF3CQuoX-HeBdCJwtUk6GidohtOvXYzzsE4z7XCuDYZdpyOMGgQyEr9XJCjnMOz16zhg1oow7mUW6iyLTRbqSFkdxHzmwO42LCK9hVlFkcXutV0g1l1Y0m3lpxND4imeRrEK2MwkWj3Hw2DGw3Qo5NoL6_f3RebNpCrt_r7pHljSaCo1rgV0l5ZfRWO2TUirHB2ZofgH98-V3
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5cPejF92N9BvHgpdpN07QFL7Iqq64i-MBbSJPsuqJdcVX05k8Q_If-EjPptiIiCN5Cm_SRmSRfJjPfAKxpaXyqDfNSXzKPaa48mSSpF0qqLWCvmdRF8TdOo-PLeGcXaXK2iliYnB-iNLjhyHDzNQ5wNEhvfrGGXiu1YRUuiSowxLhVRAzgCE7KeTgIc_Ioi2G8mIe1glfIp5tl02-rUeUKfSF_As3vuNUtPHtj__vkcRjtA06ynWvIBAyYbBKG60Wetym4wHRoGJRObtArnDjmhk728frevnlR3Z687WRdLMqMOAd082x6BP3l20SS1r1so4Hx4_UNF0RNCpLyaTjf2z2rN7x-tgVPMUojj2rFZWqQjp0y7fOUG8U4jXgYSmm3iUyqVCdaGYspgiCSPGZS2xb2dyRryTiYgcGsm5k5IK2oluJ5n6IsYnY_mLSoRT1hHOtYRXZHWYXVotfFXU6qIXL6ZCpsFwnXRbaSlUd5H2mwG9tNgdcwsSgSuT3VqrBYiEv0B19PULS_4nEkrcJsLsLyMQGePMZ-WIV1J6nf3y8O6nVXmP971RUYbpwdNUVz__hwAUYsuEqcp4G_CIMP949mCSo9_bjs9PQTgVnpnw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5cBfXF-1jPID74Urebphc-yeqyHojggW8hTdJV0a64Kvq2P0HwH-4vMZNuKyKC4Ftokx4zOb5JZr4B2FRCu1Rp5iSuYA5TgXREHCeOL6gygL2uExvF3zoLT66ivX2kydkpYmFyfohyww1Hhp2vcYA_qLT2RRp6K-W26W9xWIERZmA4Eud73mk5DXt-zh1lIIwTBX69oBVyaa1s-m0xqlyjK-RPnPkdttp1pzn5ry-egokB3CS7ef-YhiGdzcBYo8jyNguXmAwNQ9LJHfqEE8vbcJP1ex_tuzfZ6Yr7m6yDRZER636uX3WXoLd8mwiSPoo2bi_2e--4HCpSUJTPwUVz_7zRcga5FhzJKA0dqmQgEo1k7JQpN0gCLVlAw8D3hTBGIhMyUbGS2iAKzwtFEDGhTAvzO4KlIvLmYTjrZHoRSBrWEzztk5SFzFiDcUoN5vGjSEUyNPZkFTYKofOHnFKD5-TJlBsRcSsiU8moo7yPJNit3WOO1zCtKNK4vdSrsFJoiw-GXpdT3H3Fw0hahYVcg-VjPDx3jFy_CltWUb-_nx82Graw9Peq6zB6utfkxwcnR8swbpBVbN0M3BUYfnp81qtQ6arnNdtLPwG_g-hF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+large+protein%E2%80%93glycosaminoglycan+complexes+using+a+fragment%E2%80%90based+approach&rft.jtitle=Journal+of+computational+chemistry&rft.au=Samsonov%2C+Sergey+A.&rft.au=Zacharias%2C+Martin&rft.au=Chauvot+de+Beauchene%2C+Isaure&rft.date=2019-05-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=40&rft.issue=14&rft.spage=1429&rft.epage=1439&rft_id=info:doi/10.1002%2Fjcc.25797&rft.externalDBID=10.1002%252Fjcc.25797&rft.externalDocID=JCC25797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon