Intratumoral injection of schwannoma with attenuated Salmonella typhimurium induces antitumor immunity and controls tumor growth

Schwannomas are slow-growing benign neoplasms that develop throughout the body causing pain, sensory/motor dysfunction, and death. Because bacterial immunotherapy has been used in the treatment of some malignant neoplasms, we evaluated attenuated strains as immunotherapies for benign murine schwanno...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 24; p. e2202719119
Main Authors: Ahmed, Sherif G, Oliva, Giulia, Shao, Manlin, Wang, Xinhui, Mekalanos, John J, Brenner, Gary J
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 14-06-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Schwannomas are slow-growing benign neoplasms that develop throughout the body causing pain, sensory/motor dysfunction, and death. Because bacterial immunotherapy has been used in the treatment of some malignant neoplasms, we evaluated attenuated strains as immunotherapies for benign murine schwannomas. Several bacterial strains were tested, including VNP20009, a highly attenuated strain that was previously shown to be safe in human subjects with advanced malignant neoplasms, and a VNP20009 mutant that was altered in motility and other properties that included adherence and invasion of cultured mammalian cells. VNP20009 controlled tumor growth in two murine schwannoma models and induced changes in cytokine and immune effector cell profiles that were consistent with induction of enhanced innate and adaptive host immune responses compared with controls. Intratumoral (i.t.) injection of led to tumor cell apoptosis, decreased tumor angiogenesis, and lower growth of the injected schwannoma tumors. Invasive VNP20009 was significantly more efficacious than was a noninvasive derivative in controlling the growth of injected tumors. Bacterial treatment apparently induced systemic antitumor immunity in that the growth of rechallenge schwannomas implanted following primary bacterial treatment was also reduced. Checkpoint programmed death-1 (PD-1) blockade induced by systemic administration of anti-PD-1 antibodies controlled tumor growth to the same degree as i.t. injection of , and together, these two therapies had an additive effect on suppressing schwannoma growth. These experiments represent validation of a bacterial therapy for a benign neoplasm and support development of VNP20009, potentially in combination with PD-1 inhibition, as a schwannoma immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by John J. Mekalanos; received February 22, 2022; accepted April 13, 2022; reviewed by Samuel Miller and Daniel Portnoy
Author contributions: S.G.A., X.W., J.J.M., and G.J.B. designed research; S.G.A., G.O., and M.S. performed research; S.G.A., G.O., J.J.M., and G.J.B. analyzed data; S.G.A. and G.J.B. initially conceptualized the studies; G.O. assisted with manuscript preparation; X.W. and J.J.M. revised manuscript; and S.G.A. and G.J.B. wrote the paper.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2202719119