The Optimal Diameter for Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by SD-OCT in Glaucoma

PURPOSE:To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the center of the optic nerve head (ONH) by spectral domain optical coherence tomography. PATIENTS AND METHODS:In this cross-sectional study, cas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of glaucoma Vol. 27; no. 12; pp. 1086 - 1093
Main Authors: Heindl, Ludwig M, Adler, Werner, El-Malahi, Ouahiba, Schaub, Friederike, Hermann, Manuel M, Dietlein, Thomas S, Cursiefen, Claus, Enders, Philip
Format: Journal Article
Language:English
Published: United States Copyright Wolters Kluwer Health, Inc. All rights reserved 01-12-2018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract PURPOSE:To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the center of the optic nerve head (ONH) by spectral domain optical coherence tomography. PATIENTS AND METHODS:In this cross-sectional study, case-control, 437 eyes diagnosed with glaucoma and 183 eyes of healthy controls underwent spectral domain optical coherence tomography of the ONH, visual field testing, and a clinical examination. cRNFL was measured by circular scans in 3.5 (C1), 4.1 (C2), and 4.7 mm (C3) distance from the center of the ONH. Receiver-operator characteristic analysis was used to assess diagnostic power to detect glaucoma; furthermore, patient-specific maximum localized damage was analyzed. RESULTS:In C1, mean global cRNFL was 70.03±18.2 μm in glaucomatous eyes and 93.46±9.9 μm in controls. Respectively, cRNFL in C2 was 61.39±14.9 and 80.43±8.4 μm as well as 55.25±12.8 and 70.70±6.7 μm in C3. Using receiver-operator characteristic analysis, the area under the curve (AUC) for cRNFL was 0.855 in C1, 0.850 in C2, and 0.843 in C3. Mean AUCs in ONH sectors ranged from 0.699 to 0.846 and did not exceed AUC of the best scoring global parameter. CONCLUSIONS:Comparing 3.5, 4.1, and 4.7 mm diameters for cRNFL measurement, the inner circle at 3.5 mm distance showed the highest AUC to differentiate glaucoma from healthy controls. However, levels of diagnostic power from wider circular scans were not significantly different and were comparable. Moreover, sectorial cRNFL measurements were nonsuperior. The use of the ONH sector with the highest localized damage seems not to increase diagnostic power.
AbstractList PURPOSE:To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the center of the optic nerve head (ONH) by spectral domain optical coherence tomography. PATIENTS AND METHODS:In this cross-sectional study, case-control, 437 eyes diagnosed with glaucoma and 183 eyes of healthy controls underwent spectral domain optical coherence tomography of the ONH, visual field testing, and a clinical examination. cRNFL was measured by circular scans in 3.5 (C1), 4.1 (C2), and 4.7 mm (C3) distance from the center of the ONH. Receiver-operator characteristic analysis was used to assess diagnostic power to detect glaucoma; furthermore, patient-specific maximum localized damage was analyzed. RESULTS:In C1, mean global cRNFL was 70.03±18.2 μm in glaucomatous eyes and 93.46±9.9 μm in controls. Respectively, cRNFL in C2 was 61.39±14.9 and 80.43±8.4 μm as well as 55.25±12.8 and 70.70±6.7 μm in C3. Using receiver-operator characteristic analysis, the area under the curve (AUC) for cRNFL was 0.855 in C1, 0.850 in C2, and 0.843 in C3. Mean AUCs in ONH sectors ranged from 0.699 to 0.846 and did not exceed AUC of the best scoring global parameter. CONCLUSIONS:Comparing 3.5, 4.1, and 4.7 mm diameters for cRNFL measurement, the inner circle at 3.5 mm distance showed the highest AUC to differentiate glaucoma from healthy controls. However, levels of diagnostic power from wider circular scans were not significantly different and were comparable. Moreover, sectorial cRNFL measurements were nonsuperior. The use of the ONH sector with the highest localized damage seems not to increase diagnostic power.
PURPOSETo evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the center of the optic nerve head (ONH) by spectral domain optical coherence tomography. PATIENTS AND METHODSIn this cross-sectional study, case-control, 437 eyes diagnosed with glaucoma and 183 eyes of healthy controls underwent spectral domain optical coherence tomography of the ONH, visual field testing, and a clinical examination. cRNFL was measured by circular scans in 3.5 (C1), 4.1 (C2), and 4.7 mm (C3) distance from the center of the ONH. Receiver-operator characteristic analysis was used to assess diagnostic power to detect glaucoma; furthermore, patient-specific maximum localized damage was analyzed. RESULTSIn C1, mean global cRNFL was 70.03±18.2 μm in glaucomatous eyes and 93.46±9.9 μm in controls. Respectively, cRNFL in C2 was 61.39±14.9 and 80.43±8.4 μm as well as 55.25±12.8 and 70.70±6.7 μm in C3. Using receiver-operator characteristic analysis, the area under the curve (AUC) for cRNFL was 0.855 in C1, 0.850 in C2, and 0.843 in C3. Mean AUCs in ONH sectors ranged from 0.699 to 0.846 and did not exceed AUC of the best scoring global parameter. CONCLUSIONSComparing 3.5, 4.1, and 4.7 mm diameters for cRNFL measurement, the inner circle at 3.5 mm distance showed the highest AUC to differentiate glaucoma from healthy controls. However, levels of diagnostic power from wider circular scans were not significantly different and were comparable. Moreover, sectorial cRNFL measurements were nonsuperior. The use of the ONH sector with the highest localized damage seems not to increase diagnostic power.
To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in three diameter sizes from the center of the optic nerve head (ONH) by spectral domain optical coherence tomography (SD-OCT). In this cross-sectional study, case-control, 437 eyes diagnosed with glaucoma and 183 eyes of healthy controls underwent SD-OCT of the ONH, visual field testing, and a clinical examination. Circumpapillary RNFL thickness (cRNFL) was measured by circular scans in 3.5▒mm (C1), 4.2▒mm (C2) and 4.7▒mm (C3) distance from the center of the ONH. Receiver operating characteristics (ROC) analysis was used to assess diagnostic power to detect glaucoma; furthermore, patient-specific maximum localized damage was analysed. In C1, mean global cRNFL was 70.03±18.2▒μm in glaucomatous eyes and 93.46±9.9▒μm in controls. Respectively, cRNFL in C2 was 61.39±14.9▒μm and 80.43±8.4▒μm as well as 55.25±12.8▒μm and 70.70±6.7▒μm in C3. Using ROC analysis, the area under the curve (AUC) for cRNFL was 0.855 in C1, 0.850 in C2, and 0.843 in C3. Mean AUCs in ONH sectors ranged from 0.699 to 0.846 and did not exceed AUC of the best scoring global parameter. Comparing 3.5-mm, 4.2-mm and 4.7-mm diameters for cRNFL measurement, the inner circle at 3.5mm distance showed the highest AUC to differentiate glaucoma from healthy controls. However, levels of diagnostic power from wider circular scans were not significantly different and were comparable. Also, sectorial cRNFL measurements were non-superior. The use of the ONH sector with the highest localized damage seems not to increase diagnostic power.
Author Dietlein, Thomas S
Heindl, Ludwig M
Schaub, Friederike
Adler, Werner
Hermann, Manuel M
El-Malahi, Ouahiba
Cursiefen, Claus
Enders, Philip
AuthorAffiliation Department of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen
Department of Ophthalmology, University Hospital of Cologne, Cologne
AuthorAffiliation_xml – name: Department of Ophthalmology, University Hospital of Cologne, Cologne
– name: Department of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen
Author_xml – sequence: 1
  givenname: Ludwig
  surname: Heindl
  middlename: M
  fullname: Heindl, Ludwig M
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 2
  givenname: Werner
  surname: Adler
  fullname: Adler, Werner
  organization: Department of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen
– sequence: 3
  givenname: Ouahiba
  surname: El-Malahi
  fullname: El-Malahi, Ouahiba
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 4
  givenname: Friederike
  surname: Schaub
  fullname: Schaub, Friederike
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 5
  givenname: Manuel
  surname: Hermann
  middlename: M
  fullname: Hermann, Manuel M
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 6
  givenname: Thomas
  surname: Dietlein
  middlename: S
  fullname: Dietlein, Thomas S
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 7
  givenname: Claus
  surname: Cursiefen
  fullname: Cursiefen, Claus
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
– sequence: 8
  givenname: Philip
  surname: Enders
  fullname: Enders, Philip
  organization: Department of Ophthalmology, University Hospital of Cologne, Cologne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30036293$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PAjEQhhuDEVD_gTE9elmcdj_KHg0IYlASxcTbpnRnQ2W_bHcl_HtrQGM82MN0Ds-87Tx90imrEgm5YDBgEIvr2f10AL8OAy6OSI-FfuQFQ_bacT2EwoMhj7ukb-0bAAfO2Qnp-gB-xGO_R8rlGumibnQhczrWssAGDc0qQ0faqLaoZa3zXJodfcJGlw56RPOBdKJXjpvLnavLtVabEq2lDyhta7DAsqGrHX0ee4vRkuqSTnPZqqqQZ-Q4k7nF88N9Sl4mt8vRnTdfTGejm7mnAs6Fx5kK3UYiDNF9VfKQSSH8jIUQ8SgTTEGcZmwVpRlHkQaAIBQPUqZUEAsf0T8lV_vc2lTvLdomKbRV6DYpsWptwsFlB4Hg4NBgjypTWWswS2rjbJhdwiD5Mp0408lf027s8vBCuyow_Rn6VuuA4R7YVrlzajd5u0WTrFHmzfr_7E-DMIq3
CitedBy_id crossref_primary_10_1364_BOE_420507
crossref_primary_10_1007_s00417_024_06498_7
crossref_primary_10_1371_journal_pone_0250233
Cites_doi 10.1167/iovs.09-3790
10.1016/j.ajo.2013.04.016
10.1016/j.ophtha.2010.06.036
10.1001/archophthalmol.2011.145
10.1007/s00417-016-3453-4
10.1167/iovs.11-9309
10.1167/iovs.11-8214
10.1097/IJG.0b013e31822af27a
10.1038/s41598-017-14284-1
10.1167/iovs.06-0410
10.1016/j.ophtha.2010.11.029
10.1167/iovs.13-13245
10.1136/bjophthalmol-2016-308957
10.1016/j.ajo.2013.11.007
10.1167/iovs.05-1489
10.1136/bjophthalmol-2015-307730
10.1167/tvst.7.1.20
10.1117/1.2773736
10.1111/aos.12485
10.1016/j.ophtha.2015.06.001
10.1167/iovs.09-4258
10.1016/S0161-6420(96)30410-7
10.1111/aos.12658
10.1016/j.ajo.2010.06.011
10.1016/j.ophtha.2011.09.054
10.1001/jamaophthalmol.2017.1659
10.1167/iovs.16-20561
10.1136/bjo.2010.201111
10.1097/OPX.0000000000000241
10.1167/iovs.06-1332
10.1016/j.ophtha.2017.03.044
10.1016/j.ophtha.2012.09.055
10.1016/j.ajo.2016.10.020
10.1097/IJG.0000000000000610
10.1038/eye.2017.306
ContentType Journal Article
Copyright Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1097/IJG.0000000000001027
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1536-481X
EndPage 1093
ExternalDocumentID 10_1097_IJG_0000000000001027
30036293
10.1097/IJG.0000000000001027
Genre Journal Article
GroupedDBID -
.Z2
0R
2V-
53G
5GY
5VS
8L-
AAMTA
AARTV
AAYEP
ABBUW
ABOCM
ABXRP
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACWDW
ACWRI
ACXNZ
ADFPA
ADNKB
AE3
AENEX
AFUWQ
AHULI
AHVBC
AJIOK
AJNYG
ALMA_UNASSIGNED_HOLDINGS
AMJPA
ASCII
AWKKM
BQLVK
C45
CS3
DU5
DUNZO
E.X
EBS
EJD
EX3
F2K
F2L
F5P
FL-
H0
H0~
HZ
IN
IN~
JK3
JK8
K8S
KD2
KMI
L-C
N9A
N~M
O9-
OCUKA
ODA
OHASI
OL1
OLG
OLV
OLW
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OXXIT
P-K
P2P
R58
RIG
RLZ
RSW
S4R
S4S
V2I
WOQ
WOW
X3V
X3W
Z2
---
.-D
0R~
AAAAV
AAHPQ
AAIQE
AASCR
ABASU
ABDIG
ABJNI
ABVCZ
ACCJW
ACGFO
ACILI
ACXJB
ADGGA
ADHPY
AE6
AEETU
AFDTB
AGINI
AHQNM
AINUH
AJNWD
AJZMW
ALMTX
AMKUR
AMNEI
AOHHW
DIWNM
EEVPB
FCALG
GNXGY
GQDEL
HLJTE
HZ~
IKREB
IPNFZ
NPM
OJAPA
TEORI
TSPGW
W3M
YFH
ZB8
ZFV
AAYXX
AHRYX
BS7
CITATION
ZZMQN
7X8
ID FETCH-LOGICAL-c4227-21c5001755e300a251a773f150626f71c09df1b6df2e7d40e07c24d1cc4973ee3
ISSN 1057-0829
IngestDate Fri Aug 16 05:25:38 EDT 2024
Fri Nov 22 00:38:08 EST 2024
Wed Oct 16 01:01:13 EDT 2024
Thu Aug 13 19:50:26 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4227-21c5001755e300a251a773f150626f71c09df1b6df2e7d40e07c24d1cc4973ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30036293
PQID 2075544720
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2075544720
crossref_primary_10_1097_IJG_0000000000001027
pubmed_primary_30036293
wolterskluwer_health_10_1097_IJG_0000000000001027
ProviderPackageCode L-C
C45
AARTV
ADFPA
ASCII
OLG
ODA
ABZAD
ABBUW
JK3
ADNKB
JK8
H0~
OLV
8L-
OLW
OLZ
F2K
F2L
OHASI
AHVBC
AJNYG
FL-
KMI
K8S
AJIOK
OPUJH
V2I
S4R
S4S
DUNZO
OVDNE
AMJPA
OVD
AHULI
ACEWG
.Z2
AWKKM
OUVQU
ORVUJ
X3V
X3W
ACDDN
ACWRI
ABXRP
AAMTA
E.X
OCUKA
ACXNZ
OL1
ABXVJ
IN~
KD2
OXXIT
ACWDW
PublicationCentury 2000
PublicationDate 2018-December
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-December
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of glaucoma
PublicationTitleAlternate J Glaucoma
PublicationYear 2018
Publisher Copyright Wolters Kluwer Health, Inc. All rights reserved
Publisher_xml – name: Copyright Wolters Kluwer Health, Inc. All rights reserved
References Heussen (R32-20230912) 2012; 96
Leite (R29-20230912) 2012; 21
Enders (R14-20230912) 2016; 57
Reis (R17-20230912) 2012; 53
Mansberger (R11-20230912) 2017; 174
Ghassibi (R25-20230912) 2017; 26
Chen (R4-20230912) 2009; 107
Ajtony (R1-20230912) 2007; 48
Chauhan (R3-20230912) 2013; 120
Abramoff (R20-20230912) 2009; 50
Enders (R36-20230912) 2017; 7
Chauhan (R23-20230912) 2015; 122
Schuman (R26-20230912) 1996; 103
Kim (R8-20230912) 2015; 93
Mwanza (R21-20230912) 2011; 118
Zangwill (R39-20230912) 2006; 17
Smith (R7-20230912) 2014; 91
Nieves-Moreno (R9-20230912) 2018; 7
Enders (R37-20230912) 2017; 101
Reis (R18-20230912) 2012; 119
Prager (R10-20230912) 2017; 135
Seong (R33-20230912) 2010; 51
Pazos (R13-20230912) 2017; 124
Rougier (R6-20230912) 2015; 93
Gardiner (R16-20230912) 2014; 157
Leung (R27-20230912) 2007; 48
Soltani-Moghadam (R31-20230912) 2015; 8
Enders (R34-20230912) 2017; 101
Leite (R28-20230912) 2011; 118
Rao (R30-20230912) 2011; 129
He (R5-20230912) 2014; 55
Bowd (R24-20230912) 2006; 47
Povazay (R19-20230912) 2007; 12
Chauhan (R22-20230912) 2013; 156
Enders (R35-20230912) 2018; 32
Aptel (R2-20230912) 2010; 150
Huang (R15-20230912) 2012; 53
Rufer (R12-20230912) 2016; 254
References_xml – volume: 50
  start-page: 5778
  year: 2009
  ident: R20-20230912
  article-title: Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-3790
  contributor:
    fullname: Abramoff
– volume: 156
  start-page: 218
  year: 2013
  ident: R22-20230912
  article-title: From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.04.016
  contributor:
    fullname: Chauhan
– volume: 118
  start-page: 241
  year: 2011
  ident: R21-20230912
  article-title: Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2010.06.036
  contributor:
    fullname: Mwanza
– volume: 129
  start-page: 864
  year: 2011
  ident: R30-20230912
  article-title: Structure-function relationship in glaucoma using spectral-domain optical coherence tomography
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2011.145
  contributor:
    fullname: Rao
– volume: 254
  start-page: 2017
  year: 2016
  ident: R12-20230912
  article-title: Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT)
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-016-3453-4
  contributor:
    fullname: Rufer
– volume: 53
  start-page: 1852
  year: 2012
  ident: R17-20230912
  article-title: Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-9309
  contributor:
    fullname: Reis
– volume: 53
  start-page: 4990
  year: 2012
  ident: R15-20230912
  article-title: Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography?
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-8214
  contributor:
    fullname: Huang
– volume: 21
  start-page: 49
  year: 2012
  ident: R29-20230912
  article-title: Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0b013e31822af27a
  contributor:
    fullname: Leite
– volume: 7
  start-page: 13874
  year: 2017
  ident: R36-20230912
  article-title: Optimization strategies for bruch’s membrane opening minimum rim area calculation: sequential versus simultaneous minimization
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14284-1
  contributor:
    fullname: Enders
– volume: 48
  start-page: 258
  year: 2007
  ident: R1-20230912
  article-title: Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.06-0410
  contributor:
    fullname: Ajtony
– volume: 118
  start-page: 1334
  year: 2011
  ident: R28-20230912
  article-title: Comparison of the diagnostic accuracies of the spectralis, cirrus, and RTVue optical coherence tomography devices in glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2010.11.029
  contributor:
    fullname: Leite
– volume: 55
  start-page: 574
  year: 2014
  ident: R5-20230912
  article-title: Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13245
  contributor:
    fullname: He
– volume: 101
  start-page: 530
  year: 2017
  ident: R37-20230912
  article-title: The use of Bruch’s membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2016-308957
  contributor:
    fullname: Enders
– volume: 157
  start-page: 540
  year: 2014
  ident: R16-20230912
  article-title: A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.11.007
  contributor:
    fullname: Gardiner
– volume: 47
  start-page: 2889
  year: 2006
  ident: R24-20230912
  article-title: Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-1489
  contributor:
    fullname: Bowd
– volume: 101
  start-page: 138
  year: 2017
  ident: R34-20230912
  article-title: Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2015-307730
  contributor:
    fullname: Enders
– volume: 7
  start-page: 20
  year: 2018
  ident: R9-20230912
  article-title: New normative database of inner macular layer thickness measured by spectralis OCT used as reference standard for glaucoma detection
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.7.1.20
  contributor:
    fullname: Nieves-Moreno
– volume: 12
  start-page: 041204
  year: 2007
  ident: R19-20230912
  article-title: Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis
  publication-title: J Biomed Opt
  doi: 10.1117/1.2773736
  contributor:
    fullname: Povazay
– volume: 93
  start-page: e22
  year: 2015
  ident: R8-20230912
  article-title: Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.12485
  contributor:
    fullname: Kim
– volume: 122
  start-page: 1786
  year: 2015
  ident: R23-20230912
  article-title: Bruch’s membrane opening minimum rim width and retinal nerve fiber layer thickness in a normal white population: a multicenter study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.06.001
  contributor:
    fullname: Chauhan
– volume: 17
  start-page: 120
  year: 2006
  ident: R39-20230912
  article-title: Retinal nerve fiber layer analysis in the diagnosis of glaucoma
  publication-title: Curr Opin Ophthalmol
  contributor:
    fullname: Zangwill
– volume: 51
  start-page: 1446
  year: 2010
  ident: R33-20230912
  article-title: Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4258
  contributor:
    fullname: Seong
– volume: 103
  start-page: 1889
  year: 1996
  ident: R26-20230912
  article-title: Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(96)30410-7
  contributor:
    fullname: Schuman
– volume: 107
  start-page: 254
  year: 2009
  ident: R4-20230912
  article-title: Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis)
  publication-title: Trans Am Ophthalmol Soc
  contributor:
    fullname: Chen
– volume: 93
  start-page: 539
  year: 2015
  ident: R6-20230912
  article-title: Retinal nerve fibre layer thickness measured with SD-OCT in a population-based study of French elderly subjects: the Alienor study
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.12658
  contributor:
    fullname: Rougier
– volume: 150
  start-page: 825
  year: 2010
  ident: R2-20230912
  article-title: Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2010.06.011
  contributor:
    fullname: Aptel
– volume: 119
  start-page: 738
  year: 2012
  ident: R18-20230912
  article-title: Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.09.054
  contributor:
    fullname: Reis
– volume: 8
  start-page: 113
  year: 2015
  ident: R31-20230912
  article-title: Reproducibility of peripapillary retinal nerve fiber layer thickness measurements with cirrus HD-OCT in glaucomatous eyes
  publication-title: Int J Ophthalmol
  contributor:
    fullname: Soltani-Moghadam
– volume: 135
  start-page: 783
  year: 2017
  ident: R10-20230912
  article-title: Association of glaucoma-related, optical coherence tomography-measured macular damage with vision-related quality of life
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.1659
  contributor:
    fullname: Prager
– volume: 57
  start-page: 6596
  year: 2016
  ident: R14-20230912
  article-title: Novel Bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-20561
  contributor:
    fullname: Enders
– volume: 96
  start-page: 380
  year: 2012
  ident: R32-20230912
  article-title: Comparison of manually corrected retinal thickness measurements from multiple spectral-domain optical coherence tomography instruments
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2010.201111
  contributor:
    fullname: Heussen
– volume: 91
  start-page: 540
  year: 2014
  ident: R7-20230912
  article-title: Staging glaucoma using Stratus OCT in a US veteran population
  publication-title: Optom Vis Sci
  doi: 10.1097/OPX.0000000000000241
  contributor:
    fullname: Smith
– volume: 48
  start-page: 2644
  year: 2007
  ident: R27-20230912
  article-title: American Chinese glaucoma imaging study: a comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.06-1332
  contributor:
    fullname: Leung
– volume: 124
  start-page: 1218
  year: 2017
  ident: R13-20230912
  article-title: Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.03.044
  contributor:
    fullname: Pazos
– volume: 120
  start-page: 535
  year: 2013
  ident: R3-20230912
  article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.09.055
  contributor:
    fullname: Chauhan
– volume: 174
  start-page: 1
  year: 2017
  ident: R11-20230912
  article-title: Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2016.10.020
  contributor:
    fullname: Mansberger
– volume: 26
  start-page: 335
  year: 2017
  ident: R25-20230912
  article-title: Glaucoma diagnostic capability of circumpapillary retinal nerve fiber layer thickness in circle scans with different diameters
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000000610
  contributor:
    fullname: Ghassibi
– volume: 32
  start-page: 314
  year: 2018
  ident: R35-20230912
  article-title: Bruch’s membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2017.306
  contributor:
    fullname: Enders
SSID ssj0020221
Score 2.28517
Snippet PURPOSE:To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the...
To evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in three diameter sizes from the...
PURPOSETo evaluate the diagnostic power for glaucoma detection using circumpapillary retinal nerve fiber layer (cRNFL) thickness in 3 diameter sizes from the...
SourceID proquest
crossref
pubmed
wolterskluwer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1086
Title The Optimal Diameter for Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by SD-OCT in Glaucoma
URI https://www.ncbi.nlm.nih.gov/pubmed/30036293
https://search.proquest.com/docview/2075544720
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpC2NjjN2X3dBgb8HMluzIfiyp02Y4yUNS1jcjy1JrkjolqSn79zuSr-260T3MD8bIRjY6H0efjj-dg9BXnjLl-WlqDd0ksVwJHC6hCbPgYSqAQatE6ZjuyYLNzvyj0A17vTonQ9v2Xy0NbWBrvXP2H6zddAoNcA02hzNYHc4Ptvsc_MCl8Wf8UstdjJZwlG0F2I5f6TpDW029r01FrJnWPA7GWjkyiDgwcF3LU6yMC5y2EUTNUxdH1ny01CGS4zUv4Ov5H7jtefe2ibTC0t8Em6MivcnO2xis1gkY0PyQ27xVCodra8rX3FQcHswLuEiazhbighdJyboznQsjW8lu8MLxO0IQWTvcoeX6pmxO45HLbAE18kjHv-q6UJ25WufCunceKPMLT74fl_kpqwPIFGvnvfpf_2wej0-jKF6GZ8s9dEDAY4HDPDgcTaJJs3YHquPUOy8D9u2-nm8zm9-WK0_Q05uNVkDsVmYDRIfGLJ-jZ5WN8GEJnBeoJ_OX6NG0Uli8QjngB1f4wTV-MOAH38EPrvCDDX6wwQ82-MENfnAHPzj5iUv84CzHNX5eo9NxuBydWFVNDku4hDCLOMLTzMbzJLVtDuyYM0aVzlNJhoo5wg5S5STDVBHJUteWNhPETR0h3IBRKekbtJ9vcvkOYaDyQijPUTSBRTCXnHoK-JIfCMqJUKqPrHo846sy9UpcSyZg_OO7499HX-pBj8FH6h9fPJebYhcT4MWe6zJi99Hb0hpNj9RkZApoHzm3zBOX-5D_-sb3D3jjB_S4Bf5HtH-9LeQntLdLi88Vxn4BDAKckw
link.rule.ids 315,782,786,27933,27934
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Optimal+Diameter+for+Circumpapillary+Retinal+Nerve+Fiber+Layer+Thickness+Measurement+by+SD-OCT+in+Glaucoma&rft.jtitle=Journal+of+glaucoma&rft.au=Heindl%2C+Ludwig+M&rft.au=Adler%2C+Werner&rft.au=El-Malahi%2C+Ouahiba&rft.au=Schaub%2C+Friederike&rft.date=2018-12-01&rft.eissn=1536-481X&rft.volume=27&rft.issue=12&rft.spage=1086&rft.epage=1093&rft_id=info:doi/10.1097%2FIJG.0000000000001027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-0829&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-0829&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-0829&client=summon