Modeling large protein–glycosaminoglycan complexes using a fragment‐based approach
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine....
Saved in:
Published in: | Journal of computational chemistry Vol. 40; no. 14; pp. 1429 - 1439 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
30-05-2019
Wiley Subscription Services, Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc.
The high flexibility of GAGs makes their conformational sampling challenging above a GAG certain length, which is a main bottleneck in GAG–protein docking. A fragment‐based approach can tackle this problem in successive steps: local sampling by flexible fragment docking, assembly of the docked fragments based on sequence and spacial compatibility, and merging the assembled fragments. This method reveals a better initial placement of long GAGs on a protein binding site than classical docking methods. |
---|---|
AbstractList | Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc. Glycosaminoglycans (GAGs), a major constituant of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on protein-GAG interactions is crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG-protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG-specific computational tools. We present for the first-time an automated fragment-based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full-ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG‐specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment‐based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full‐ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc. The high flexibility of GAGs makes their conformational sampling challenging above a GAG certain length, which is a main bottleneck in GAG–protein docking. A fragment‐based approach can tackle this problem in successive steps: local sampling by flexible fragment docking, assembly of the docked fragments based on sequence and spacial compatibility, and merging the assembled fragments. This method reveals a better initial placement of long GAGs on a protein binding site than classical docking methods. |
Author | Samsonov, Sergey A. Zacharias, Martin Chauvot de Beauchene, Isaure |
Author_xml | – sequence: 1 givenname: Sergey A. orcidid: 0000-0002-5166-4849 surname: Samsonov fullname: Samsonov, Sergey A. email: sergey.samsonov@ug.edu.pl organization: University of Gdańsk – sequence: 2 givenname: Martin surname: Zacharias fullname: Zacharias, Martin organization: Technical University of Munich – sequence: 3 givenname: Isaure orcidid: 0000-0002-7035-3042 surname: Chauvot de Beauchene fullname: Chauvot de Beauchene, Isaure email: isaure.chauvot-de-beauchene@loria.fr organization: CNRS, LORIA (CNRS, Inria NGE, Université de Lorraine) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30768805$$D View this record in MEDLINE/PubMed https://hal.science/hal-02088192$$DView record in HAL |
BookMark | eNp1kLtOwzAUQC0EglIY-AEUiYkh5dpJbGdEFU8VsQBis24cp02VxCVugW58AhJ_yJfgEigTky3r3KPrs0s2G9sYQg4oDCgAO5lqPWCJSMUG6VFIeZhK8bhJekBTFkqe0B2y69wUAKKEx9tkJwLBpYSkRx5ubG6qshkHFbZjE8xaOzdl8_n2Ma6W2jqsy8aurtgE2tazyrwaFyzcagKDosVxbZr559t7hs7kAc68APVkj2wVWDmz_3P2yf352d3wMhzdXlwNT0ehjhkTIcs1x8ykcQQszoFn3OiYM8GTBJFRGqPO8jTXRkgWRQK5jDH3E_6vGBcooz457rwTrNSsLWtsl8piqS5PR2r1Bgyk9BmeqWePOtav-LQwbq6mdtE2fj3FGICIBEvZn1G31rnWFGstBbWqrXxt9V3bs4c_xkVWm3xN_ub1wEkHvJSVWf5vUtfDYaf8Ak2kjMQ |
CitedBy_id | crossref_primary_10_3390_biom11050739 crossref_primary_10_3390_polym15030676 crossref_primary_10_1021_acs_chemrev_2c00060 crossref_primary_10_3390_biom11091349 crossref_primary_10_1021_acs_jcim_0c00373 crossref_primary_10_1016_j_sbi_2022_102332 crossref_primary_10_1002_jcc_26496 crossref_primary_10_1021_acs_jcim_2c01472 crossref_primary_10_3390_ijms241813831 crossref_primary_10_1021_acs_jcim_1c00664 crossref_primary_10_1021_acs_jpcb_1c00910 crossref_primary_10_1093_glycob_cwab025 crossref_primary_10_1515_hsz_2021_0119 crossref_primary_10_3390_ijms20205021 |
Cites_doi | 10.1021/ci1003366 10.1038/nchembio810 10.1146/annurev.biochem.68.1.729 10.1093/glycob/cww055 10.1073/pnas.1102962108 10.1023/B:GLYC.0000043747.87325.5e 10.1093/glycob/cwr095 10.1002/jcc.20820 10.1021/jm060092o 10.1007/s10719-016-9745-4 10.1021/ci500669w 10.1016/j.carres.2013.09.005 10.1016/j.ymeth.2015.02.011 10.1109/TCBB.2010.70 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B 10.1002/jcc.20290 10.1038/35008000 10.1073/pnas.94.26.14683 10.1016/j.carres.2006.12.019 10.1016/S0304-3940(99)00432-2 10.1083/jcb.122.1.257 10.1002/jcc.540160106 10.1126/science.271.5252.1116 10.1093/glycob/cwr120 10.1021/ci4006047 10.1093/bioinformatics/btp036 10.1093/nar/gkw328 10.1007/s10856-015-5563-7 10.1128/IAI.65.1.1-8.1997 10.1083/jcb.200604035 10.1074/jbc.M111.337030 10.1093/glycob/cwu045 10.1002/prot.24343 10.1016/j.molimm.2009.09.031 10.1371/journal.pcbi.1004697 10.1074/jbc.M112.368241 10.1021/ja905029t 10.1021/bm5006855 10.1073/pnas.1715093115 10.1021/ja983319g 10.1016/j.jmgm.2013.01.001 10.1021/bm400067g |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION JQ2 1XC VOOES |
DOI | 10.1002/jcc.25797 |
DatabaseName | PubMed CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Computer Science |
EISSN | 1096-987X |
EndPage | 1439 |
ExternalDocumentID | oai_HAL_hal_02088192v1 10_1002_jcc_25797 30768805 JCC25797 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAMNL AAYXX CITATION JQ2 1XC VOOES |
ID | FETCH-LOGICAL-c4227-2dc6abe943024d06b6ec4627655aa2114acbd9dce782337a684ad6ab579a4fa83 |
IEDL.DBID | 33P |
ISSN | 0192-8651 |
IngestDate | Fri Nov 15 06:44:23 EST 2024 Tue Nov 19 05:13:30 EST 2024 Thu Nov 21 22:18:53 EST 2024 Sat Sep 28 08:27:13 EDT 2024 Sat Aug 24 00:57:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | glycans modeling glycosaminoglycans-protein complex glycosaminoglycans docking fragment-based docking Glycosaminoglycans-protein complex Glycosaminoglycans docking |
Language | English |
License | 2019 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4227-2dc6abe943024d06b6ec4627655aa2114acbd9dce782337a684ad6ab579a4fa83 |
ORCID | 0000-0002-5166-4849 0000-0002-7035-3042 |
OpenAccessLink | https://hal.science/hal-02088192 |
PMID | 30768805 |
PQID | 2200737292 |
PQPubID | 48816 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02088192v1 proquest_journals_2200737292 crossref_primary_10_1002_jcc_25797 pubmed_primary_30768805 wiley_primary_10_1002_jcc_25797_JCC25797 |
PublicationCentury | 2000 |
PublicationDate | May 30, 2019 |
PublicationDateYYYYMMDD | 2019-05-30 |
PublicationDate_xml | – month: 05 year: 2019 text: May 30, 2019 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2004; 21 2009; 47 2009; 25 24 2012; 287 1997; 65 1995; 16 2013; 40 2007; 342 2015; 55 2006; 174 1999; 68 1999; 121 2006; 2 2009; 131 2005; 26 1999; 269 2013; 381 2017; 114 2011; 8 2016; 12 1993; 122 2015; 89 2015; 26 1997; 94 2011; 108 1998; 19 2013; 14 2008; 29 2006; 49 2000; 404 2011; 51 2017; 34 2014; 15 1996; 271 2013; 81 2016; 26 2012; 22 2016; 8 2014; 54 2016; 44 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Nivedha A. (e_1_2_7_41_1) 2016; 8 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 22 start-page: 35 year: 2012 publication-title: Glycobiology – volume: 269 start-page: 125 year: 1999 publication-title: Neurosci. Lett. – volume: 108 start-page: 9747 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 1639 year: 1998 publication-title: J. Comput. Chem. – volume: 29 start-page: 622 year: 2008 publication-title: J. Comput. Chem. – volume: 94 start-page: 14683 year: 1997 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 4565 year: 2016 end-page: 4580 – volume: 404 start-page: 725 year: 2000 publication-title: Nature – volume: 22 start-page: 134 year: 2012 publication-title: Glycobiology – volume: 121 start-page: 3004 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 381 start-page: 133 year: 2013 publication-title: Carbohydr. Res. – volume: 287 start-page: 10853 year: 2012 publication-title: J. Biol. Chem. – volume: 54 start-page: 582 year: 2014 publication-title: J. Chem. Inf. Model. – volume: 25 start-page: 621 year: 2009 publication-title: Bioinformatics – volume: 122 start-page: 257 year: 1993 publication-title: J. Cell Biol. – volume: 89 start-page: 45 year: 2015 publication-title: Methods – volume: 271 start-page: 1116 year: 1996 publication-title: Science – volume: 2 start-page: 467 year: 2006 publication-title: Nat. Chem. Biol. – volume: 26 start-page: 1 year: 2016 publication-title: Glycobiology – volume: 8 start-page: 1120 year: 2011 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 8 start-page: 583 year: 2016 publication-title: J. Chem. Theory Comput – volume: 40 start-page: 80 year: 2013 publication-title: J. Mol. Graph. Model. – volume: 65 start-page: 1 year: 1997 publication-title: Infect. Immun. – volume: 81 start-page: 1874 year: 2013 – volume: 68 start-page: 729 year: 1999 publication-title: Annu. Rev. Biochem. – volume: 16 start-page: 56 year: 1995 publication-title: J. Comput. Chem. – volume: 34 start-page: 427 year: 2017 publication-title: Glycoconj. J. – volume: 47 start-page: 233 year: 2009 publication-title: Mol. Immunol. – volume: 114 start-page: 13697 year: 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 232 year: 2015 publication-title: J. Mater. Sci. Mater. Med. – volume: 12 year: 2016 – volume: 49 start-page: 3553 year: 2006 publication-title: J. Med. Chem. – volume: 287 start-page: 22691 year: 2012 publication-title: J. Biol. Chem. – volume: 51 start-page: 335 year: 2011 publication-title: J. Chem. Inf. Model. – volume: 342 start-page: 430 year: 2007 publication-title: Carbohydr. Res. – volume: 131 start-page: 12430 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3083 year: 2014 publication-title: Biomacromolecules – volume: 26 start-page: 1668 year: 2005 publication-title: J. Comput. Chem. – volume: 55 start-page: 114 year: 2015 publication-title: J. Chem. Inf. Model. – volume: 174 start-page: 323 year: 2006 publication-title: J. Cell Biol. – volume: 21 start-page: 47 year: 2004 publication-title: Glycoconj. J. – volume: 14 start-page: 1149 year: 2013 publication-title: Biomacromolecules – volume: 24 start-page: 840 publication-title: Glycobiology – ident: e_1_2_7_23_1 doi: 10.1021/ci1003366 – ident: e_1_2_7_11_1 doi: 10.1038/nchembio810 – ident: e_1_2_7_8_1 doi: 10.1146/annurev.biochem.68.1.729 – ident: e_1_2_7_15_1 doi: 10.1093/glycob/cww055 – volume: 8 start-page: 583 year: 2016 ident: e_1_2_7_41_1 publication-title: J. Chem. Theory Comput contributor: fullname: Nivedha A. – ident: e_1_2_7_12_1 doi: 10.1073/pnas.1102962108 – ident: e_1_2_7_3_1 doi: 10.1023/B:GLYC.0000043747.87325.5e – ident: e_1_2_7_16_1 doi: 10.1093/glycob/cwr095 – ident: e_1_2_7_34_1 doi: 10.1002/jcc.20820 – ident: e_1_2_7_40_1 doi: 10.1021/jm060092o – ident: e_1_2_7_31_1 doi: 10.1007/s10719-016-9745-4 – ident: e_1_2_7_38_1 doi: 10.1021/ci500669w – ident: e_1_2_7_37_1 doi: 10.1016/j.carres.2013.09.005 – ident: e_1_2_7_20_1 doi: 10.1016/j.ymeth.2015.02.011 – ident: e_1_2_7_29_1 doi: 10.1109/TCBB.2010.70 – ident: e_1_2_7_19_1 doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B – ident: e_1_2_7_36_1 doi: 10.1002/jcc.20290 – ident: e_1_2_7_1_1 doi: 10.1038/35008000 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.94.26.14683 – ident: e_1_2_7_14_1 doi: 10.1016/j.carres.2006.12.019 – ident: e_1_2_7_10_1 doi: 10.1016/S0304-3940(99)00432-2 – ident: e_1_2_7_13_1 doi: 10.1083/jcb.122.1.257 – ident: e_1_2_7_35_1 doi: 10.1002/jcc.540160106 – ident: e_1_2_7_43_1 doi: 10.1126/science.271.5252.1116 – ident: e_1_2_7_21_1 doi: 10.1093/glycob/cwr120 – ident: e_1_2_7_26_1 doi: 10.1021/ci4006047 – ident: e_1_2_7_27_1 doi: 10.1093/bioinformatics/btp036 – ident: e_1_2_7_32_1 doi: 10.1093/nar/gkw328 – ident: e_1_2_7_5_1 doi: 10.1007/s10856-015-5563-7 – ident: e_1_2_7_9_1 doi: 10.1128/IAI.65.1.1-8.1997 – ident: e_1_2_7_2_1 doi: 10.1083/jcb.200604035 – ident: e_1_2_7_6_1 doi: 10.1074/jbc.M111.337030 – ident: e_1_2_7_30_1 doi: 10.1093/glycob/cwu045 – ident: e_1_2_7_42_1 doi: 10.1002/prot.24343 – ident: e_1_2_7_18_1 doi: 10.1016/j.molimm.2009.09.031 – ident: e_1_2_7_33_1 doi: 10.1371/journal.pcbi.1004697 – ident: e_1_2_7_7_1 doi: 10.1074/jbc.M112.368241 – ident: e_1_2_7_28_1 doi: 10.1021/ja905029t – ident: e_1_2_7_22_1 doi: 10.1021/bm5006855 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1715093115 – ident: e_1_2_7_24_1 doi: 10.1021/ja983319g – ident: e_1_2_7_17_1 doi: 10.1016/j.jmgm.2013.01.001 – ident: e_1_2_7_39_1 doi: 10.1021/bm400067g |
SSID | ssj0003564 |
Score | 2.4121764 |
Snippet | Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell‐signaling by binding specific proteins. Structural data on... Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on... Glycosaminoglycans (GAGs), a major constituant of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on... |
SourceID | hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1429 |
SubjectTerms | Binding sites Biochemistry, Molecular Biology Bioinformatics Chemical Sciences Cheminformatics Computer Science Docking Fragmentation fragment‐based docking glycans modeling Glycosaminoglycans glycosaminoglycans docking glycosaminoglycans‐protein complex Life Sciences Molecular dynamics Proteins Signaling Structural Biology |
Title | Modeling large protein–glycosaminoglycan complexes using a fragment‐based approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25797 https://www.ncbi.nlm.nih.gov/pubmed/30768805 https://www.proquest.com/docview/2200737292 https://hal.science/hal-02088192 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62F734flSrBPHgZe02m33hqdSWIiKCD7wts0laK3UrXSt6608Q_If9JWay3ZUiguAt7Cb7yOTxzWTmG0KOJCibScWt2AZucekJC8IwtlxgUgP2uopNFH_n2r-8D85aSJNzmsfCZPwQhcENZ4ZZr3GCQ5zWvklDH4U40eMtxEhyrSWY8A3nqliFHTejjtIIxgo8t56zCtmsVrSc24tKD-gJ-RNmzqNWs-20V_71watkeYY2aSMbHmtkQSXrZLGZJ3nbIHeYCw0j0ukAXcKpoW3oJ9PJZ2_wLoYpPPWTIRYhocb7XL2plKKzfI8C7Y6gh9bF6eQDd0NJc4byTXLbbt00O9Ys1YIlOGO-xaTwIFbIxc64tL3YU4J7zPdcF0DriBxELEMplAYUjuODF3CQuoX-HeBdCJwtUk6GidohtOvXYzzsE4z7XCuDYZdpyOMGgQyEr9XJCjnMOz16zhg1oow7mUW6iyLTRbqSFkdxHzmwO42LCK9hVlFkcXutV0g1l1Y0m3lpxND4imeRrEK2MwkWj3Hw2DGw3Qo5NoL6_f3RebNpCrt_r7pHljSaCo1rgV0l5ZfRWO2TUirHB2ZofgH98-V3 |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5cPejF92N9BvHgpdpN07QFL7Iqq64i-MBbSJPsuqJdcVX05k8Q_If-EjPptiIiCN5Cm_SRmSRfJjPfAKxpaXyqDfNSXzKPaa48mSSpF0qqLWCvmdRF8TdOo-PLeGcXaXK2iliYnB-iNLjhyHDzNQ5wNEhvfrGGXiu1YRUuiSowxLhVRAzgCE7KeTgIc_Ioi2G8mIe1glfIp5tl02-rUeUKfSF_As3vuNUtPHtj__vkcRjtA06ynWvIBAyYbBKG60Wetym4wHRoGJRObtArnDjmhk728frevnlR3Z687WRdLMqMOAd082x6BP3l20SS1r1so4Hx4_UNF0RNCpLyaTjf2z2rN7x-tgVPMUojj2rFZWqQjp0y7fOUG8U4jXgYSmm3iUyqVCdaGYspgiCSPGZS2xb2dyRryTiYgcGsm5k5IK2oluJ5n6IsYnY_mLSoRT1hHOtYRXZHWYXVotfFXU6qIXL6ZCpsFwnXRbaSlUd5H2mwG9tNgdcwsSgSuT3VqrBYiEv0B19PULS_4nEkrcJsLsLyMQGePMZ-WIV1J6nf3y8O6nVXmP971RUYbpwdNUVz__hwAUYsuEqcp4G_CIMP949mCSo9_bjs9PQTgVnpnw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5cBfXF-1jPID74Urebphc-yeqyHojggW8hTdJV0a64Kvq2P0HwH-4vMZNuKyKC4Ftokx4zOb5JZr4B2FRCu1Rp5iSuYA5TgXREHCeOL6gygL2uExvF3zoLT66ivX2kydkpYmFyfohyww1Hhp2vcYA_qLT2RRp6K-W26W9xWIERZmA4Eud73mk5DXt-zh1lIIwTBX69oBVyaa1s-m0xqlyjK-RPnPkdttp1pzn5ry-egokB3CS7ef-YhiGdzcBYo8jyNguXmAwNQ9LJHfqEE8vbcJP1ex_tuzfZ6Yr7m6yDRZER636uX3WXoLd8mwiSPoo2bi_2e--4HCpSUJTPwUVz_7zRcga5FhzJKA0dqmQgEo1k7JQpN0gCLVlAw8D3hTBGIhMyUbGS2iAKzwtFEDGhTAvzO4KlIvLmYTjrZHoRSBrWEzztk5SFzFiDcUoN5vGjSEUyNPZkFTYKofOHnFKD5-TJlBsRcSsiU8moo7yPJNit3WOO1zCtKNK4vdSrsFJoiw-GXpdT3H3Fw0hahYVcg-VjPDx3jFy_CltWUb-_nx82Graw9Peq6zB6utfkxwcnR8swbpBVbN0M3BUYfnp81qtQ6arnNdtLPwG_g-hF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+large+protein%E2%80%93glycosaminoglycan+complexes+using+a+fragment%E2%80%90based+approach&rft.jtitle=Journal+of+computational+chemistry&rft.au=Samsonov%2C+Sergey+A.&rft.au=Zacharias%2C+Martin&rft.au=Chauvot+de+Beauchene%2C+Isaure&rft.date=2019-05-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=40&rft.issue=14&rft.spage=1429&rft.epage=1439&rft_id=info:doi/10.1002%2Fjcc.25797&rft.externalDBID=10.1002%252Fjcc.25797&rft.externalDocID=JCC25797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |