The hot oyster: levels of virulent Vibrio parahaemolyticus strains in individual oysters

Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis and is most commonly transmitted by raw oysters. Consequently, detection of virulent strains of this organism in oysters is a primary concern for seafood safety. Vibrio parahaemolyticus levels were determined in 110 i...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology ecology Vol. 93; no. 2; p. 1
Main Authors: Klein, Savannah L, Lovell, Charles R
Format: Journal Article
Language:English
Published: England Oxford University Press 01-02-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis and is most commonly transmitted by raw oysters. Consequently, detection of virulent strains of this organism in oysters is a primary concern for seafood safety. Vibrio parahaemolyticus levels were determined in 110 individual oysters harvested from two sampling sites in SC, USA. The majority of oysters (98%) contained low levels of presumptive V. parahaemolyticus However, two healthy oysters contained presumptive V. parahaemolyticus numbers that were unusually high. These two 'hot' oysters contained levels of presumptive V. parahaemolyticus within the gills that were ∼100-fold higher than the average for other oysters collected at the same date and location. Current V. parahaemolyticus detection practices require homogenizing a dozen oysters pooled together to determine V. parahaemolyticus numbers, a procedure that would dilute out V. parahaemolyticus in these 'hot' oysters. This study demonstrates the variability of V. parahaemolyticus densities taken from healthy, neighboring individual oysters in the environment. Additionally, environmental V parahaemolyticus isolates were screened for the virulence-related genes, tdh and trh, using improved polymerase chain reaction primers and protocols. We detected these genes, previously thought to be rare in environmental isolates, in approximately half of the oyster isolates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1574-6941
0168-6496
1574-6941
DOI:10.1093/femsec/fiw232