Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and a...
Saved in:
Published in: | International journal of hydrogen energy Vol. 44; no. 2; pp. 587 - 593 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
08-01-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.
[Display omitted]
•A tandem photoanode-photocathode solid-state photoelectrochemical cell is presented.•The earth-abundant and non-exploited water vapor in air is photo-electrolyzed.•Liquid electrolytes are replaced by proton conducting polymers.•The mechanism of operation is discussed and based on surface proton conduction.•A monolithic solid-state PEC system for hydrogen production in deserted areas. |
---|---|
AbstractList | A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight. A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight. [Display omitted] •A tandem photoanode-photocathode solid-state photoelectrochemical cell is presented.•The earth-abundant and non-exploited water vapor in air is photo-electrolyzed.•Liquid electrolytes are replaced by proton conducting polymers.•The mechanism of operation is discussed and based on surface proton conduction.•A monolithic solid-state PEC system for hydrogen production in deserted areas. |
Author | Tang, J. Ruan, Q. Xu, K. Vøllestad, E. Norby, T. Chatzitakis, A. |
Author_xml | – sequence: 1 givenname: K. surname: Xu fullname: Xu, K. organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway – sequence: 2 givenname: A. surname: Chatzitakis fullname: Chatzitakis, A. email: a.e.chatzitakis@smn.uio.no organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway – sequence: 3 givenname: E. surname: Vøllestad fullname: Vøllestad, E. organization: SINTEF Materials and Chemistry, POB 124 Blindern, NO-0314, Oslo, Norway – sequence: 4 givenname: Q. surname: Ruan fullname: Ruan, Q. organization: Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK – sequence: 5 givenname: J. surname: Tang fullname: Tang, J. organization: Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK – sequence: 6 givenname: T. orcidid: 0000-0003-0909-0439 surname: Norby fullname: Norby, T. organization: Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway |
BookMark | eNqFkMFOwzAQRC1UJErhF8A_kOCNEzu5gSqgSJW4wNlynE3jKLErJ4D697gqPXNaaXdmtPOuycJ5h4TcAUuBgXjoU9t3hwYdphmDMgVIGWcXZAmlrBKel3JBlowLlnCoqityPU09YyBZXi3JZnNogt-ho23wI_3BmWobqHYNnb7cYHfdTK2jms5xhSPdd372OKCZgzcdjtbogRochhty2ephwtu_uSKfL88f602yfX99Wz9tE5NnMCe64RykFIYx3raQ5cBqZoQRQoPIa1kKIwuJWMdTVeQl11XWYNG2GROo65avyP0p1wQ7zdYp54NWwMoiUzKPpqgQZ4WfpoCt2gc76nCIKnUkpnp1JqaOxBSAisSi8fFkxPj_t8WgJmPRGWxsiIVV4-1_Eb86R3iz |
CitedBy_id | crossref_primary_10_1039_D4TA00848K crossref_primary_10_1002_solr_202200181 crossref_primary_10_1016_j_ijhydene_2019_12_052 crossref_primary_10_1016_j_jece_2020_104809 crossref_primary_10_1002_anie_202218850 crossref_primary_10_1063_5_0029374 crossref_primary_10_1016_j_ijhydene_2019_10_085 crossref_primary_10_1039_D3YA00568B crossref_primary_10_1021_acsami_1c13047 crossref_primary_10_1002_cssc_202300969 crossref_primary_10_1002_adma_202208740 crossref_primary_10_1016_j_ssi_2023_116269 crossref_primary_10_1038_s41467_022_32652_y crossref_primary_10_1002_adma_202210957 crossref_primary_10_1002_celc_202300646 crossref_primary_10_1016_j_ijhydene_2019_03_149 crossref_primary_10_1002_ange_202218850 crossref_primary_10_1021_acsaem_1c01752 crossref_primary_10_20517_energymater_2023_77 crossref_primary_10_1016_j_ijhydene_2019_06_055 crossref_primary_10_1039_C9SE01068H crossref_primary_10_1021_acsami_9b12236 crossref_primary_10_1002_admi_202201764 |
Cites_doi | 10.1146/annurev.matsci.33.022802.091825 10.1039/C7TA11088J 10.1016/j.electacta.2013.03.013 10.1038/s41570-016-0003 10.1039/C6PP00217J 10.1016/j.elecom.2009.06.019 10.1039/C8CP00571K 10.1016/j.memsci.2003.09.014 10.1016/j.solmat.2018.03.012 10.1007/s40808-015-0021-6 10.1002/anie.201300136 10.1038/nphoton.2012.175 10.1002/adfm.201503597 10.1021/acs.chemrev.7b00286 10.1039/b901623f 10.1016/j.jphotochemrev.2018.04.001 10.1016/j.ijhydene.2016.11.148 10.1016/j.memsci.2007.03.037 10.1016/j.jpowsour.2008.12.076 10.1021/ar2003013 10.1039/C5EE01786F 10.1126/science.289.5477.284 10.1016/j.elecom.2017.07.019 10.1038/nnano.2016.194 10.1002/adma.200500689 10.1002/adfm.201370074 10.1021/acs.jpcc.7b03005 10.2533/chimia.2015.789 10.1021/cm950192a 10.1021/ja506386e |
ContentType | Journal Article |
Copyright | 2018 Hydrogen Energy Publications LLC info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2018 Hydrogen Energy Publications LLC – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION 3HK |
DOI | 10.1016/j.ijhydene.2018.11.030 |
DatabaseName | CrossRef NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 593 |
ExternalDocumentID | 10852_74249 10_1016_j_ijhydene_2018_11_030 S036031991833578X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ 3HK AALMO ABPIF ABPTK AJBFU |
ID | FETCH-LOGICAL-c421t-ad331776c003ff12410b0c6c66a164b786c757eeb12495483a92de5ff206eabf3 |
ISSN | 0360-3199 |
IngestDate | Sat Apr 29 05:42:14 EDT 2023 Thu Sep 26 15:54:16 EDT 2024 Fri Feb 23 02:47:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Solid-state photoelectrochemical cells Polymer electrolytes Earth-abundant materials Water vapor electrolysis Tandem photoelectrocatalysis Surface proton conduction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-ad331776c003ff12410b0c6c66a164b786c757eeb12495483a92de5ff206eabf3 |
Notes | NFR/250261 |
ORCID | 0000-0003-0909-0439 |
OpenAccessLink | http://hdl.handle.net/10852/74249 |
PageCount | 7 |
ParticipantIDs | cristin_nora_10852_74249 crossref_primary_10_1016_j_ijhydene_2018_11_030 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_11_030 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-08 |
PublicationDateYYYYMMDD | 2019-01-08 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-08 day: 08 |
PublicationDecade | 2010 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Scherrer, Schlupp Meike, Stender, Martynczuk, Grolig Jan, Ma (bib18) 2013; 23 Iwu, Galeckas, Kuznetsov, Norby (bib14) 2013; 97 Joya, Joya, Ocakoglu, van de Krol (bib4) 2013; 52 Di Vona, Ahmed, Bellitto, Lenci, Traversa, Licoccia (bib27) 2007; 296 Voloshin, Bedbenov, Gabrielyan, Brady, Kreslavski, Zharmukhamedov (bib7) 2017; 42 Vörösmarty, Green, Salisbury, Lammers (bib1) 2000; 289 Stoll, Zafeiropoulos, Dogan, Genuit, Lavrijsen, Koopmans (bib12) 2017; 82 Stub, Vøllestad, Norby (bib17) 2017; 121 Zafeiropoulos, Stoll, Dogan, Mamlouk, van de Sanden, Tsampas (bib13) 2018; 180 Wang, Suzuki, Xie, Tomita, Martin, Higashi (bib20) 2018; 118 Musazade, Voloshin, Brady, Mondal, Atashova, Zharmukhamedov (bib6) 2018; 35 Roel van de Krol, Grätzel (bib10) 2012 Formal, Bourée, Prévot, Sivula (bib5) 2015; 69 Nosrati (bib2) 2015; 1 Martin, Reardon, Moniz, Tang (bib21) 2014; 136 Nocera (bib19) 2012; 45 Yang, Shen, Varcoe, Wei (bib29) 2009; 189 Xu, Chatzitakis, Norby (bib11) 2017; 16 Roger, Shipman, Symes (bib8) 2017; 1 Stub, Vollestad, Norby (bib25) 2018; 6 Kreuer (bib22) 2003; 33 Georgieva, Armyanov, Poulios, Sotiropoulos (bib15) 2009; 11 Brunauer, Rotter, Walch, Esmaeili, Opitz, Ponweiser (bib16) 2016; 26 Nanoporous (bib26) 2006; 18 Lewis (bib9) 2016; 11 Stub, Thorshaug, Rørvik, Norby, Vøllestad (bib28) 2018; 20 Verlage, Hu, Liu, Jones, Sun, Xiang (bib31) 2015; 8 Kim, Avila-Paredes, Wang, Chen, De Souza, Martin (bib24) 2009; 11 Shao, Joghee, Hsing (bib30) 2004; 229 Kreuer (bib23) 1996; 8 Tachibana, Vayssieres, Durrant (bib3) 2012; 6 Scherrer (10.1016/j.ijhydene.2018.11.030_bib18) 2013; 23 Vörösmarty (10.1016/j.ijhydene.2018.11.030_bib1) 2000; 289 Nocera (10.1016/j.ijhydene.2018.11.030_bib19) 2012; 45 Kreuer (10.1016/j.ijhydene.2018.11.030_bib22) 2003; 33 Formal (10.1016/j.ijhydene.2018.11.030_bib5) 2015; 69 Nosrati (10.1016/j.ijhydene.2018.11.030_bib2) 2015; 1 Stub (10.1016/j.ijhydene.2018.11.030_bib25) 2018; 6 Shao (10.1016/j.ijhydene.2018.11.030_bib30) 2004; 229 Nanoporous (10.1016/j.ijhydene.2018.11.030_bib26) 2006; 18 Georgieva (10.1016/j.ijhydene.2018.11.030_bib15) 2009; 11 Stub (10.1016/j.ijhydene.2018.11.030_bib17) 2017; 121 Stub (10.1016/j.ijhydene.2018.11.030_bib28) 2018; 20 Iwu (10.1016/j.ijhydene.2018.11.030_bib14) 2013; 97 Xu (10.1016/j.ijhydene.2018.11.030_bib11) 2017; 16 Roger (10.1016/j.ijhydene.2018.11.030_bib8) 2017; 1 Yang (10.1016/j.ijhydene.2018.11.030_bib29) 2009; 189 Voloshin (10.1016/j.ijhydene.2018.11.030_bib7) 2017; 42 Stoll (10.1016/j.ijhydene.2018.11.030_bib12) 2017; 82 Zafeiropoulos (10.1016/j.ijhydene.2018.11.030_bib13) 2018; 180 Brunauer (10.1016/j.ijhydene.2018.11.030_bib16) 2016; 26 Di Vona (10.1016/j.ijhydene.2018.11.030_bib27) 2007; 296 Joya (10.1016/j.ijhydene.2018.11.030_bib4) 2013; 52 Musazade (10.1016/j.ijhydene.2018.11.030_bib6) 2018; 35 Kim (10.1016/j.ijhydene.2018.11.030_bib24) 2009; 11 Tachibana (10.1016/j.ijhydene.2018.11.030_bib3) 2012; 6 Wang (10.1016/j.ijhydene.2018.11.030_bib20) 2018; 118 Roel van de Krol (10.1016/j.ijhydene.2018.11.030_bib10) 2012 Verlage (10.1016/j.ijhydene.2018.11.030_bib31) 2015; 8 Martin (10.1016/j.ijhydene.2018.11.030_bib21) 2014; 136 Kreuer (10.1016/j.ijhydene.2018.11.030_bib23) 1996; 8 Lewis (10.1016/j.ijhydene.2018.11.030_bib9) 2016; 11 |
References_xml | – volume: 1 start-page: 19 year: 2015 ident: bib2 article-title: Application of multivariate statistical analysis to incorporate physico-chemical surface water quality in low and high flow hydrology publication-title: Model Earth Syst Environ contributor: fullname: Nosrati – volume: 296 start-page: 156 year: 2007 end-page: 161 ident: bib27 article-title: SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process publication-title: J Membr Sci contributor: fullname: Licoccia – volume: 11 start-page: 1010 year: 2016 ident: bib9 article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design publication-title: Nat Nanotechnol contributor: fullname: Lewis – volume: 11 start-page: 1643 year: 2009 end-page: 1646 ident: bib15 article-title: An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination publication-title: Electrochem Commun contributor: fullname: Sotiropoulos – volume: 23 start-page: 1858 year: 2013 ident: bib18 article-title: Thin films: on proton conductivity in porous and dense yttria stabilized zirconia at low temperature (Adv. Funct. Mater. 15/2013) publication-title: Adv Funct Mater contributor: fullname: Ma – volume: 136 start-page: 12568 year: 2014 end-page: 12571 ident: bib21 article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system publication-title: J Am Chem Soc contributor: fullname: Tang – volume: 11 start-page: 3035 year: 2009 end-page: 3038 ident: bib24 article-title: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia publication-title: Phys Chem Chem Phys contributor: fullname: Martin – volume: 52 start-page: 10426 year: 2013 end-page: 10437 ident: bib4 article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move publication-title: Angew Chem Int Ed contributor: fullname: van de Krol – volume: 33 start-page: 333 year: 2003 end-page: 359 ident: bib22 article-title: Proton-conducting oxides publication-title: Annu Rev Mater Res contributor: fullname: Kreuer – volume: 189 start-page: 1016 year: 2009 end-page: 1019 ident: bib29 article-title: Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity publication-title: J Power Sources contributor: fullname: Wei – volume: 45 start-page: 767 year: 2012 end-page: 776 ident: bib19 article-title: The artificial leaf publication-title: Acc Chem Res contributor: fullname: Nocera – volume: 18 start-page: 371 year: 2006 end-page: 374 ident: bib26 article-title: Anatase thin films as fast proton-conducting materials publication-title: Adv Mater contributor: fullname: Nanoporous – volume: 121 start-page: 12817 year: 2017 end-page: 12825 ident: bib17 article-title: Mechanisms of protonic surface transport in porous oxides: example of YSZ publication-title: J Phys Chem C contributor: fullname: Norby – year: 2012 ident: bib10 article-title: Photoelectrochemical hydrogen production contributor: fullname: Grätzel – volume: 180 start-page: 184 year: 2018 end-page: 195 ident: bib13 article-title: Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications publication-title: Sol Energy Mater Sol Cell contributor: fullname: Tsampas – volume: 20 start-page: 15653 year: 2018 end-page: 15660 ident: bib28 article-title: The influence of acceptor and donor doping on the protonic surface conduction of TiO2 publication-title: Phys Chem Chem Phys contributor: fullname: Vøllestad – volume: 69 start-page: 789 year: 2015 end-page: 798 ident: bib5 article-title: Challenges towards economic fuel generation from renewable electricity: the need for efficient electro-catalysis publication-title: CHIMIA Int J Chem contributor: fullname: Sivula – volume: 97 start-page: 320 year: 2013 end-page: 325 ident: bib14 article-title: Solid-state photoelectrochemical H2 generation with gaseous reactants publication-title: Electrochim Acta contributor: fullname: Norby – volume: 26 start-page: 120 year: 2016 end-page: 128 ident: bib16 article-title: UV-Light-Driven oxygen pumping in a high-temperature solid oxide photoelectrochemical cell publication-title: Adv Funct Mater contributor: fullname: Ponweiser – volume: 8 start-page: 610 year: 1996 end-page: 641 ident: bib23 article-title: Proton Conductivity: materials and applications publication-title: Chem Mater contributor: fullname: Kreuer – volume: 289 start-page: 284 year: 2000 ident: bib1 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science contributor: fullname: Lammers – volume: 229 start-page: 43 year: 2004 end-page: 51 ident: bib30 article-title: Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells publication-title: J Membr Sci contributor: fullname: Hsing – volume: 6 start-page: 511 year: 2012 ident: bib3 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat Photon contributor: fullname: Durrant – volume: 1 start-page: 0003 year: 2017 ident: bib8 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nature Reviews Chemistry contributor: fullname: Symes – volume: 82 start-page: 47 year: 2017 end-page: 51 ident: bib12 article-title: Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes publication-title: Electrochem Commun contributor: fullname: Koopmans – volume: 16 start-page: 10 year: 2017 end-page: 16 ident: bib11 article-title: Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting publication-title: Photochem Photobiol Sci contributor: fullname: Norby – volume: 6 start-page: 8265 year: 2018 end-page: 8270 ident: bib25 article-title: Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics publication-title: J Mater Chem contributor: fullname: Norby – volume: 35 start-page: 134 year: 2018 end-page: 156 ident: bib6 article-title: Biohybrid solar cells: fundamentals, progress, and challenges publication-title: J Photochem Photobiol C Photochem Rev contributor: fullname: Zharmukhamedov – volume: 42 start-page: 8576 year: 2017 end-page: 8585 ident: bib7 article-title: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments publication-title: Int J Hydrogen Energy contributor: fullname: Zharmukhamedov – volume: 118 start-page: 5201 year: 2018 end-page: 5241 ident: bib20 article-title: Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems publication-title: Chem Rev contributor: fullname: Higashi – volume: 8 start-page: 3166 year: 2015 end-page: 3172 ident: bib31 article-title: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films publication-title: Energy Environ Sci contributor: fullname: Xiang – volume: 33 start-page: 333 year: 2003 ident: 10.1016/j.ijhydene.2018.11.030_bib22 article-title: Proton-conducting oxides publication-title: Annu Rev Mater Res doi: 10.1146/annurev.matsci.33.022802.091825 contributor: fullname: Kreuer – year: 2012 ident: 10.1016/j.ijhydene.2018.11.030_bib10 contributor: fullname: Roel van de Krol – volume: 6 start-page: 8265 year: 2018 ident: 10.1016/j.ijhydene.2018.11.030_bib25 article-title: Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics publication-title: J Mater Chem doi: 10.1039/C7TA11088J contributor: fullname: Stub – volume: 97 start-page: 320 year: 2013 ident: 10.1016/j.ijhydene.2018.11.030_bib14 article-title: Solid-state photoelectrochemical H2 generation with gaseous reactants publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.03.013 contributor: fullname: Iwu – volume: 1 start-page: 0003 year: 2017 ident: 10.1016/j.ijhydene.2018.11.030_bib8 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nature Reviews Chemistry doi: 10.1038/s41570-016-0003 contributor: fullname: Roger – volume: 16 start-page: 10 year: 2017 ident: 10.1016/j.ijhydene.2018.11.030_bib11 article-title: Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting publication-title: Photochem Photobiol Sci doi: 10.1039/C6PP00217J contributor: fullname: Xu – volume: 11 start-page: 1643 year: 2009 ident: 10.1016/j.ijhydene.2018.11.030_bib15 article-title: An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination publication-title: Electrochem Commun doi: 10.1016/j.elecom.2009.06.019 contributor: fullname: Georgieva – volume: 20 start-page: 15653 year: 2018 ident: 10.1016/j.ijhydene.2018.11.030_bib28 article-title: The influence of acceptor and donor doping on the protonic surface conduction of TiO2 publication-title: Phys Chem Chem Phys doi: 10.1039/C8CP00571K contributor: fullname: Stub – volume: 229 start-page: 43 year: 2004 ident: 10.1016/j.ijhydene.2018.11.030_bib30 article-title: Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells publication-title: J Membr Sci doi: 10.1016/j.memsci.2003.09.014 contributor: fullname: Shao – volume: 180 start-page: 184 year: 2018 ident: 10.1016/j.ijhydene.2018.11.030_bib13 article-title: Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications publication-title: Sol Energy Mater Sol Cell doi: 10.1016/j.solmat.2018.03.012 contributor: fullname: Zafeiropoulos – volume: 1 start-page: 19 year: 2015 ident: 10.1016/j.ijhydene.2018.11.030_bib2 article-title: Application of multivariate statistical analysis to incorporate physico-chemical surface water quality in low and high flow hydrology publication-title: Model Earth Syst Environ doi: 10.1007/s40808-015-0021-6 contributor: fullname: Nosrati – volume: 52 start-page: 10426 year: 2013 ident: 10.1016/j.ijhydene.2018.11.030_bib4 article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move publication-title: Angew Chem Int Ed doi: 10.1002/anie.201300136 contributor: fullname: Joya – volume: 6 start-page: 511 year: 2012 ident: 10.1016/j.ijhydene.2018.11.030_bib3 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat Photon doi: 10.1038/nphoton.2012.175 contributor: fullname: Tachibana – volume: 26 start-page: 120 year: 2016 ident: 10.1016/j.ijhydene.2018.11.030_bib16 article-title: UV-Light-Driven oxygen pumping in a high-temperature solid oxide photoelectrochemical cell publication-title: Adv Funct Mater doi: 10.1002/adfm.201503597 contributor: fullname: Brunauer – volume: 118 start-page: 5201 year: 2018 ident: 10.1016/j.ijhydene.2018.11.030_bib20 article-title: Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00286 contributor: fullname: Wang – volume: 11 start-page: 3035 year: 2009 ident: 10.1016/j.ijhydene.2018.11.030_bib24 article-title: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia publication-title: Phys Chem Chem Phys doi: 10.1039/b901623f contributor: fullname: Kim – volume: 35 start-page: 134 year: 2018 ident: 10.1016/j.ijhydene.2018.11.030_bib6 article-title: Biohybrid solar cells: fundamentals, progress, and challenges publication-title: J Photochem Photobiol C Photochem Rev doi: 10.1016/j.jphotochemrev.2018.04.001 contributor: fullname: Musazade – volume: 42 start-page: 8576 year: 2017 ident: 10.1016/j.ijhydene.2018.11.030_bib7 article-title: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.148 contributor: fullname: Voloshin – volume: 296 start-page: 156 year: 2007 ident: 10.1016/j.ijhydene.2018.11.030_bib27 article-title: SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process publication-title: J Membr Sci doi: 10.1016/j.memsci.2007.03.037 contributor: fullname: Di Vona – volume: 189 start-page: 1016 year: 2009 ident: 10.1016/j.ijhydene.2018.11.030_bib29 article-title: Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.12.076 contributor: fullname: Yang – volume: 45 start-page: 767 year: 2012 ident: 10.1016/j.ijhydene.2018.11.030_bib19 article-title: The artificial leaf publication-title: Acc Chem Res doi: 10.1021/ar2003013 contributor: fullname: Nocera – volume: 8 start-page: 3166 year: 2015 ident: 10.1016/j.ijhydene.2018.11.030_bib31 article-title: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films publication-title: Energy Environ Sci doi: 10.1039/C5EE01786F contributor: fullname: Verlage – volume: 289 start-page: 284 year: 2000 ident: 10.1016/j.ijhydene.2018.11.030_bib1 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science doi: 10.1126/science.289.5477.284 contributor: fullname: Vörösmarty – volume: 82 start-page: 47 year: 2017 ident: 10.1016/j.ijhydene.2018.11.030_bib12 article-title: Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes publication-title: Electrochem Commun doi: 10.1016/j.elecom.2017.07.019 contributor: fullname: Stoll – volume: 11 start-page: 1010 year: 2016 ident: 10.1016/j.ijhydene.2018.11.030_bib9 article-title: Developing a scalable artificial photosynthesis technology through nanomaterials by design publication-title: Nat Nanotechnol doi: 10.1038/nnano.2016.194 contributor: fullname: Lewis – volume: 18 start-page: 371 year: 2006 ident: 10.1016/j.ijhydene.2018.11.030_bib26 article-title: Anatase thin films as fast proton-conducting materials publication-title: Adv Mater doi: 10.1002/adma.200500689 contributor: fullname: Nanoporous – volume: 23 start-page: 1858 year: 2013 ident: 10.1016/j.ijhydene.2018.11.030_bib18 article-title: Thin films: on proton conductivity in porous and dense yttria stabilized zirconia at low temperature (Adv. Funct. Mater. 15/2013) publication-title: Adv Funct Mater doi: 10.1002/adfm.201370074 contributor: fullname: Scherrer – volume: 121 start-page: 12817 year: 2017 ident: 10.1016/j.ijhydene.2018.11.030_bib17 article-title: Mechanisms of protonic surface transport in porous oxides: example of YSZ publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b03005 contributor: fullname: Stub – volume: 69 start-page: 789 year: 2015 ident: 10.1016/j.ijhydene.2018.11.030_bib5 article-title: Challenges towards economic fuel generation from renewable electricity: the need for efficient electro-catalysis publication-title: CHIMIA Int J Chem doi: 10.2533/chimia.2015.789 contributor: fullname: Formal – volume: 8 start-page: 610 year: 1996 ident: 10.1016/j.ijhydene.2018.11.030_bib23 article-title: Proton Conductivity: materials and applications publication-title: Chem Mater doi: 10.1021/cm950192a contributor: fullname: Kreuer – volume: 136 start-page: 12568 year: 2014 ident: 10.1016/j.ijhydene.2018.11.030_bib21 article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system publication-title: J Am Chem Soc doi: 10.1021/ja506386e contributor: fullname: Martin |
SSID | ssj0017049 |
Score | 2.4459736 |
Snippet | A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a... |
SourceID | cristin crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 587 |
SubjectTerms | Earth-abundant materials Polymer electrolytes Solid-state photoelectrochemical cells Surface proton conduction Tandem photoelectrocatalysis Water vapor electrolysis |
Title | Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell |
URI | https://dx.doi.org/10.1016/j.ijhydene.2018.11.030 http://hdl.handle.net/10852/74249 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67QIHNL608iUfuE0JjZPYznGMoMIBCTZQb5bjOFqrkk5bIsT--r1X220mKgFCXKIqTpzkvV_fl_3eI-S1ZLXIbMoj1pgmyhgzUZXwSVSAOtdVlWCFcwxdnIlPM_muzMrRKHTK3J77r5yGc8BrzJz9C25vJoUT8Bt4DkfgOhz_iO_Tn_XVCkZd4sgPDOnO3T7J675doiuOIQ59jCEE-_348mLVrXwvHBOKB2A0f2i13g0bDopNXISH2XUKYeDerF_Lj3iwd6C7mXdorK5l0WbgG67Tv5XLJegmh7VyM_ald7HZz_EwMoHJUBht3YbLQsrMdn-SS9NCwe-6IsXWSV0piijNvOb1YtmVhfTwYwMZm_vrnLrOXYPFXzSBC0os4vkCSAFEwF18MsaCrX4d6G6V7TN8L3ytBLPQhJztkQMGsgtE58HJh3L2cbM0JbxPFb5jkHa--2ngWZm1wG532z4De-b8kDzwjgg9cQh6SEa2fUTuD8pTPibTgCWKWKKAJQpYogAcGrBE5y3V1GGJ7sISRSw9IV_fl-en08h33ohMxpIu0nUKdqXgBmR-04AJmEyqieGGcw3udSUkNyIXFvQ8ti7PZKoLVtu8adiEW1016VOy365ae0RoVWCJOS4ZXpvmheZ1jooCphc60dmYHHnqqBaEHhaszZkSGUw8Jm8CudSlq72iwqbEhQqkVkhqcGQVkHpMikBV5S1IZxkqgMVv7n32D_c-J_e2f4AXZL-76u1Lsndd9688fG4B_8eTcw |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+from+wet+air+and+sunlight+in+a+tandem+photoelectrochemical+cell&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Xu%2C+K.&rft.au=Chatzitakis%2C+A.&rft.au=V%C3%B8llestad%2C+E.&rft.au=Ruan%2C+Q.&rft.date=2019-01-08&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=44&rft.issue=2&rft.spage=587&rft.epage=593&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.11.030&rft.externalDocID=S036031991833578X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |