Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection

Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information,...

Full description

Saved in:
Bibliographic Details
Published in:Cancers Vol. 14; no. 3; p. 606
Main Authors: Allegra, Alessandro, Tonacci, Alessandro, Sciaccotta, Raffaele, Genovese, Sara, Musolino, Caterina, Pioggia, Giovanni, Gangemi, Sebastiano
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 25-01-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
AbstractList Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Simple SummaryMultiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment.AbstractArtificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Author Allegra, Alessandro
Musolino, Caterina
Genovese, Sara
Pioggia, Giovanni
Gangemi, Sebastiano
Tonacci, Alessandro
Sciaccotta, Raffaele
AuthorAffiliation 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; atonacci@ifc.cnr.it
3 Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy; sara.genovese@cnr.it (S.G.); giovanni.pioggia@cnr.it (G.P.)
4 Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; gangemis@unime.it
1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; sciaccottaraffaele@gmail.com (R.S.); cmusolino@unime.it (C.M.)
AuthorAffiliation_xml – name: 3 Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy; sara.genovese@cnr.it (S.G.); giovanni.pioggia@cnr.it (G.P.)
– name: 4 Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; gangemis@unime.it
– name: 1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; sciaccottaraffaele@gmail.com (R.S.); cmusolino@unime.it (C.M.)
– name: 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; atonacci@ifc.cnr.it
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0001-6156-8239
  surname: Allegra
  fullname: Allegra, Alessandro
  organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0001-8335-5541
  surname: Tonacci
  fullname: Tonacci, Alessandro
  organization: Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
– sequence: 3
  givenname: Raffaele
  surname: Sciaccotta
  fullname: Sciaccotta, Raffaele
  organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
– sequence: 4
  givenname: Sara
  surname: Genovese
  fullname: Genovese, Sara
  organization: Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
– sequence: 5
  givenname: Caterina
  surname: Musolino
  fullname: Musolino, Caterina
  organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
– sequence: 6
  givenname: Giovanni
  orcidid: 0000-0002-8089-7449
  surname: Pioggia
  fullname: Pioggia, Giovanni
  organization: Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
– sequence: 7
  givenname: Sebastiano
  surname: Gangemi
  fullname: Gangemi, Sebastiano
  organization: Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35158874$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtPxCAUhYnR-BhduzMkblw4CqUUujExvpOZaKKuCUNvRwyFCq2J_95OxvHFhpvLx8m59-ygdR88ILRPyQljJTk12huIieaEkYIUa2g7IyIbF0WZr_-qt9BeSq9kOIxRUYhNtMU45VKKfBu9TbV5sR7wBHT01s-x9hW-BGh_Oudt66zRnQ0-YevxtHedbR3g6Qe40Gh8afXch2TTMX6IYVUuhJ4i6K4B3-FHcGAWErtoo9Yuwd7XPULP11dPF7fjyf3N3cX5ZGzyjHZjxgoqSW6orHNWV9mMgwSQhSyrkkrBy1xDxUhNueFMQzYriS4poYYSITgFNkJnS922nzVQmcFE1E610TY6fqigrfr74u2Lmod3JSVjfFjWCB19CcTw1kPqVGOTAee0h9AnlRVZSbjkgg3o4T_0NfTRD-MtKMEzQQgdqNMlZWJIKUL9bYYStUhU_Ut0-HHwe4ZvfpUf-wRC_p-9
CitedBy_id crossref_primary_10_1053_j_semnuclmed_2022_10_008
crossref_primary_10_1016_j_autrev_2023_103353
crossref_primary_10_1038_s41598_024_61420_9
crossref_primary_10_3390_cells12131755
crossref_primary_10_1007_s11042_023_16419_1
crossref_primary_10_3389_frhem_2024_1331109
crossref_primary_10_1007_s00256_022_04160_z
crossref_primary_10_1016_j_heliyon_2023_e20133
crossref_primary_10_3389_fnins_2022_932270
crossref_primary_10_3390_ijms242115570
crossref_primary_10_3390_app13074333
crossref_primary_10_1080_17474086_2023_2277876
crossref_primary_10_3390_life14040516
crossref_primary_10_1016_j_cca_2024_119724
crossref_primary_10_1200_CCI_23_00078
crossref_primary_10_1038_s41698_023_00385_w
crossref_primary_10_1364_OE_504640
crossref_primary_10_2967_jnumed_122_264972
crossref_primary_10_3390_app12188972
crossref_primary_10_1109_TDMR_2022_3182133
crossref_primary_10_3390_biology11040586
crossref_primary_10_1002_INMD_20230056
crossref_primary_10_3390_ijms24065680
crossref_primary_10_1186_s12880_023_01033_2
crossref_primary_10_1016_j_compbiomed_2022_106189
crossref_primary_10_1016_j_heliyon_2023_e13636
crossref_primary_10_1109_TCE_2023_3337788
crossref_primary_10_3390_biology11101462
crossref_primary_10_3390_diagnostics13213372
crossref_primary_10_3389_fped_2022_911591
Cites_doi 10.1200/JCO.2017.72.2975
10.1136/svn-2017-000101
10.1182/blood-2015-08-665679
10.1038/nbt.4233
10.1182/blood-2008-07-167767
10.1001/jama.2017.18391
10.2967/jnumed.115.161034
10.15252/emmm.201404698
10.1186/s13073-021-00968-x
10.1007/s00011-012-0498-7
10.1038/s41591-018-0300-7
10.1038/nmeth.2365
10.1016/S0140-6736(02)07746-2
10.1038/s41375-019-0595-5
10.1111/ejh.13707
10.1097/MNM.0000000000001437
10.1016/S1470-2045(17)30189-4
10.1038/s41375-021-01286-2
10.3324/haematol.2016.147843
10.3389/fonc.2021.652063
10.1007/978-3-030-85292-4_39
10.1038/s41591-018-0178-4
10.3389/fpubh.2020.00117
10.1038/leu.2017.313
10.1182/blood-2016-03-704908
10.1007/s00330-018-5674-x
10.1200/JCO.2015.61.2267
10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>3.0.CO;2-U
10.3324/haematol.2010.033456
10.1182/blood-2010-11-317438
10.1001/jama.2019.15064
10.1177/0840470419873123
10.1016/j.tranon.2021.101157
10.1200/JCO.2005.04.242
10.1007/s13244-016-0492-7
10.1007/s12185-020-02841-w
10.1093/bioinformatics/btu279
10.1038/s41591-018-0307-0
10.1016/j.sab.2017.11.016
10.1007/978-0-387-21606-5
10.1016/j.sab.2018.05.010
10.1111/ejh.12107
10.1038/nrg3920
10.1111/j.1600-0609.2010.01558.x
10.1182/blood-2007-10-119321
10.1016/j.csbj.2021.10.006
10.1002/mas.10066
10.1126/science.aaf2403
10.1364/BOE.421333
10.1007/s11547-020-01205-y
10.1366/000370210793561691
10.2967/jnumed.120.257196
10.3390/cells10020448
10.1109/ICSCAN.2018.8541142
10.1155/2006/728296
10.1182/blood-2017-06-788786
10.3389/fpsyg.2021.710982
10.1016/j.jacr.2019.05.036
10.1016/j.pharmthera.2017.09.001
10.1111/bjh.17933
10.1038/s41374-019-0325-7
10.1038/s41467-018-05348-5
10.1038/leu.2017.29
10.1182/blood-2007-11-120535
10.1371/journal.pone.0194788
10.1200/CCI.18.00001
10.18632/oncotarget.12430
10.1002/widm.1391
10.1158/0008-5472.CAN-06-4322
10.1038/nature14539
10.1042/ETLS20160025
10.1038/s41418-020-0498-z
10.1038/s41588-018-0295-5
10.1002/ijc.33762
10.1038/s41551-018-0305-z
10.1093/bioinformatics/btx243
10.1177/0141076818815510
10.1155/2018/2391925
10.1158/1078-0432.CCR-20-0742
10.1371/journal.pone.0254596
10.1016/j.leukres.2013.10.018
10.1038/sj.leu.2404719
10.1093/bioinformatics/btw074
10.3390/cancers13184624
10.1038/bcj.2017.56
10.1155/2021/7667707
10.1093/bib/bbz171
10.1038/s41551-020-0578-x
10.1056/NEJMoa1113205
10.1038/leu.2012.127
10.1038/sj.onc.1210679
10.1016/j.sab.2020.105787
10.3389/fgene.2021.666561
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID NPM
AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers14030606
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest research library
Biological Science Database
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10_3390_cancers14030606
35158874
Genre Journal Article
Review
GroupedDBID ---
3V.
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
ABDBF
ABUWG
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
NPM
OK1
P6G
PGMZT
PIMPY
PQQKQ
PROAC
RIG
RPM
TUS
AAYXX
CITATION
7T5
7TO
7XB
8FK
H94
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c421t-3361804c18f43fd2b5e8ee8689d9187594aed30f15c53ae2b90a9101c107751e3
IEDL.DBID RPM
ISSN 2072-6694
IngestDate Tue Sep 17 21:24:54 EDT 2024
Fri Oct 25 21:55:45 EDT 2024
Thu Oct 10 15:19:06 EDT 2024
Fri Nov 22 02:44:41 EST 2024
Wed Oct 16 00:41:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
multiple myeloma
diagnosis
machine learning
chemotherapy
prognosis
artificial intelligence
bone disease
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-3361804c18f43fd2b5e8ee8689d9187594aed30f15c53ae2b90a9101c107751e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
These authors contributed equally to this work.
ORCID 0000-0001-8335-5541
0000-0001-6156-8239
0000-0002-8089-7449
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833500/
PMID 35158874
PQID 2627527001
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833500
proquest_miscellaneous_2629058573
proquest_journals_2627527001
crossref_primary_10_3390_cancers14030606
pubmed_primary_35158874
PublicationCentury 2000
PublicationDate 20220125
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 1
  year: 2022
  text: 20220125
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tran (ref_14) 2021; 13
Blimark (ref_23) 2021; 108
Rubin (ref_92) 2019; 16
ref_12
Ubels (ref_59) 2020; 26
ref_10
Durie (ref_62) 1975; 36
English (ref_11) 2022; 134
Vag (ref_49) 2016; 57
Yu (ref_1) 2018; 2
Chen (ref_7) 2016; 32
Paiva (ref_55) 2017; 31
Mesguich (ref_31) 2021; 42
Koh (ref_8) 2017; 33
Moreaux (ref_73) 2011; 96
Reddy (ref_3) 2018; 112
Cavo (ref_47) 2017; 18
Teng (ref_44) 2020; 165
LeCun (ref_13) 2015; 521
ref_27
Pawlyn (ref_35) 2020; 34
Zou (ref_20) 2018; 51
Craig (ref_37) 2008; 111
Gangemi (ref_45) 2012; 61
ref_71
Lhermitte (ref_40) 2017; 32
Cremers (ref_66) 2016; 102
Chen (ref_29) 2021; 12
Beam (ref_39) 2018; 319
Price (ref_95) 2020; 62
Ettari (ref_67) 2018; 182
Jiang (ref_2) 2017; 2
Farswan (ref_54) 2021; 14
Chen (ref_4) 2019; 33
Kourou (ref_53) 2021; 19
Allegra (ref_69) 2013; 90
Chen (ref_28) 2018; 139
Dutoit (ref_46) 2016; 7
Kumar (ref_84) 2017; 130
Bhattacharyya (ref_33) 2006; 22
Savadjiev (ref_93) 2018; 29
Trichet (ref_79) 2007; 67
Coppola (ref_98) 2020; 126
Walsh (ref_21) 2019; 3
Allegra (ref_76) 2014; 38
Petricoin (ref_52) 2002; 359
Wainberg (ref_19) 2018; 36
ref_57
Chandradevan (ref_25) 2020; 100
Lynch (ref_5) 2018; 24
Bernau (ref_77) 2014; 30
Ma (ref_16) 2021; 2021
Gerlinger (ref_89) 2012; 366
Aghaeepour (ref_26) 2013; 10
Libbrecht (ref_17) 2015; 16
Suzuki (ref_65) 2020; 111
Vickovic (ref_88) 2016; 353
Paiva (ref_72) 2016; 127
ref_61
Kline (ref_83) 2007; 21
Ni (ref_41) 2016; 7
Baptista (ref_9) 2020; 22
Palumbo (ref_64) 2015; 33
Ubels (ref_78) 2018; 9
Topol (ref_86) 2019; 25
Mitra (ref_58) 2017; 7
Coppola (ref_96) 2021; 12
Hinton (ref_38) 2008; 9
Jones (ref_18) 2017; 1
Hemminki (ref_22) 2021; 149
Bodet (ref_82) 2011; 118
Gong (ref_81) 2016; 128
Price (ref_94) 2019; 322
Xiong (ref_32) 2021; 11
Yan (ref_24) 2021; 11
ref_36
Herrmann (ref_50) 2015; 7
ref_34
He (ref_87) 2019; 25
Teh (ref_85) 2020; 27
Confalonieri (ref_91) 2020; 11
Kumar (ref_70) 2008; 112
Greipp (ref_63) 2005; 23
Kuiper (ref_74) 2012; 26
Allegra (ref_68) 2010; 86
Xu (ref_30) 2018; 2018
Zhan (ref_75) 2008; 111
Borisov (ref_60) 2021; 11
Podar (ref_80) 2008; 27
Hahn (ref_42) 2010; 64
Moreau (ref_48) 2017; 35
Martini (ref_15) 2021; 22
He (ref_90) 2020; 4
Orgueira (ref_56) 2021; 35
Gaudiuso (ref_43) 2018; 146
Tang (ref_51) 2003; 23
Triberti (ref_97) 2020; 8
ref_6
References_xml – volume: 35
  start-page: 2911
  year: 2017
  ident: ref_48
  article-title: Prospective Evaluation of Magnetic Resonance Imaging and [18F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients with Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.72.2975
  contributor:
    fullname: Moreau
– volume: 2
  start-page: 230
  year: 2017
  ident: ref_2
  article-title: Artificial intelligence in healthcare: Past, present and future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
  contributor:
    fullname: Jiang
– volume: 127
  start-page: 1896
  year: 2016
  ident: ref_72
  article-title: Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: A new model to understand chemoresistance
  publication-title: Blood
  doi: 10.1182/blood-2015-08-665679
  contributor:
    fullname: Paiva
– volume: 36
  start-page: 829
  year: 2018
  ident: ref_19
  article-title: Deep learning in biomedicine
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4233
  contributor:
    fullname: Wainberg
– volume: 112
  start-page: 2177
  year: 2008
  ident: ref_70
  article-title: Many facets of bortezomib resistance/susceptibility
  publication-title: Blood
  doi: 10.1182/blood-2008-07-167767
  contributor:
    fullname: Kumar
– volume: 11
  start-page: 128
  year: 2021
  ident: ref_32
  article-title: Differentiating Between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning–Based Radiomics
  publication-title: Front. Oncol.
  contributor:
    fullname: Xiong
– volume: 319
  start-page: 1317
  year: 2018
  ident: ref_39
  article-title: Big data and machine learning in healthcare
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
  contributor:
    fullname: Beam
– volume: 57
  start-page: 741
  year: 2016
  ident: ref_49
  article-title: First Experience with Chemokine Receptor CXCR4–Targeted PET Imaging of Patients with Solid Cancers
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.115.161034
  contributor:
    fullname: Vag
– volume: 7
  start-page: 477
  year: 2015
  ident: ref_50
  article-title: In vivo molecular imaging of chemokine receptor CXCR 4 expression in patients with advanced multiple myeloma
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201404698
  contributor:
    fullname: Herrmann
– volume: 13
  start-page: 1
  year: 2021
  ident: ref_14
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
  contributor:
    fullname: Tran
– volume: 61
  start-page: 1063
  year: 2012
  ident: ref_45
  article-title: Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-012-0498-7
  contributor:
    fullname: Gangemi
– volume: 25
  start-page: 44
  year: 2019
  ident: ref_86
  article-title: High-performance medicine: The convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
  contributor:
    fullname: Topol
– volume: 10
  start-page: 228
  year: 2013
  ident: ref_26
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2365
  contributor:
    fullname: Aghaeepour
– volume: 359
  start-page: 572
  year: 2002
  ident: ref_52
  article-title: Use of proteomic patterns in serum to identify ovarian cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)07746-2
  contributor:
    fullname: Petricoin
– volume: 34
  start-page: 604
  year: 2020
  ident: ref_35
  article-title: The relative importance of factors predicting outcome for myeloma patients at different ages: Results from 3894 patients in the Myeloma XI trial
  publication-title: Leukemia
  doi: 10.1038/s41375-019-0595-5
  contributor:
    fullname: Pawlyn
– volume: 108
  start-page: 99
  year: 2021
  ident: ref_23
  article-title: Outcome data from >10 000 multiple myeloma patients in the Danish and Swedish national registries
  publication-title: Eur. J. Haematol.
  doi: 10.1111/ejh.13707
  contributor:
    fullname: Blimark
– volume: 42
  start-page: 1135
  year: 2021
  ident: ref_31
  article-title: Improved 18-FDG PET/CT diagnosis of multiple myeloma diffuse disease by radiomics analysis
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/MNM.0000000000001437
  contributor:
    fullname: Mesguich
– ident: ref_10
– volume: 18
  start-page: e206
  year: 2017
  ident: ref_47
  article-title: Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: A consensus statement by the International Myeloma Working Group
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30189-4
  contributor:
    fullname: Cavo
– volume: 35
  start-page: 2924
  year: 2021
  ident: ref_56
  article-title: Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
  publication-title: Leukemia
  doi: 10.1038/s41375-021-01286-2
  contributor:
    fullname: Orgueira
– volume: 102
  start-page: 320
  year: 2016
  ident: ref_66
  article-title: Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes
  publication-title: Haematologica
  doi: 10.3324/haematol.2016.147843
  contributor:
    fullname: Cremers
– volume: 11
  start-page: 1124
  year: 2021
  ident: ref_60
  article-title: Machine Learning Applicability for Classification of PAD/VCD Chemotherapy Response Using 53 Multiple Myeloma RNA Sequencing Profiles
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.652063
  contributor:
    fullname: Borisov
– volume: 134
  start-page: 349
  year: 2022
  ident: ref_11
  article-title: Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia
  publication-title: Acta Neurochir. Suppl.
  doi: 10.1007/978-3-030-85292-4_39
  contributor:
    fullname: English
– volume: 24
  start-page: 1304
  year: 2018
  ident: ref_5
  article-title: New machine-learning technologies for computer-aided diagnosis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0178-4
  contributor:
    fullname: Lynch
– volume: 8
  start-page: 117
  year: 2020
  ident: ref_97
  article-title: A “Third Wheel” Effect in Health Decision Making Involving Artificial Entities: A Psychological Perspective
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.00117
  contributor:
    fullname: Triberti
– volume: 32
  start-page: 874
  year: 2017
  ident: ref_40
  article-title: Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2017.313
  contributor:
    fullname: Lhermitte
– volume: 128
  start-page: 1834
  year: 2016
  ident: ref_81
  article-title: Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: Pivotal role of MCL1
  publication-title: Blood
  doi: 10.1182/blood-2016-03-704908
  contributor:
    fullname: Gong
– volume: 29
  start-page: 1616
  year: 2018
  ident: ref_93
  article-title: Demystification of AI-driven medical image interpretation: Past, present and future
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5674-x
  contributor:
    fullname: Savadjiev
– volume: 33
  start-page: 2863
  year: 2015
  ident: ref_64
  article-title: Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.61.2267
  contributor:
    fullname: Palumbo
– volume: 36
  start-page: 842
  year: 1975
  ident: ref_62
  article-title: A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival
  publication-title: Cancer
  doi: 10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>3.0.CO;2-U
  contributor:
    fullname: Durie
– volume: 96
  start-page: 574
  year: 2011
  ident: ref_73
  article-title: A high-risk signature for patients with multiple myeloma established from the molecular classification of human mye-loma cell lines
  publication-title: Haematologica
  doi: 10.3324/haematol.2010.033456
  contributor:
    fullname: Moreaux
– volume: 118
  start-page: 3901
  year: 2011
  ident: ref_82
  article-title: ABT-737 is highly effective against molecular subgroups of multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2010-11-317438
  contributor:
    fullname: Bodet
– volume: 322
  start-page: 1765
  year: 2019
  ident: ref_94
  article-title: Potential Liability for Physicians Using Artificial Intelligence
  publication-title: JAMA J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.15064
  contributor:
    fullname: Price
– volume: 33
  start-page: 10
  year: 2019
  ident: ref_4
  article-title: Artificial intelligence in healthcare: An essential guide for health leaders
  publication-title: Healthc. Manag. Forum
  doi: 10.1177/0840470419873123
  contributor:
    fullname: Chen
– volume: 14
  start-page: 101157
  year: 2021
  ident: ref_54
  article-title: AI-supported modified risk staging for multiple myeloma cancer useful in real-world scenario
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2021.101157
  contributor:
    fullname: Farswan
– volume: 23
  start-page: 3412
  year: 2005
  ident: ref_63
  article-title: International Staging System for Multiple Myeloma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.04.242
  contributor:
    fullname: Greipp
– volume: 7
  start-page: 553
  year: 2016
  ident: ref_46
  article-title: MRI in multiple myeloma: A pictorial review of diagnostic and post-treatment findings
  publication-title: Insights Imaging
  doi: 10.1007/s13244-016-0492-7
  contributor:
    fullname: Dutoit
– volume: 111
  start-page: 512
  year: 2020
  ident: ref_65
  article-title: Latest treatment strategies aiming for a cure in transplant-eligible multiple myeloma patients: How I cure younger MM patients with lower cost
  publication-title: Int. J. Hematol.
  doi: 10.1007/s12185-020-02841-w
  contributor:
    fullname: Suzuki
– volume: 30
  start-page: i105
  year: 2014
  ident: ref_77
  article-title: Cross-study validation for the assessment of prediction algorithms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu279
  contributor:
    fullname: Bernau
– volume: 25
  start-page: 30
  year: 2019
  ident: ref_87
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0307-0
  contributor:
    fullname: He
– volume: 139
  start-page: 63
  year: 2018
  ident: ref_28
  article-title: Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
  doi: 10.1016/j.sab.2017.11.016
  contributor:
    fullname: Chen
– ident: ref_36
  doi: 10.1007/978-0-387-21606-5
– volume: 146
  start-page: 106
  year: 2018
  ident: ref_43
  article-title: Using LIBS to diagnose mel-anoma in biomedical fluids deposited on solid substrates: Limits of direct spectral analysis and capability of machine learning
  publication-title: Spectrochim. Acta Part B
  doi: 10.1016/j.sab.2018.05.010
  contributor:
    fullname: Gaudiuso
– volume: 90
  start-page: 441
  year: 2013
  ident: ref_69
  article-title: Monoclonal antibodies: Potential new therapeutic treatment against multiple myeloma
  publication-title: Eur. J. Haematol.
  doi: 10.1111/ejh.12107
  contributor:
    fullname: Allegra
– volume: 16
  start-page: 321
  year: 2015
  ident: ref_17
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
  contributor:
    fullname: Libbrecht
– volume: 86
  start-page: 93
  year: 2010
  ident: ref_68
  article-title: Novel therapeutic strategies in multiple myeloma: Role of the heat shock protein inhibitors
  publication-title: Eur. J. Haematol.
  doi: 10.1111/j.1600-0609.2010.01558.x
  contributor:
    fullname: Allegra
– volume: 111
  start-page: 968
  year: 2008
  ident: ref_75
  article-title: High-risk myeloma: A gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone
  publication-title: Blood
  doi: 10.1182/blood-2007-10-119321
  contributor:
    fullname: Zhan
– volume: 19
  start-page: 5546
  year: 2021
  ident: ref_53
  article-title: Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.10.006
  contributor:
    fullname: Kourou
– volume: 23
  start-page: 34
  year: 2003
  ident: ref_51
  article-title: Current developments in SELDI affinity technology
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.10066
  contributor:
    fullname: Tang
– volume: 353
  start-page: 78
  year: 2016
  ident: ref_88
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
  contributor:
    fullname: Vickovic
– volume: 12
  start-page: 3584
  year: 2021
  ident: ref_29
  article-title: Diagnosis and staging of multiple myeloma using serum-based laser-induced breakdown spectroscopy combined with machine learning methods
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.421333
  contributor:
    fullname: Chen
– volume: 126
  start-page: 63
  year: 2020
  ident: ref_98
  article-title: Artificial intelligence: Radiologists’ expectations and opinions gleaned from a nationwide online survey
  publication-title: Radiol. Med.
  doi: 10.1007/s11547-020-01205-y
  contributor:
    fullname: Coppola
– volume: 64
  start-page: 335A
  year: 2010
  ident: ref_42
  article-title: Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of basic diagnostics and plas-ma-particle interactions: Still-challenging issues within the analytical plasma community
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370210793561691
  contributor:
    fullname: Hahn
– volume: 62
  start-page: 15
  year: 2020
  ident: ref_95
  article-title: How Much Can Potential Jurors Tell Us About Liability for Medical Artificial Intelligence?
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.120.257196
  contributor:
    fullname: Price
– ident: ref_71
  doi: 10.3390/cells10020448
– ident: ref_6
  doi: 10.1109/ICSCAN.2018.8541142
– volume: 11
  start-page: 933
  year: 2021
  ident: ref_24
  article-title: Employment of Artificial Intelligence Based on Routine Laboratory Results for the Early Diagnosis of Multiple Myeloma
  publication-title: Front. Oncol.
  contributor:
    fullname: Yan
– volume: 22
  start-page: 245
  year: 2006
  ident: ref_33
  article-title: Biomarkers that Discriminate Multiple Myeloma Patients with or without Skeletal Involvement Detected Using SELDI-TOF Mass Spectrometry and Statistical and Machine Learning Tools
  publication-title: Dis. Markers
  doi: 10.1155/2006/728296
  contributor:
    fullname: Bhattacharyya
– volume: 130
  start-page: 2401
  year: 2017
  ident: ref_84
  article-title: Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2017-06-788786
  contributor:
    fullname: Kumar
– volume: 12
  start-page: 4296
  year: 2021
  ident: ref_96
  article-title: Human, All too Human? An All-around Appraisal of the “Artificial Intelligence Revolution” in Medical Imaging
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2021.710982
  contributor:
    fullname: Coppola
– volume: 16
  start-page: 1309
  year: 2019
  ident: ref_92
  article-title: Artificial Intelligence in Imaging: The Radiologist’s Role
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2019.05.036
  contributor:
    fullname: Rubin
– volume: 182
  start-page: 176
  year: 2018
  ident: ref_67
  article-title: Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2017.09.001
  contributor:
    fullname: Ettari
– ident: ref_27
  doi: 10.1111/bjh.17933
– volume: 100
  start-page: 98
  year: 2020
  ident: ref_25
  article-title: Machine-based detection and classification for bone marrow aspirate differential counts: Initial development focusing on nonneoplastic cells
  publication-title: Lab. Investig.
  doi: 10.1038/s41374-019-0325-7
  contributor:
    fullname: Chandradevan
– volume: 9
  start-page: 2943
  year: 2018
  ident: ref_78
  article-title: Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05348-5
  contributor:
    fullname: Ubels
– volume: 31
  start-page: 2094
  year: 2017
  ident: ref_55
  article-title: Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/leu.2017.29
  contributor:
    fullname: Paiva
– volume: 111
  start-page: 3941
  year: 2008
  ident: ref_37
  article-title: Flow cytometric immunophenotyping for hematologic neoplasms
  publication-title: Blood
  doi: 10.1182/blood-2007-11-120535
  contributor:
    fullname: Craig
– ident: ref_34
  doi: 10.1371/journal.pone.0194788
– volume: 22
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: A review of deep learning applications for genomic selection
  publication-title: BMC Genom.
  contributor:
    fullname: Martini
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_21
  article-title: Decision Support Systems in Oncology
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.18.00001
  contributor:
    fullname: Walsh
– volume: 7
  start-page: 71915
  year: 2016
  ident: ref_41
  article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12430
  contributor:
    fullname: Ni
– volume: 11
  start-page: e1391
  year: 2020
  ident: ref_91
  article-title: A historical perspective of explainable Artificial Intelligence
  publication-title: WIREs Data Min. Knowl. Discov.
  doi: 10.1002/widm.1391
  contributor:
    fullname: Confalonieri
– volume: 67
  start-page: 5418
  year: 2007
  ident: ref_79
  article-title: Noxa Up-regulation and Mcl-1 Cleavage Are Associated to Apoptosis Induction by Bortezomib in Multiple Myeloma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4322
  contributor:
    fullname: Trichet
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– volume: 1
  start-page: 257
  year: 2017
  ident: ref_18
  article-title: Computational biology: Deep learning
  publication-title: Emerg. Top. Life Sci.
  doi: 10.1042/ETLS20160025
  contributor:
    fullname: Jones
– volume: 27
  start-page: 2217
  year: 2020
  ident: ref_85
  article-title: Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0498-z
  contributor:
    fullname: Teh
– volume: 51
  start-page: 12
  year: 2018
  ident: ref_20
  article-title: A primer on deep learning in genomics
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0295-5
  contributor:
    fullname: Zou
– volume: 149
  start-page: 1980
  year: 2021
  ident: ref_22
  article-title: Epidemiology, genetics and treatment of multiple myeloma and precursor diseases
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.33762
  contributor:
    fullname: Hemminki
– volume: 2
  start-page: 719
  year: 2018
  ident: ref_1
  article-title: Artificial intelligence in healthcare
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0305-z
  contributor:
    fullname: Yu
– volume: 33
  start-page: i225
  year: 2017
  ident: ref_8
  article-title: Denoising genome-wide histone ChIP-seq with convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx243
  contributor:
    fullname: Koh
– volume: 112
  start-page: 22
  year: 2018
  ident: ref_3
  article-title: Artificial intelligence-enabled healthcare delivery
  publication-title: J. R. Soc. Med.
  doi: 10.1177/0141076818815510
  contributor:
    fullname: Reddy
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_30
  article-title: Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1155/2018/2391925
  contributor:
    fullname: Xu
– volume: 26
  start-page: 5952
  year: 2020
  ident: ref_59
  article-title: Gene Networks Constructed Through Simulated Treatment Learning can Predict Proteasome Inhibitor Benefit in Multiple Myeloma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-0742
  contributor:
    fullname: Ubels
– ident: ref_61
  doi: 10.1371/journal.pone.0254596
– volume: 38
  start-page: 1
  year: 2014
  ident: ref_76
  article-title: New orally active proteasome inhibitors in multiple myeloma
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2013.10.018
  contributor:
    fullname: Allegra
– volume: 21
  start-page: 1549
  year: 2007
  ident: ref_83
  article-title: ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404719
  contributor:
    fullname: Kline
– volume: 32
  start-page: 1832
  year: 2016
  ident: ref_7
  article-title: Gene expression inference with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw074
  contributor:
    fullname: Chen
– ident: ref_12
  doi: 10.3390/cancers13184624
– volume: 7
  start-page: e581
  year: 2017
  ident: ref_58
  article-title: A gene expression signature distinguishes innate response and resistance to proteasome inhibitors in multiple myeloma
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2017.56
  contributor:
    fullname: Mitra
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_16
  article-title: Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/7667707
  contributor:
    fullname: Ma
– volume: 22
  start-page: 360
  year: 2020
  ident: ref_9
  article-title: Deep learning for drug response prediction in cancer
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz171
  contributor:
    fullname: Baptista
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_38
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Hinton
– volume: 4
  start-page: 827
  year: 2020
  ident: ref_90
  article-title: Integrating spatial gene expression and breast tumour morphology via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-0578-x
  contributor:
    fullname: He
– volume: 366
  start-page: 883
  year: 2012
  ident: ref_89
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1113205
  contributor:
    fullname: Gerlinger
– volume: 26
  start-page: 2406
  year: 2012
  ident: ref_74
  article-title: A gene expression signature for high-risk multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/leu.2012.127
  contributor:
    fullname: Kuiper
– volume: 27
  start-page: 721
  year: 2008
  ident: ref_80
  article-title: A pivotal role for Mcl-1 in Bortezomib-induced apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210679
  contributor:
    fullname: Podar
– volume: 165
  start-page: 105787
  year: 2020
  ident: ref_44
  article-title: Discrimination of infil-trative glioma boundary based on laser-induced breakdown spectroscopy
  publication-title: Spectrochim. Acta Part B
  doi: 10.1016/j.sab.2020.105787
  contributor:
    fullname: Teng
– ident: ref_57
  doi: 10.3389/fgene.2021.666561
SSID ssj0000331767
Score 2.4669354
SecondaryResourceType review_article
Snippet Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning...
Simple SummaryMultiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 606
SubjectTerms Algorithms
Artificial intelligence
Bone lesions
Bone marrow
Chemoresistance
Choice learning
Computational neuroscience
Deep learning
Diagnosis
Hematology
Learning algorithms
Machine learning
Medical prognosis
Multiple myeloma
Neural networks
Neurons
Plasma cells
Prognosis
Review
Serology
Support vector machines
Tumors
Title Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection
URI https://www.ncbi.nlm.nih.gov/pubmed/35158874
https://www.proquest.com/docview/2627527001
https://search.proquest.com/docview/2629058573
https://pubmed.ncbi.nlm.nih.gov/PMC8833500
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RDhUL4k2gICMxMBBqx3YeI6JULEFIgMQWObYDlWha-hj499hOUlrY2CLbcSzfOXen-_wdwIWkAheKhX5YcOkzGjE_TjDzAyVNOJQHimFXxPYpeniN-3eWJoc3d2EcaF_mw-vyY3RdDt8dtnIykr0GJ9Z7TG9tgVyOca8FLeMbroTo7vdLjUkMo4rGh5qQvift_k1nlpkOG399EzrUWHFzuti6MfrjYf4GSq5YnsE2bNUuI7qplrYDG7rchU5aJ8X34DN1gEiNaq7UNyRKhfpaT35ablby1GhYorTGEaL0S3-MRwL1K8jdcHaFHqfj5tFO9NxA0dGTq5ljptiHl8Hd8-29X1dS8CULyNynNCQxZpLEBaOFCnKuY63jME5UQkzEkjChFcUF4ZJToYM8wcL4EUQSy5BHND2Adjku9REgGvFCWBZCSRIWMZlzlWOex9I0CcGVB5fNlmaTijAjM4GGFUT2SxAedJstz-qTM8sCS5vssuEenC-7jc7bRIYo9XjhxiTYxDkR9eCwktDyW41oPYjWZLccYPm013uMmjle7Vqtjv_95glsBvZ2BCZ-wLvQnk8X-hRaM7U4czr6DeEY7f4
link.rule.ids 230,315,729,782,786,887,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4tXYnlsuyyr_DYNRIHDhvqZx5HREEgCEKiSNwix3bYSm3abemBf4_tJKWFG7fIdpwonyfj0Xz-BuBAMYlLzaMwKoUKOYt5mKSYh1QrGw4VVHPsi9jextf3Se_UyeSI9iyMJ-2rYnBUDUdH1eCf51ZORqrb8sS6N9mJK5ArMO6uwUdrr5guBen-B8ysU4ziWsiH2aC-q9wXnM6cNh22O_YNWGfWj1v74qvu6M0e8zVVcsn3nG2-862_wOdms4mO6-6v8MFUW7CeNen0b_A_81RKgxqV1QckK416xkxeWo6XMtxoUKGsYSCi7MkMxyOJejVZbzD7i26m4_bSTdRvSezo1lfbsVN8h7uz0_7JedjUYAgVp-QxZCwiCeaKJCVnpaaFMIkxSZSkOiU21km5NJrhkgglmDS0SLG0OxCiiNPWI4b9gE41rswvQCwWpXT6hYqkPOaqELrAokiUbZJS6AAOWyjySS21kdsQxQGYvwIwgN0WqryxuVlOneCyz6MHsL_ottbiUiCyMuO5H5NiGyHFLICfNbKLZ7VLIoB4BfPFAKfEvdpjofaK3A202---8w98Ou9nV_nVxfXlDmxQd8YCk5CKXeg8TudmD9Zmev7br_NnjjwDkg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkCouy2sXsjzWSBw4bIgd23kcEaUCLUGVAGlvkWM7u5Vo2m3pYf89tpOUFm5wi2zHifx5Mh7Nl28ATiUVuFQs8qOSS5_RmPlJipkfKmnCoSJUDLsitvfx3e-ke2VlcualvhxpXxaD8-ppeF4N_jpu5Xgog5YnFvSzS1sgl2McjFUZrMK6sVnMFgJ19xGmxjFGcS3mQ01gH0i7ipOp1afD5tS-AR1qfLmxMbbskt6dM9_SJRf8T2_zE2--BV-aQye6qIdsw4qudqCTNWn1XfiXOUqlRo3a6h8kKoW6Wo9fWy4WMt1oUKGsYSKi7L9-Gg0F6takvcH0J-pPRu2lneihJbOje1d1x0zxFR57Vw-X135Ti8GXLCTPPqURMassSVIyWqqw4DrROomSVKXExDwpE1pRXBIuORU6LFIszEmESGI19oim32CtGlV6HxCNeSmsjqEkKYuZLLgqMC8SaZqE4MqDsxaOfFxLbuQmVLEg5m9A9OCwhStvbG-ah1Z42eXTPTiZdxursakQUenRzI1JsYmUYurBXo3u_FnttvAgXsJ9PsAqci_3GLidMncD7_cP3_kDOv1uL7-9uft1ABuh_dUCEz_kh7D2PJnpI1idqtmx2-ovtj4GEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+and+Deep+Learning+Applications+in+Multiple+Myeloma+Diagnosis%2C+Prognosis%2C+and+Treatment+Selection&rft.jtitle=Cancers&rft.au=Allegra%2C+Alessandro&rft.au=Tonacci%2C+Alessandro&rft.au=Sciaccotta%2C+Raffaele&rft.au=Genovese%2C+Sara&rft.date=2022-01-25&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fcancers14030606&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon