Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell

A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 44; no. 2; pp. 587 - 593
Main Authors: Xu, K., Chatzitakis, A., Vøllestad, E., Ruan, Q., Tang, J., Norby, T.
Format: Journal Article
Language:English
Published: Elsevier Ltd 08-01-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight. [Display omitted] •A tandem photoanode-photocathode solid-state photoelectrochemical cell is presented.•The earth-abundant and non-exploited water vapor in air is photo-electrolyzed.•Liquid electrolytes are replaced by proton conducting polymers.•The mechanism of operation is discussed and based on surface proton conduction.•A monolithic solid-state PEC system for hydrogen production in deserted areas.
AbstractList A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight. [Display omitted] •A tandem photoanode-photocathode solid-state photoelectrochemical cell is presented.•The earth-abundant and non-exploited water vapor in air is photo-electrolyzed.•Liquid electrolytes are replaced by proton conducting polymers.•The mechanism of operation is discussed and based on surface proton conduction.•A monolithic solid-state PEC system for hydrogen production in deserted areas.
Author Tang, J.
Ruan, Q.
Xu, K.
Vøllestad, E.
Norby, T.
Chatzitakis, A.
Author_xml – sequence: 1
  givenname: K.
  surname: Xu
  fullname: Xu, K.
  organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway
– sequence: 2
  givenname: A.
  surname: Chatzitakis
  fullname: Chatzitakis, A.
  email: a.e.chatzitakis@smn.uio.no
  organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway
– sequence: 3
  givenname: E.
  surname: Vøllestad
  fullname: Vøllestad, E.
  organization: SINTEF Materials and Chemistry, POB 124 Blindern, NO-0314, Oslo, Norway
– sequence: 4
  givenname: Q.
  surname: Ruan
  fullname: Ruan, Q.
  organization: Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
– sequence: 5
  givenname: J.
  surname: Tang
  fullname: Tang, J.
  organization: Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
– sequence: 6
  givenname: T.
  orcidid: 0000-0003-0909-0439
  surname: Norby
  fullname: Norby, T.
  organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway
BookMark eNqFkMFOwzAQRC1UJErhF8A_kOCNEzu5gSqgSJW4wNlynE3jKLErJ4D697gqPXNaaXdmtPOuycJ5h4TcAUuBgXjoU9t3hwYdphmDMgVIGWcXZAmlrBKel3JBlowLlnCoqityPU09YyBZXi3JZnNogt-ho23wI_3BmWobqHYNnb7cYHfdTK2jms5xhSPdd372OKCZgzcdjtbogRochhty2ephwtu_uSKfL88f602yfX99Wz9tE5NnMCe64RykFIYx3raQ5cBqZoQRQoPIa1kKIwuJWMdTVeQl11XWYNG2GROo65avyP0p1wQ7zdYp54NWwMoiUzKPpqgQZ4WfpoCt2gc76nCIKnUkpnp1JqaOxBSAisSi8fFkxPj_t8WgJmPRGWxsiIVV4-1_Eb86R3iz
CitedBy_id crossref_primary_10_1039_D4TA00848K
crossref_primary_10_1002_solr_202200181
crossref_primary_10_1016_j_ijhydene_2019_12_052
crossref_primary_10_1016_j_jece_2020_104809
crossref_primary_10_1002_anie_202218850
crossref_primary_10_1063_5_0029374
crossref_primary_10_1016_j_ijhydene_2019_10_085
crossref_primary_10_1039_D3YA00568B
crossref_primary_10_1021_acsami_1c13047
crossref_primary_10_1002_cssc_202300969
crossref_primary_10_1002_adma_202208740
crossref_primary_10_1016_j_ssi_2023_116269
crossref_primary_10_1038_s41467_022_32652_y
crossref_primary_10_1002_adma_202210957
crossref_primary_10_1002_celc_202300646
crossref_primary_10_1016_j_ijhydene_2019_03_149
crossref_primary_10_1002_ange_202218850
crossref_primary_10_1021_acsaem_1c01752
crossref_primary_10_20517_energymater_2023_77
crossref_primary_10_1016_j_ijhydene_2019_06_055
crossref_primary_10_1039_C9SE01068H
crossref_primary_10_1021_acsami_9b12236
crossref_primary_10_1002_admi_202201764
Cites_doi 10.1146/annurev.matsci.33.022802.091825
10.1039/C7TA11088J
10.1016/j.electacta.2013.03.013
10.1038/s41570-016-0003
10.1039/C6PP00217J
10.1016/j.elecom.2009.06.019
10.1039/C8CP00571K
10.1016/j.memsci.2003.09.014
10.1016/j.solmat.2018.03.012
10.1007/s40808-015-0021-6
10.1002/anie.201300136
10.1038/nphoton.2012.175
10.1002/adfm.201503597
10.1021/acs.chemrev.7b00286
10.1039/b901623f
10.1016/j.jphotochemrev.2018.04.001
10.1016/j.ijhydene.2016.11.148
10.1016/j.memsci.2007.03.037
10.1016/j.jpowsour.2008.12.076
10.1021/ar2003013
10.1039/C5EE01786F
10.1126/science.289.5477.284
10.1016/j.elecom.2017.07.019
10.1038/nnano.2016.194
10.1002/adma.200500689
10.1002/adfm.201370074
10.1021/acs.jpcc.7b03005
10.2533/chimia.2015.789
10.1021/cm950192a
10.1021/ja506386e
ContentType Journal Article
Copyright 2018 Hydrogen Energy Publications LLC
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2018 Hydrogen Energy Publications LLC
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
3HK
DOI 10.1016/j.ijhydene.2018.11.030
DatabaseName CrossRef
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 593
ExternalDocumentID 10852_74249
10_1016_j_ijhydene_2018_11_030
S036031991833578X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
3HK
AALMO
ABPIF
ABPTK
AJBFU
ID FETCH-LOGICAL-c421t-ad331776c003ff12410b0c6c66a164b786c757eeb12495483a92de5ff206eabf3
ISSN 0360-3199
IngestDate Sat Apr 29 05:42:14 EDT 2023
Thu Sep 26 15:54:16 EDT 2024
Fri Feb 23 02:47:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Solid-state photoelectrochemical cells
Polymer electrolytes
Earth-abundant materials
Water vapor electrolysis
Tandem photoelectrocatalysis
Surface proton conduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-ad331776c003ff12410b0c6c66a164b786c757eeb12495483a92de5ff206eabf3
Notes NFR/250261
ORCID 0000-0003-0909-0439
OpenAccessLink http://hdl.handle.net/10852/74249
PageCount 7
ParticipantIDs cristin_nora_10852_74249
crossref_primary_10_1016_j_ijhydene_2018_11_030
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_11_030
PublicationCentury 2000
PublicationDate 2019-01-08
PublicationDateYYYYMMDD 2019-01-08
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-08
  day: 08
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Scherrer, Schlupp Meike, Stender, Martynczuk, Grolig Jan, Ma (bib18) 2013; 23
Iwu, Galeckas, Kuznetsov, Norby (bib14) 2013; 97
Joya, Joya, Ocakoglu, van de Krol (bib4) 2013; 52
Di Vona, Ahmed, Bellitto, Lenci, Traversa, Licoccia (bib27) 2007; 296
Voloshin, Bedbenov, Gabrielyan, Brady, Kreslavski, Zharmukhamedov (bib7) 2017; 42
Vörösmarty, Green, Salisbury, Lammers (bib1) 2000; 289
Stoll, Zafeiropoulos, Dogan, Genuit, Lavrijsen, Koopmans (bib12) 2017; 82
Stub, Vøllestad, Norby (bib17) 2017; 121
Zafeiropoulos, Stoll, Dogan, Mamlouk, van de Sanden, Tsampas (bib13) 2018; 180
Wang, Suzuki, Xie, Tomita, Martin, Higashi (bib20) 2018; 118
Musazade, Voloshin, Brady, Mondal, Atashova, Zharmukhamedov (bib6) 2018; 35
Roel van de Krol, Grätzel (bib10) 2012
Formal, Bourée, Prévot, Sivula (bib5) 2015; 69
Nosrati (bib2) 2015; 1
Martin, Reardon, Moniz, Tang (bib21) 2014; 136
Nocera (bib19) 2012; 45
Yang, Shen, Varcoe, Wei (bib29) 2009; 189
Xu, Chatzitakis, Norby (bib11) 2017; 16
Roger, Shipman, Symes (bib8) 2017; 1
Stub, Vollestad, Norby (bib25) 2018; 6
Kreuer (bib22) 2003; 33
Georgieva, Armyanov, Poulios, Sotiropoulos (bib15) 2009; 11
Brunauer, Rotter, Walch, Esmaeili, Opitz, Ponweiser (bib16) 2016; 26
Nanoporous (bib26) 2006; 18
Lewis (bib9) 2016; 11
Stub, Thorshaug, Rørvik, Norby, Vøllestad (bib28) 2018; 20
Verlage, Hu, Liu, Jones, Sun, Xiang (bib31) 2015; 8
Kim, Avila-Paredes, Wang, Chen, De Souza, Martin (bib24) 2009; 11
Shao, Joghee, Hsing (bib30) 2004; 229
Kreuer (bib23) 1996; 8
Tachibana, Vayssieres, Durrant (bib3) 2012; 6
Scherrer (10.1016/j.ijhydene.2018.11.030_bib18) 2013; 23
Vörösmarty (10.1016/j.ijhydene.2018.11.030_bib1) 2000; 289
Nocera (10.1016/j.ijhydene.2018.11.030_bib19) 2012; 45
Kreuer (10.1016/j.ijhydene.2018.11.030_bib22) 2003; 33
Formal (10.1016/j.ijhydene.2018.11.030_bib5) 2015; 69
Nosrati (10.1016/j.ijhydene.2018.11.030_bib2) 2015; 1
Stub (10.1016/j.ijhydene.2018.11.030_bib25) 2018; 6
Shao (10.1016/j.ijhydene.2018.11.030_bib30) 2004; 229
Nanoporous (10.1016/j.ijhydene.2018.11.030_bib26) 2006; 18
Georgieva (10.1016/j.ijhydene.2018.11.030_bib15) 2009; 11
Stub (10.1016/j.ijhydene.2018.11.030_bib17) 2017; 121
Stub (10.1016/j.ijhydene.2018.11.030_bib28) 2018; 20
Iwu (10.1016/j.ijhydene.2018.11.030_bib14) 2013; 97
Xu (10.1016/j.ijhydene.2018.11.030_bib11) 2017; 16
Roger (10.1016/j.ijhydene.2018.11.030_bib8) 2017; 1
Yang (10.1016/j.ijhydene.2018.11.030_bib29) 2009; 189
Voloshin (10.1016/j.ijhydene.2018.11.030_bib7) 2017; 42
Stoll (10.1016/j.ijhydene.2018.11.030_bib12) 2017; 82
Zafeiropoulos (10.1016/j.ijhydene.2018.11.030_bib13) 2018; 180
Brunauer (10.1016/j.ijhydene.2018.11.030_bib16) 2016; 26
Di Vona (10.1016/j.ijhydene.2018.11.030_bib27) 2007; 296
Joya (10.1016/j.ijhydene.2018.11.030_bib4) 2013; 52
Musazade (10.1016/j.ijhydene.2018.11.030_bib6) 2018; 35
Kim (10.1016/j.ijhydene.2018.11.030_bib24) 2009; 11
Tachibana (10.1016/j.ijhydene.2018.11.030_bib3) 2012; 6
Wang (10.1016/j.ijhydene.2018.11.030_bib20) 2018; 118
Roel van de Krol (10.1016/j.ijhydene.2018.11.030_bib10) 2012
Verlage (10.1016/j.ijhydene.2018.11.030_bib31) 2015; 8
Martin (10.1016/j.ijhydene.2018.11.030_bib21) 2014; 136
Kreuer (10.1016/j.ijhydene.2018.11.030_bib23) 1996; 8
Lewis (10.1016/j.ijhydene.2018.11.030_bib9) 2016; 11
References_xml – volume: 1
  start-page: 19
  year: 2015
  ident: bib2
  article-title: Application of multivariate statistical analysis to incorporate physico-chemical surface water quality in low and high flow hydrology
  publication-title: Model Earth Syst Environ
  contributor:
    fullname: Nosrati
– volume: 296
  start-page: 156
  year: 2007
  end-page: 161
  ident: bib27
  article-title: SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process
  publication-title: J Membr Sci
  contributor:
    fullname: Licoccia
– volume: 11
  start-page: 1010
  year: 2016
  ident: bib9
  article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design
  publication-title: Nat Nanotechnol
  contributor:
    fullname: Lewis
– volume: 11
  start-page: 1643
  year: 2009
  end-page: 1646
  ident: bib15
  article-title: An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination
  publication-title: Electrochem Commun
  contributor:
    fullname: Sotiropoulos
– volume: 23
  start-page: 1858
  year: 2013
  ident: bib18
  article-title: Thin films: on proton conductivity in porous and dense yttria stabilized zirconia at low temperature (Adv. Funct. Mater. 15/2013)
  publication-title: Adv Funct Mater
  contributor:
    fullname: Ma
– volume: 136
  start-page: 12568
  year: 2014
  end-page: 12571
  ident: bib21
  article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system
  publication-title: J Am Chem Soc
  contributor:
    fullname: Tang
– volume: 11
  start-page: 3035
  year: 2009
  end-page: 3038
  ident: bib24
  article-title: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia
  publication-title: Phys Chem Chem Phys
  contributor:
    fullname: Martin
– volume: 52
  start-page: 10426
  year: 2013
  end-page: 10437
  ident: bib4
  article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move
  publication-title: Angew Chem Int Ed
  contributor:
    fullname: van de Krol
– volume: 33
  start-page: 333
  year: 2003
  end-page: 359
  ident: bib22
  article-title: Proton-conducting oxides
  publication-title: Annu Rev Mater Res
  contributor:
    fullname: Kreuer
– volume: 189
  start-page: 1016
  year: 2009
  end-page: 1019
  ident: bib29
  article-title: Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity
  publication-title: J Power Sources
  contributor:
    fullname: Wei
– volume: 45
  start-page: 767
  year: 2012
  end-page: 776
  ident: bib19
  article-title: The artificial leaf
  publication-title: Acc Chem Res
  contributor:
    fullname: Nocera
– volume: 18
  start-page: 371
  year: 2006
  end-page: 374
  ident: bib26
  article-title: Anatase thin films as fast proton-conducting materials
  publication-title: Adv Mater
  contributor:
    fullname: Nanoporous
– volume: 121
  start-page: 12817
  year: 2017
  end-page: 12825
  ident: bib17
  article-title: Mechanisms of protonic surface transport in porous oxides: example of YSZ
  publication-title: J Phys Chem C
  contributor:
    fullname: Norby
– year: 2012
  ident: bib10
  article-title: Photoelectrochemical hydrogen production
  contributor:
    fullname: Grätzel
– volume: 180
  start-page: 184
  year: 2018
  end-page: 195
  ident: bib13
  article-title: Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications
  publication-title: Sol Energy Mater Sol Cell
  contributor:
    fullname: Tsampas
– volume: 20
  start-page: 15653
  year: 2018
  end-page: 15660
  ident: bib28
  article-title: The influence of acceptor and donor doping on the protonic surface conduction of TiO2
  publication-title: Phys Chem Chem Phys
  contributor:
    fullname: Vøllestad
– volume: 69
  start-page: 789
  year: 2015
  end-page: 798
  ident: bib5
  article-title: Challenges towards economic fuel generation from renewable electricity: the need for efficient electro-catalysis
  publication-title: CHIMIA Int J Chem
  contributor:
    fullname: Sivula
– volume: 97
  start-page: 320
  year: 2013
  end-page: 325
  ident: bib14
  article-title: Solid-state photoelectrochemical H2 generation with gaseous reactants
  publication-title: Electrochim Acta
  contributor:
    fullname: Norby
– volume: 26
  start-page: 120
  year: 2016
  end-page: 128
  ident: bib16
  article-title: UV-Light-Driven oxygen pumping in a high-temperature solid oxide photoelectrochemical cell
  publication-title: Adv Funct Mater
  contributor:
    fullname: Ponweiser
– volume: 8
  start-page: 610
  year: 1996
  end-page: 641
  ident: bib23
  article-title: Proton Conductivity:  materials and applications
  publication-title: Chem Mater
  contributor:
    fullname: Kreuer
– volume: 289
  start-page: 284
  year: 2000
  ident: bib1
  article-title: Global water resources: vulnerability from climate change and population growth
  publication-title: Science
  contributor:
    fullname: Lammers
– volume: 229
  start-page: 43
  year: 2004
  end-page: 51
  ident: bib30
  article-title: Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells
  publication-title: J Membr Sci
  contributor:
    fullname: Hsing
– volume: 6
  start-page: 511
  year: 2012
  ident: bib3
  article-title: Artificial photosynthesis for solar water-splitting
  publication-title: Nat Photon
  contributor:
    fullname: Durrant
– volume: 1
  start-page: 0003
  year: 2017
  ident: bib8
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nature Reviews Chemistry
  contributor:
    fullname: Symes
– volume: 82
  start-page: 47
  year: 2017
  end-page: 51
  ident: bib12
  article-title: Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes
  publication-title: Electrochem Commun
  contributor:
    fullname: Koopmans
– volume: 16
  start-page: 10
  year: 2017
  end-page: 16
  ident: bib11
  article-title: Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting
  publication-title: Photochem Photobiol Sci
  contributor:
    fullname: Norby
– volume: 6
  start-page: 8265
  year: 2018
  end-page: 8270
  ident: bib25
  article-title: Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics
  publication-title: J Mater Chem
  contributor:
    fullname: Norby
– volume: 35
  start-page: 134
  year: 2018
  end-page: 156
  ident: bib6
  article-title: Biohybrid solar cells: fundamentals, progress, and challenges
  publication-title: J Photochem Photobiol C Photochem Rev
  contributor:
    fullname: Zharmukhamedov
– volume: 42
  start-page: 8576
  year: 2017
  end-page: 8585
  ident: bib7
  article-title: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Zharmukhamedov
– volume: 118
  start-page: 5201
  year: 2018
  end-page: 5241
  ident: bib20
  article-title: Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems
  publication-title: Chem Rev
  contributor:
    fullname: Higashi
– volume: 8
  start-page: 3166
  year: 2015
  end-page: 3172
  ident: bib31
  article-title: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films
  publication-title: Energy Environ Sci
  contributor:
    fullname: Xiang
– volume: 33
  start-page: 333
  year: 2003
  ident: 10.1016/j.ijhydene.2018.11.030_bib22
  article-title: Proton-conducting oxides
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev.matsci.33.022802.091825
  contributor:
    fullname: Kreuer
– year: 2012
  ident: 10.1016/j.ijhydene.2018.11.030_bib10
  contributor:
    fullname: Roel van de Krol
– volume: 6
  start-page: 8265
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.030_bib25
  article-title: Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics
  publication-title: J Mater Chem
  doi: 10.1039/C7TA11088J
  contributor:
    fullname: Stub
– volume: 97
  start-page: 320
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.030_bib14
  article-title: Solid-state photoelectrochemical H2 generation with gaseous reactants
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.03.013
  contributor:
    fullname: Iwu
– volume: 1
  start-page: 0003
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.030_bib8
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nature Reviews Chemistry
  doi: 10.1038/s41570-016-0003
  contributor:
    fullname: Roger
– volume: 16
  start-page: 10
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.030_bib11
  article-title: Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/C6PP00217J
  contributor:
    fullname: Xu
– volume: 11
  start-page: 1643
  year: 2009
  ident: 10.1016/j.ijhydene.2018.11.030_bib15
  article-title: An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2009.06.019
  contributor:
    fullname: Georgieva
– volume: 20
  start-page: 15653
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.030_bib28
  article-title: The influence of acceptor and donor doping on the protonic surface conduction of TiO2
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C8CP00571K
  contributor:
    fullname: Stub
– volume: 229
  start-page: 43
  year: 2004
  ident: 10.1016/j.ijhydene.2018.11.030_bib30
  article-title: Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2003.09.014
  contributor:
    fullname: Shao
– volume: 180
  start-page: 184
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.030_bib13
  article-title: Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications
  publication-title: Sol Energy Mater Sol Cell
  doi: 10.1016/j.solmat.2018.03.012
  contributor:
    fullname: Zafeiropoulos
– volume: 1
  start-page: 19
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.030_bib2
  article-title: Application of multivariate statistical analysis to incorporate physico-chemical surface water quality in low and high flow hydrology
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-015-0021-6
  contributor:
    fullname: Nosrati
– volume: 52
  start-page: 10426
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.030_bib4
  article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201300136
  contributor:
    fullname: Joya
– volume: 6
  start-page: 511
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.030_bib3
  article-title: Artificial photosynthesis for solar water-splitting
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2012.175
  contributor:
    fullname: Tachibana
– volume: 26
  start-page: 120
  year: 2016
  ident: 10.1016/j.ijhydene.2018.11.030_bib16
  article-title: UV-Light-Driven oxygen pumping in a high-temperature solid oxide photoelectrochemical cell
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201503597
  contributor:
    fullname: Brunauer
– volume: 118
  start-page: 5201
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.030_bib20
  article-title: Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00286
  contributor:
    fullname: Wang
– volume: 11
  start-page: 3035
  year: 2009
  ident: 10.1016/j.ijhydene.2018.11.030_bib24
  article-title: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b901623f
  contributor:
    fullname: Kim
– volume: 35
  start-page: 134
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.030_bib6
  article-title: Biohybrid solar cells: fundamentals, progress, and challenges
  publication-title: J Photochem Photobiol C Photochem Rev
  doi: 10.1016/j.jphotochemrev.2018.04.001
  contributor:
    fullname: Musazade
– volume: 42
  start-page: 8576
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.030_bib7
  article-title: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.148
  contributor:
    fullname: Voloshin
– volume: 296
  start-page: 156
  year: 2007
  ident: 10.1016/j.ijhydene.2018.11.030_bib27
  article-title: SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2007.03.037
  contributor:
    fullname: Di Vona
– volume: 189
  start-page: 1016
  year: 2009
  ident: 10.1016/j.ijhydene.2018.11.030_bib29
  article-title: Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.12.076
  contributor:
    fullname: Yang
– volume: 45
  start-page: 767
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.030_bib19
  article-title: The artificial leaf
  publication-title: Acc Chem Res
  doi: 10.1021/ar2003013
  contributor:
    fullname: Nocera
– volume: 8
  start-page: 3166
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.030_bib31
  article-title: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE01786F
  contributor:
    fullname: Verlage
– volume: 289
  start-page: 284
  year: 2000
  ident: 10.1016/j.ijhydene.2018.11.030_bib1
  article-title: Global water resources: vulnerability from climate change and population growth
  publication-title: Science
  doi: 10.1126/science.289.5477.284
  contributor:
    fullname: Vörösmarty
– volume: 82
  start-page: 47
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.030_bib12
  article-title: Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2017.07.019
  contributor:
    fullname: Stoll
– volume: 11
  start-page: 1010
  year: 2016
  ident: 10.1016/j.ijhydene.2018.11.030_bib9
  article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2016.194
  contributor:
    fullname: Lewis
– volume: 18
  start-page: 371
  year: 2006
  ident: 10.1016/j.ijhydene.2018.11.030_bib26
  article-title: Anatase thin films as fast proton-conducting materials
  publication-title: Adv Mater
  doi: 10.1002/adma.200500689
  contributor:
    fullname: Nanoporous
– volume: 23
  start-page: 1858
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.030_bib18
  article-title: Thin films: on proton conductivity in porous and dense yttria stabilized zirconia at low temperature (Adv. Funct. Mater. 15/2013)
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201370074
  contributor:
    fullname: Scherrer
– volume: 121
  start-page: 12817
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.030_bib17
  article-title: Mechanisms of protonic surface transport in porous oxides: example of YSZ
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b03005
  contributor:
    fullname: Stub
– volume: 69
  start-page: 789
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.030_bib5
  article-title: Challenges towards economic fuel generation from renewable electricity: the need for efficient electro-catalysis
  publication-title: CHIMIA Int J Chem
  doi: 10.2533/chimia.2015.789
  contributor:
    fullname: Formal
– volume: 8
  start-page: 610
  year: 1996
  ident: 10.1016/j.ijhydene.2018.11.030_bib23
  article-title: Proton Conductivity:  materials and applications
  publication-title: Chem Mater
  doi: 10.1021/cm950192a
  contributor:
    fullname: Kreuer
– volume: 136
  start-page: 12568
  year: 2014
  ident: 10.1016/j.ijhydene.2018.11.030_bib21
  article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system
  publication-title: J Am Chem Soc
  doi: 10.1021/ja506386e
  contributor:
    fullname: Martin
SSID ssj0017049
Score 2.4459736
Snippet A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a...
SourceID cristin
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 587
SubjectTerms Earth-abundant materials
Polymer electrolytes
Solid-state photoelectrochemical cells
Surface proton conduction
Tandem photoelectrocatalysis
Water vapor electrolysis
Title Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell
URI https://dx.doi.org/10.1016/j.ijhydene.2018.11.030
http://hdl.handle.net/10852/74249
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67QIHNL608iUfuE0JjZPYznGMoMIBCTZQb5bjOFqrkk5bIsT--r1X220mKgFCXKIqTpzkvV_fl_3eI-S1ZLXIbMoj1pgmyhgzUZXwSVSAOtdVlWCFcwxdnIlPM_muzMrRKHTK3J77r5yGc8BrzJz9C25vJoUT8Bt4DkfgOhz_iO_Tn_XVCkZd4sgPDOnO3T7J675doiuOIQ59jCEE-_348mLVrXwvHBOKB2A0f2i13g0bDopNXISH2XUKYeDerF_Lj3iwd6C7mXdorK5l0WbgG67Tv5XLJegmh7VyM_ald7HZz_EwMoHJUBht3YbLQsrMdn-SS9NCwe-6IsXWSV0piijNvOb1YtmVhfTwYwMZm_vrnLrOXYPFXzSBC0os4vkCSAFEwF18MsaCrX4d6G6V7TN8L3ytBLPQhJztkQMGsgtE58HJh3L2cbM0JbxPFb5jkHa--2ngWZm1wG532z4De-b8kDzwjgg9cQh6SEa2fUTuD8pTPibTgCWKWKKAJQpYogAcGrBE5y3V1GGJ7sISRSw9IV_fl-en08h33ohMxpIu0nUKdqXgBmR-04AJmEyqieGGcw3udSUkNyIXFvQ8ti7PZKoLVtu8adiEW1016VOy365ae0RoVWCJOS4ZXpvmheZ1jooCphc60dmYHHnqqBaEHhaszZkSGUw8Jm8CudSlq72iwqbEhQqkVkhqcGQVkHpMikBV5S1IZxkqgMVv7n32D_c-J_e2f4AXZL-76u1Lsndd9688fG4B_8eTcw
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+from+wet+air+and+sunlight+in+a+tandem+photoelectrochemical+cell&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Xu%2C+K.&rft.au=Chatzitakis%2C+A.&rft.au=V%C3%B8llestad%2C+E.&rft.au=Ruan%2C+Q.&rft.date=2019-01-08&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=44&rft.issue=2&rft.spage=587&rft.epage=593&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.11.030&rft.externalDocID=S036031991833578X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon