Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection
Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information,...
Saved in:
Published in: | Cancers Vol. 14; no. 3; p. 606 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
25-01-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival. |
---|---|
AbstractList | Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival. Simple SummaryMultiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment.AbstractArtificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival. |
Author | Allegra, Alessandro Musolino, Caterina Genovese, Sara Pioggia, Giovanni Gangemi, Sebastiano Tonacci, Alessandro Sciaccotta, Raffaele |
AuthorAffiliation | 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; atonacci@ifc.cnr.it 3 Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy; sara.genovese@cnr.it (S.G.); giovanni.pioggia@cnr.it (G.P.) 4 Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; gangemis@unime.it 1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; sciaccottaraffaele@gmail.com (R.S.); cmusolino@unime.it (C.M.) |
AuthorAffiliation_xml | – name: 3 Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy; sara.genovese@cnr.it (S.G.); giovanni.pioggia@cnr.it (G.P.) – name: 4 Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; gangemis@unime.it – name: 1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; sciaccottaraffaele@gmail.com (R.S.); cmusolino@unime.it (C.M.) – name: 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; atonacci@ifc.cnr.it |
Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0001-6156-8239 surname: Allegra fullname: Allegra, Alessandro organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy – sequence: 2 givenname: Alessandro orcidid: 0000-0001-8335-5541 surname: Tonacci fullname: Tonacci, Alessandro organization: Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy – sequence: 3 givenname: Raffaele surname: Sciaccotta fullname: Sciaccotta, Raffaele organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy – sequence: 4 givenname: Sara surname: Genovese fullname: Genovese, Sara organization: Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy – sequence: 5 givenname: Caterina surname: Musolino fullname: Musolino, Caterina organization: Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy – sequence: 6 givenname: Giovanni orcidid: 0000-0002-8089-7449 surname: Pioggia fullname: Pioggia, Giovanni organization: Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy – sequence: 7 givenname: Sebastiano surname: Gangemi fullname: Gangemi, Sebastiano organization: Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35158874$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtPxCAUhYnR-BhduzMkblw4CqUUujExvpOZaKKuCUNvRwyFCq2J_95OxvHFhpvLx8m59-ygdR88ILRPyQljJTk12huIieaEkYIUa2g7IyIbF0WZr_-qt9BeSq9kOIxRUYhNtMU45VKKfBu9TbV5sR7wBHT01s-x9hW-BGh_Oudt66zRnQ0-YevxtHedbR3g6Qe40Gh8afXch2TTMX6IYVUuhJ4i6K4B3-FHcGAWErtoo9Yuwd7XPULP11dPF7fjyf3N3cX5ZGzyjHZjxgoqSW6orHNWV9mMgwSQhSyrkkrBy1xDxUhNueFMQzYriS4poYYSITgFNkJnS922nzVQmcFE1E610TY6fqigrfr74u2Lmod3JSVjfFjWCB19CcTw1kPqVGOTAee0h9AnlRVZSbjkgg3o4T_0NfTRD-MtKMEzQQgdqNMlZWJIKUL9bYYStUhU_Ut0-HHwe4ZvfpUf-wRC_p-9 |
CitedBy_id | crossref_primary_10_1053_j_semnuclmed_2022_10_008 crossref_primary_10_1016_j_autrev_2023_103353 crossref_primary_10_1038_s41598_024_61420_9 crossref_primary_10_3390_cells12131755 crossref_primary_10_1007_s11042_023_16419_1 crossref_primary_10_3389_frhem_2024_1331109 crossref_primary_10_1007_s00256_022_04160_z crossref_primary_10_1016_j_heliyon_2023_e20133 crossref_primary_10_3389_fnins_2022_932270 crossref_primary_10_3390_ijms242115570 crossref_primary_10_3390_app13074333 crossref_primary_10_1080_17474086_2023_2277876 crossref_primary_10_3390_life14040516 crossref_primary_10_1016_j_cca_2024_119724 crossref_primary_10_1200_CCI_23_00078 crossref_primary_10_1038_s41698_023_00385_w crossref_primary_10_1364_OE_504640 crossref_primary_10_2967_jnumed_122_264972 crossref_primary_10_3390_app12188972 crossref_primary_10_1109_TDMR_2022_3182133 crossref_primary_10_3390_biology11040586 crossref_primary_10_1002_INMD_20230056 crossref_primary_10_3390_ijms24065680 crossref_primary_10_1186_s12880_023_01033_2 crossref_primary_10_1016_j_compbiomed_2022_106189 crossref_primary_10_1016_j_heliyon_2023_e13636 crossref_primary_10_1109_TCE_2023_3337788 crossref_primary_10_3390_biology11101462 crossref_primary_10_3390_diagnostics13213372 crossref_primary_10_3389_fped_2022_911591 |
Cites_doi | 10.1200/JCO.2017.72.2975 10.1136/svn-2017-000101 10.1182/blood-2015-08-665679 10.1038/nbt.4233 10.1182/blood-2008-07-167767 10.1001/jama.2017.18391 10.2967/jnumed.115.161034 10.15252/emmm.201404698 10.1186/s13073-021-00968-x 10.1007/s00011-012-0498-7 10.1038/s41591-018-0300-7 10.1038/nmeth.2365 10.1016/S0140-6736(02)07746-2 10.1038/s41375-019-0595-5 10.1111/ejh.13707 10.1097/MNM.0000000000001437 10.1016/S1470-2045(17)30189-4 10.1038/s41375-021-01286-2 10.3324/haematol.2016.147843 10.3389/fonc.2021.652063 10.1007/978-3-030-85292-4_39 10.1038/s41591-018-0178-4 10.3389/fpubh.2020.00117 10.1038/leu.2017.313 10.1182/blood-2016-03-704908 10.1007/s00330-018-5674-x 10.1200/JCO.2015.61.2267 10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>3.0.CO;2-U 10.3324/haematol.2010.033456 10.1182/blood-2010-11-317438 10.1001/jama.2019.15064 10.1177/0840470419873123 10.1016/j.tranon.2021.101157 10.1200/JCO.2005.04.242 10.1007/s13244-016-0492-7 10.1007/s12185-020-02841-w 10.1093/bioinformatics/btu279 10.1038/s41591-018-0307-0 10.1016/j.sab.2017.11.016 10.1007/978-0-387-21606-5 10.1016/j.sab.2018.05.010 10.1111/ejh.12107 10.1038/nrg3920 10.1111/j.1600-0609.2010.01558.x 10.1182/blood-2007-10-119321 10.1016/j.csbj.2021.10.006 10.1002/mas.10066 10.1126/science.aaf2403 10.1364/BOE.421333 10.1007/s11547-020-01205-y 10.1366/000370210793561691 10.2967/jnumed.120.257196 10.3390/cells10020448 10.1109/ICSCAN.2018.8541142 10.1155/2006/728296 10.1182/blood-2017-06-788786 10.3389/fpsyg.2021.710982 10.1016/j.jacr.2019.05.036 10.1016/j.pharmthera.2017.09.001 10.1111/bjh.17933 10.1038/s41374-019-0325-7 10.1038/s41467-018-05348-5 10.1038/leu.2017.29 10.1182/blood-2007-11-120535 10.1371/journal.pone.0194788 10.1200/CCI.18.00001 10.18632/oncotarget.12430 10.1002/widm.1391 10.1158/0008-5472.CAN-06-4322 10.1038/nature14539 10.1042/ETLS20160025 10.1038/s41418-020-0498-z 10.1038/s41588-018-0295-5 10.1002/ijc.33762 10.1038/s41551-018-0305-z 10.1093/bioinformatics/btx243 10.1177/0141076818815510 10.1155/2018/2391925 10.1158/1078-0432.CCR-20-0742 10.1371/journal.pone.0254596 10.1016/j.leukres.2013.10.018 10.1038/sj.leu.2404719 10.1093/bioinformatics/btw074 10.3390/cancers13184624 10.1038/bcj.2017.56 10.1155/2021/7667707 10.1093/bib/bbz171 10.1038/s41551-020-0578-x 10.1056/NEJMoa1113205 10.1038/leu.2012.127 10.1038/sj.onc.1210679 10.1016/j.sab.2020.105787 10.3389/fgene.2021.666561 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | NPM AAYXX CITATION 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers14030606 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection ProQuest research library Biological Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | 10_3390_cancers14030606 35158874 |
Genre | Journal Article Review |
GroupedDBID | --- 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ ABDBF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU DIK DWQXO E3Z EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E NPM OK1 P6G PGMZT PIMPY PQQKQ PROAC RIG RPM TUS AAYXX CITATION 7T5 7TO 7XB 8FK H94 MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c421t-3361804c18f43fd2b5e8ee8689d9187594aed30f15c53ae2b90a9101c107751e3 |
IEDL.DBID | RPM |
ISSN | 2072-6694 |
IngestDate | Tue Sep 17 21:24:54 EDT 2024 Fri Oct 25 21:55:45 EDT 2024 Thu Oct 10 15:19:06 EDT 2024 Fri Nov 22 02:44:41 EST 2024 Wed Oct 16 00:41:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | deep learning multiple myeloma diagnosis machine learning chemotherapy prognosis artificial intelligence bone disease |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-3361804c18f43fd2b5e8ee8689d9187594aed30f15c53ae2b90a9101c107751e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 These authors contributed equally to this work. |
ORCID | 0000-0001-8335-5541 0000-0001-6156-8239 0000-0002-8089-7449 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833500/ |
PMID | 35158874 |
PQID | 2627527001 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833500 proquest_miscellaneous_2629058573 proquest_journals_2627527001 crossref_primary_10_3390_cancers14030606 pubmed_primary_35158874 |
PublicationCentury | 2000 |
PublicationDate | 20220125 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220125 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tran (ref_14) 2021; 13 Blimark (ref_23) 2021; 108 Rubin (ref_92) 2019; 16 ref_12 Ubels (ref_59) 2020; 26 ref_10 Durie (ref_62) 1975; 36 English (ref_11) 2022; 134 Vag (ref_49) 2016; 57 Yu (ref_1) 2018; 2 Chen (ref_7) 2016; 32 Paiva (ref_55) 2017; 31 Mesguich (ref_31) 2021; 42 Koh (ref_8) 2017; 33 Moreaux (ref_73) 2011; 96 Reddy (ref_3) 2018; 112 Cavo (ref_47) 2017; 18 Teng (ref_44) 2020; 165 LeCun (ref_13) 2015; 521 ref_27 Pawlyn (ref_35) 2020; 34 Zou (ref_20) 2018; 51 Craig (ref_37) 2008; 111 Gangemi (ref_45) 2012; 61 ref_71 Lhermitte (ref_40) 2017; 32 Cremers (ref_66) 2016; 102 Chen (ref_29) 2021; 12 Beam (ref_39) 2018; 319 Price (ref_95) 2020; 62 Ettari (ref_67) 2018; 182 Jiang (ref_2) 2017; 2 Farswan (ref_54) 2021; 14 Chen (ref_4) 2019; 33 Kourou (ref_53) 2021; 19 Allegra (ref_69) 2013; 90 Chen (ref_28) 2018; 139 Dutoit (ref_46) 2016; 7 Kumar (ref_84) 2017; 130 Bhattacharyya (ref_33) 2006; 22 Savadjiev (ref_93) 2018; 29 Trichet (ref_79) 2007; 67 Coppola (ref_98) 2020; 126 Walsh (ref_21) 2019; 3 Allegra (ref_76) 2014; 38 Petricoin (ref_52) 2002; 359 Wainberg (ref_19) 2018; 36 ref_57 Chandradevan (ref_25) 2020; 100 Lynch (ref_5) 2018; 24 Bernau (ref_77) 2014; 30 Ma (ref_16) 2021; 2021 Gerlinger (ref_89) 2012; 366 Aghaeepour (ref_26) 2013; 10 Libbrecht (ref_17) 2015; 16 Suzuki (ref_65) 2020; 111 Vickovic (ref_88) 2016; 353 Paiva (ref_72) 2016; 127 ref_61 Kline (ref_83) 2007; 21 Ni (ref_41) 2016; 7 Baptista (ref_9) 2020; 22 Palumbo (ref_64) 2015; 33 Ubels (ref_78) 2018; 9 Topol (ref_86) 2019; 25 Mitra (ref_58) 2017; 7 Coppola (ref_96) 2021; 12 Hinton (ref_38) 2008; 9 Jones (ref_18) 2017; 1 Hemminki (ref_22) 2021; 149 Bodet (ref_82) 2011; 118 Gong (ref_81) 2016; 128 Price (ref_94) 2019; 322 Xiong (ref_32) 2021; 11 Yan (ref_24) 2021; 11 ref_36 Herrmann (ref_50) 2015; 7 ref_34 He (ref_87) 2019; 25 Teh (ref_85) 2020; 27 Confalonieri (ref_91) 2020; 11 Kumar (ref_70) 2008; 112 Greipp (ref_63) 2005; 23 Kuiper (ref_74) 2012; 26 Allegra (ref_68) 2010; 86 Xu (ref_30) 2018; 2018 Zhan (ref_75) 2008; 111 Borisov (ref_60) 2021; 11 Podar (ref_80) 2008; 27 Hahn (ref_42) 2010; 64 Moreau (ref_48) 2017; 35 Martini (ref_15) 2021; 22 He (ref_90) 2020; 4 Orgueira (ref_56) 2021; 35 Gaudiuso (ref_43) 2018; 146 Tang (ref_51) 2003; 23 Triberti (ref_97) 2020; 8 ref_6 |
References_xml | – volume: 35 start-page: 2911 year: 2017 ident: ref_48 article-title: Prospective Evaluation of Magnetic Resonance Imaging and [18F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients with Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.72.2975 contributor: fullname: Moreau – volume: 2 start-page: 230 year: 2017 ident: ref_2 article-title: Artificial intelligence in healthcare: Past, present and future publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 contributor: fullname: Jiang – volume: 127 start-page: 1896 year: 2016 ident: ref_72 article-title: Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: A new model to understand chemoresistance publication-title: Blood doi: 10.1182/blood-2015-08-665679 contributor: fullname: Paiva – volume: 36 start-page: 829 year: 2018 ident: ref_19 article-title: Deep learning in biomedicine publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4233 contributor: fullname: Wainberg – volume: 112 start-page: 2177 year: 2008 ident: ref_70 article-title: Many facets of bortezomib resistance/susceptibility publication-title: Blood doi: 10.1182/blood-2008-07-167767 contributor: fullname: Kumar – volume: 11 start-page: 128 year: 2021 ident: ref_32 article-title: Differentiating Between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning–Based Radiomics publication-title: Front. Oncol. contributor: fullname: Xiong – volume: 319 start-page: 1317 year: 2018 ident: ref_39 article-title: Big data and machine learning in healthcare publication-title: JAMA doi: 10.1001/jama.2017.18391 contributor: fullname: Beam – volume: 57 start-page: 741 year: 2016 ident: ref_49 article-title: First Experience with Chemokine Receptor CXCR4–Targeted PET Imaging of Patients with Solid Cancers publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.161034 contributor: fullname: Vag – volume: 7 start-page: 477 year: 2015 ident: ref_50 article-title: In vivo molecular imaging of chemokine receptor CXCR 4 expression in patients with advanced multiple myeloma publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201404698 contributor: fullname: Herrmann – volume: 13 start-page: 1 year: 2021 ident: ref_14 article-title: Deep learning in cancer diagnosis, prognosis and treatment selection publication-title: Genome Med. doi: 10.1186/s13073-021-00968-x contributor: fullname: Tran – volume: 61 start-page: 1063 year: 2012 ident: ref_45 article-title: Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions publication-title: Inflamm. Res. doi: 10.1007/s00011-012-0498-7 contributor: fullname: Gangemi – volume: 25 start-page: 44 year: 2019 ident: ref_86 article-title: High-performance medicine: The convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 contributor: fullname: Topol – volume: 10 start-page: 228 year: 2013 ident: ref_26 article-title: Critical assessment of automated flow cytometry data analysis techniques publication-title: Nat. Methods doi: 10.1038/nmeth.2365 contributor: fullname: Aghaeepour – volume: 359 start-page: 572 year: 2002 ident: ref_52 article-title: Use of proteomic patterns in serum to identify ovarian cancer publication-title: Lancet doi: 10.1016/S0140-6736(02)07746-2 contributor: fullname: Petricoin – volume: 34 start-page: 604 year: 2020 ident: ref_35 article-title: The relative importance of factors predicting outcome for myeloma patients at different ages: Results from 3894 patients in the Myeloma XI trial publication-title: Leukemia doi: 10.1038/s41375-019-0595-5 contributor: fullname: Pawlyn – volume: 108 start-page: 99 year: 2021 ident: ref_23 article-title: Outcome data from >10 000 multiple myeloma patients in the Danish and Swedish national registries publication-title: Eur. J. Haematol. doi: 10.1111/ejh.13707 contributor: fullname: Blimark – volume: 42 start-page: 1135 year: 2021 ident: ref_31 article-title: Improved 18-FDG PET/CT diagnosis of multiple myeloma diffuse disease by radiomics analysis publication-title: Nucl. Med. Commun. doi: 10.1097/MNM.0000000000001437 contributor: fullname: Mesguich – ident: ref_10 – volume: 18 start-page: e206 year: 2017 ident: ref_47 article-title: Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: A consensus statement by the International Myeloma Working Group publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30189-4 contributor: fullname: Cavo – volume: 35 start-page: 2924 year: 2021 ident: ref_56 article-title: Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data publication-title: Leukemia doi: 10.1038/s41375-021-01286-2 contributor: fullname: Orgueira – volume: 102 start-page: 320 year: 2016 ident: ref_66 article-title: Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes publication-title: Haematologica doi: 10.3324/haematol.2016.147843 contributor: fullname: Cremers – volume: 11 start-page: 1124 year: 2021 ident: ref_60 article-title: Machine Learning Applicability for Classification of PAD/VCD Chemotherapy Response Using 53 Multiple Myeloma RNA Sequencing Profiles publication-title: Front. Oncol. doi: 10.3389/fonc.2021.652063 contributor: fullname: Borisov – volume: 134 start-page: 349 year: 2022 ident: ref_11 article-title: Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia publication-title: Acta Neurochir. Suppl. doi: 10.1007/978-3-030-85292-4_39 contributor: fullname: English – volume: 24 start-page: 1304 year: 2018 ident: ref_5 article-title: New machine-learning technologies for computer-aided diagnosis publication-title: Nat. Med. doi: 10.1038/s41591-018-0178-4 contributor: fullname: Lynch – volume: 8 start-page: 117 year: 2020 ident: ref_97 article-title: A “Third Wheel” Effect in Health Decision Making Involving Artificial Entities: A Psychological Perspective publication-title: Front. Public Health doi: 10.3389/fpubh.2020.00117 contributor: fullname: Triberti – volume: 32 start-page: 874 year: 2017 ident: ref_40 article-title: Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia publication-title: Leukemia doi: 10.1038/leu.2017.313 contributor: fullname: Lhermitte – volume: 128 start-page: 1834 year: 2016 ident: ref_81 article-title: Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: Pivotal role of MCL1 publication-title: Blood doi: 10.1182/blood-2016-03-704908 contributor: fullname: Gong – volume: 29 start-page: 1616 year: 2018 ident: ref_93 article-title: Demystification of AI-driven medical image interpretation: Past, present and future publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5674-x contributor: fullname: Savadjiev – volume: 33 start-page: 2863 year: 2015 ident: ref_64 article-title: Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2015.61.2267 contributor: fullname: Palumbo – volume: 36 start-page: 842 year: 1975 ident: ref_62 article-title: A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival publication-title: Cancer doi: 10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>3.0.CO;2-U contributor: fullname: Durie – volume: 96 start-page: 574 year: 2011 ident: ref_73 article-title: A high-risk signature for patients with multiple myeloma established from the molecular classification of human mye-loma cell lines publication-title: Haematologica doi: 10.3324/haematol.2010.033456 contributor: fullname: Moreaux – volume: 118 start-page: 3901 year: 2011 ident: ref_82 article-title: ABT-737 is highly effective against molecular subgroups of multiple myeloma publication-title: Blood doi: 10.1182/blood-2010-11-317438 contributor: fullname: Bodet – volume: 322 start-page: 1765 year: 2019 ident: ref_94 article-title: Potential Liability for Physicians Using Artificial Intelligence publication-title: JAMA J. Am. Med. Assoc. doi: 10.1001/jama.2019.15064 contributor: fullname: Price – volume: 33 start-page: 10 year: 2019 ident: ref_4 article-title: Artificial intelligence in healthcare: An essential guide for health leaders publication-title: Healthc. Manag. Forum doi: 10.1177/0840470419873123 contributor: fullname: Chen – volume: 14 start-page: 101157 year: 2021 ident: ref_54 article-title: AI-supported modified risk staging for multiple myeloma cancer useful in real-world scenario publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2021.101157 contributor: fullname: Farswan – volume: 23 start-page: 3412 year: 2005 ident: ref_63 article-title: International Staging System for Multiple Myeloma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.04.242 contributor: fullname: Greipp – volume: 7 start-page: 553 year: 2016 ident: ref_46 article-title: MRI in multiple myeloma: A pictorial review of diagnostic and post-treatment findings publication-title: Insights Imaging doi: 10.1007/s13244-016-0492-7 contributor: fullname: Dutoit – volume: 111 start-page: 512 year: 2020 ident: ref_65 article-title: Latest treatment strategies aiming for a cure in transplant-eligible multiple myeloma patients: How I cure younger MM patients with lower cost publication-title: Int. J. Hematol. doi: 10.1007/s12185-020-02841-w contributor: fullname: Suzuki – volume: 30 start-page: i105 year: 2014 ident: ref_77 article-title: Cross-study validation for the assessment of prediction algorithms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu279 contributor: fullname: Bernau – volume: 25 start-page: 30 year: 2019 ident: ref_87 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat. Med. doi: 10.1038/s41591-018-0307-0 contributor: fullname: He – volume: 139 start-page: 63 year: 2018 ident: ref_28 article-title: Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods publication-title: Spectrochim. Acta Part B At. Spectrosc. doi: 10.1016/j.sab.2017.11.016 contributor: fullname: Chen – ident: ref_36 doi: 10.1007/978-0-387-21606-5 – volume: 146 start-page: 106 year: 2018 ident: ref_43 article-title: Using LIBS to diagnose mel-anoma in biomedical fluids deposited on solid substrates: Limits of direct spectral analysis and capability of machine learning publication-title: Spectrochim. Acta Part B doi: 10.1016/j.sab.2018.05.010 contributor: fullname: Gaudiuso – volume: 90 start-page: 441 year: 2013 ident: ref_69 article-title: Monoclonal antibodies: Potential new therapeutic treatment against multiple myeloma publication-title: Eur. J. Haematol. doi: 10.1111/ejh.12107 contributor: fullname: Allegra – volume: 16 start-page: 321 year: 2015 ident: ref_17 article-title: Machine learning applications in genetics and genomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3920 contributor: fullname: Libbrecht – volume: 86 start-page: 93 year: 2010 ident: ref_68 article-title: Novel therapeutic strategies in multiple myeloma: Role of the heat shock protein inhibitors publication-title: Eur. J. Haematol. doi: 10.1111/j.1600-0609.2010.01558.x contributor: fullname: Allegra – volume: 111 start-page: 968 year: 2008 ident: ref_75 article-title: High-risk myeloma: A gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone publication-title: Blood doi: 10.1182/blood-2007-10-119321 contributor: fullname: Zhan – volume: 19 start-page: 5546 year: 2021 ident: ref_53 article-title: Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.10.006 contributor: fullname: Kourou – volume: 23 start-page: 34 year: 2003 ident: ref_51 article-title: Current developments in SELDI affinity technology publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.10066 contributor: fullname: Tang – volume: 353 start-page: 78 year: 2016 ident: ref_88 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 contributor: fullname: Vickovic – volume: 12 start-page: 3584 year: 2021 ident: ref_29 article-title: Diagnosis and staging of multiple myeloma using serum-based laser-induced breakdown spectroscopy combined with machine learning methods publication-title: Biomed. Opt. Express doi: 10.1364/BOE.421333 contributor: fullname: Chen – volume: 126 start-page: 63 year: 2020 ident: ref_98 article-title: Artificial intelligence: Radiologists’ expectations and opinions gleaned from a nationwide online survey publication-title: Radiol. Med. doi: 10.1007/s11547-020-01205-y contributor: fullname: Coppola – volume: 64 start-page: 335A year: 2010 ident: ref_42 article-title: Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of basic diagnostics and plas-ma-particle interactions: Still-challenging issues within the analytical plasma community publication-title: Appl. Spectrosc. doi: 10.1366/000370210793561691 contributor: fullname: Hahn – volume: 62 start-page: 15 year: 2020 ident: ref_95 article-title: How Much Can Potential Jurors Tell Us About Liability for Medical Artificial Intelligence? publication-title: J. Nucl. Med. doi: 10.2967/jnumed.120.257196 contributor: fullname: Price – ident: ref_71 doi: 10.3390/cells10020448 – ident: ref_6 doi: 10.1109/ICSCAN.2018.8541142 – volume: 11 start-page: 933 year: 2021 ident: ref_24 article-title: Employment of Artificial Intelligence Based on Routine Laboratory Results for the Early Diagnosis of Multiple Myeloma publication-title: Front. Oncol. contributor: fullname: Yan – volume: 22 start-page: 245 year: 2006 ident: ref_33 article-title: Biomarkers that Discriminate Multiple Myeloma Patients with or without Skeletal Involvement Detected Using SELDI-TOF Mass Spectrometry and Statistical and Machine Learning Tools publication-title: Dis. Markers doi: 10.1155/2006/728296 contributor: fullname: Bhattacharyya – volume: 130 start-page: 2401 year: 2017 ident: ref_84 article-title: Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma publication-title: Blood doi: 10.1182/blood-2017-06-788786 contributor: fullname: Kumar – volume: 12 start-page: 4296 year: 2021 ident: ref_96 article-title: Human, All too Human? An All-around Appraisal of the “Artificial Intelligence Revolution” in Medical Imaging publication-title: Front. Psychol. doi: 10.3389/fpsyg.2021.710982 contributor: fullname: Coppola – volume: 16 start-page: 1309 year: 2019 ident: ref_92 article-title: Artificial Intelligence in Imaging: The Radiologist’s Role publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2019.05.036 contributor: fullname: Rubin – volume: 182 start-page: 176 year: 2018 ident: ref_67 article-title: Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2017.09.001 contributor: fullname: Ettari – ident: ref_27 doi: 10.1111/bjh.17933 – volume: 100 start-page: 98 year: 2020 ident: ref_25 article-title: Machine-based detection and classification for bone marrow aspirate differential counts: Initial development focusing on nonneoplastic cells publication-title: Lab. Investig. doi: 10.1038/s41374-019-0325-7 contributor: fullname: Chandradevan – volume: 9 start-page: 2943 year: 2018 ident: ref_78 article-title: Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects publication-title: Nat. Commun. doi: 10.1038/s41467-018-05348-5 contributor: fullname: Ubels – volume: 31 start-page: 2094 year: 2017 ident: ref_55 article-title: Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma publication-title: Leukemia doi: 10.1038/leu.2017.29 contributor: fullname: Paiva – volume: 111 start-page: 3941 year: 2008 ident: ref_37 article-title: Flow cytometric immunophenotyping for hematologic neoplasms publication-title: Blood doi: 10.1182/blood-2007-11-120535 contributor: fullname: Craig – ident: ref_34 doi: 10.1371/journal.pone.0194788 – volume: 22 start-page: 1 year: 2021 ident: ref_15 article-title: A review of deep learning applications for genomic selection publication-title: BMC Genom. contributor: fullname: Martini – volume: 3 start-page: 1 year: 2019 ident: ref_21 article-title: Decision Support Systems in Oncology publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.18.00001 contributor: fullname: Walsh – volume: 7 start-page: 71915 year: 2016 ident: ref_41 article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine publication-title: Oncotarget doi: 10.18632/oncotarget.12430 contributor: fullname: Ni – volume: 11 start-page: e1391 year: 2020 ident: ref_91 article-title: A historical perspective of explainable Artificial Intelligence publication-title: WIREs Data Min. Knowl. Discov. doi: 10.1002/widm.1391 contributor: fullname: Confalonieri – volume: 67 start-page: 5418 year: 2007 ident: ref_79 article-title: Noxa Up-regulation and Mcl-1 Cleavage Are Associated to Apoptosis Induction by Bortezomib in Multiple Myeloma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-4322 contributor: fullname: Trichet – volume: 521 start-page: 436 year: 2015 ident: ref_13 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 1 start-page: 257 year: 2017 ident: ref_18 article-title: Computational biology: Deep learning publication-title: Emerg. Top. Life Sci. doi: 10.1042/ETLS20160025 contributor: fullname: Jones – volume: 27 start-page: 2217 year: 2020 ident: ref_85 article-title: Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0498-z contributor: fullname: Teh – volume: 51 start-page: 12 year: 2018 ident: ref_20 article-title: A primer on deep learning in genomics publication-title: Nat. Genet. doi: 10.1038/s41588-018-0295-5 contributor: fullname: Zou – volume: 149 start-page: 1980 year: 2021 ident: ref_22 article-title: Epidemiology, genetics and treatment of multiple myeloma and precursor diseases publication-title: Int. J. Cancer doi: 10.1002/ijc.33762 contributor: fullname: Hemminki – volume: 2 start-page: 719 year: 2018 ident: ref_1 article-title: Artificial intelligence in healthcare publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0305-z contributor: fullname: Yu – volume: 33 start-page: i225 year: 2017 ident: ref_8 article-title: Denoising genome-wide histone ChIP-seq with convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx243 contributor: fullname: Koh – volume: 112 start-page: 22 year: 2018 ident: ref_3 article-title: Artificial intelligence-enabled healthcare delivery publication-title: J. R. Soc. Med. doi: 10.1177/0141076818815510 contributor: fullname: Reddy – volume: 2018 start-page: 1 year: 2018 ident: ref_30 article-title: Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods publication-title: Contrast Media Mol. Imaging doi: 10.1155/2018/2391925 contributor: fullname: Xu – volume: 26 start-page: 5952 year: 2020 ident: ref_59 article-title: Gene Networks Constructed Through Simulated Treatment Learning can Predict Proteasome Inhibitor Benefit in Multiple Myeloma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-0742 contributor: fullname: Ubels – ident: ref_61 doi: 10.1371/journal.pone.0254596 – volume: 38 start-page: 1 year: 2014 ident: ref_76 article-title: New orally active proteasome inhibitors in multiple myeloma publication-title: Leuk. Res. doi: 10.1016/j.leukres.2013.10.018 contributor: fullname: Allegra – volume: 21 start-page: 1549 year: 2007 ident: ref_83 article-title: ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells publication-title: Leukemia doi: 10.1038/sj.leu.2404719 contributor: fullname: Kline – volume: 32 start-page: 1832 year: 2016 ident: ref_7 article-title: Gene expression inference with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw074 contributor: fullname: Chen – ident: ref_12 doi: 10.3390/cancers13184624 – volume: 7 start-page: e581 year: 2017 ident: ref_58 article-title: A gene expression signature distinguishes innate response and resistance to proteasome inhibitors in multiple myeloma publication-title: Blood Cancer J. doi: 10.1038/bcj.2017.56 contributor: fullname: Mitra – volume: 2021 start-page: 1 year: 2021 ident: ref_16 article-title: Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/7667707 contributor: fullname: Ma – volume: 22 start-page: 360 year: 2020 ident: ref_9 article-title: Deep learning for drug response prediction in cancer publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz171 contributor: fullname: Baptista – volume: 9 start-page: 2579 year: 2008 ident: ref_38 article-title: Visualizing high-dimensional data using t-SNE publication-title: J. Mach. Learn. Res. contributor: fullname: Hinton – volume: 4 start-page: 827 year: 2020 ident: ref_90 article-title: Integrating spatial gene expression and breast tumour morphology via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-0578-x contributor: fullname: He – volume: 366 start-page: 883 year: 2012 ident: ref_89 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1113205 contributor: fullname: Gerlinger – volume: 26 start-page: 2406 year: 2012 ident: ref_74 article-title: A gene expression signature for high-risk multiple myeloma publication-title: Leukemia doi: 10.1038/leu.2012.127 contributor: fullname: Kuiper – volume: 27 start-page: 721 year: 2008 ident: ref_80 article-title: A pivotal role for Mcl-1 in Bortezomib-induced apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1210679 contributor: fullname: Podar – volume: 165 start-page: 105787 year: 2020 ident: ref_44 article-title: Discrimination of infil-trative glioma boundary based on laser-induced breakdown spectroscopy publication-title: Spectrochim. Acta Part B doi: 10.1016/j.sab.2020.105787 contributor: fullname: Teng – ident: ref_57 doi: 10.3389/fgene.2021.666561 |
SSID | ssj0000331767 |
Score | 2.4669354 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning... Simple SummaryMultiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 606 |
SubjectTerms | Algorithms Artificial intelligence Bone lesions Bone marrow Chemoresistance Choice learning Computational neuroscience Deep learning Diagnosis Hematology Learning algorithms Machine learning Medical prognosis Multiple myeloma Neural networks Neurons Plasma cells Prognosis Review Serology Support vector machines Tumors |
Title | Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35158874 https://www.proquest.com/docview/2627527001 https://search.proquest.com/docview/2629058573 https://pubmed.ncbi.nlm.nih.gov/PMC8833500 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RDhUL4k2gICMxMBBqx3YeI6JULEFIgMQWObYDlWha-hj499hOUlrY2CLbcSzfOXen-_wdwIWkAheKhX5YcOkzGjE_TjDzAyVNOJQHimFXxPYpeniN-3eWJoc3d2EcaF_mw-vyY3RdDt8dtnIykr0GJ9Z7TG9tgVyOca8FLeMbroTo7vdLjUkMo4rGh5qQvift_k1nlpkOG399EzrUWHFzuti6MfrjYf4GSq5YnsE2bNUuI7qplrYDG7rchU5aJ8X34DN1gEiNaq7UNyRKhfpaT35ablby1GhYorTGEaL0S3-MRwL1K8jdcHaFHqfj5tFO9NxA0dGTq5ljptiHl8Hd8-29X1dS8CULyNynNCQxZpLEBaOFCnKuY63jME5UQkzEkjChFcUF4ZJToYM8wcL4EUQSy5BHND2Adjku9REgGvFCWBZCSRIWMZlzlWOex9I0CcGVB5fNlmaTijAjM4GGFUT2SxAedJstz-qTM8sCS5vssuEenC-7jc7bRIYo9XjhxiTYxDkR9eCwktDyW41oPYjWZLccYPm013uMmjle7Vqtjv_95glsBvZ2BCZ-wLvQnk8X-hRaM7U4czr6DeEY7f4 |
link.rule.ids | 230,315,729,782,786,887,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4tXYnlsuyyr_DYNRIHDhvqZx5HREEgCEKiSNwix3bYSm3abemBf4_tJKWFG7fIdpwonyfj0Xz-BuBAMYlLzaMwKoUKOYt5mKSYh1QrGw4VVHPsi9jextf3Se_UyeSI9iyMJ-2rYnBUDUdH1eCf51ZORqrb8sS6N9mJK5ArMO6uwUdrr5guBen-B8ysU4ziWsiH2aC-q9wXnM6cNh22O_YNWGfWj1v74qvu6M0e8zVVcsn3nG2-862_wOdms4mO6-6v8MFUW7CeNen0b_A_81RKgxqV1QckK416xkxeWo6XMtxoUKGsYSCi7MkMxyOJejVZbzD7i26m4_bSTdRvSezo1lfbsVN8h7uz0_7JedjUYAgVp-QxZCwiCeaKJCVnpaaFMIkxSZSkOiU21km5NJrhkgglmDS0SLG0OxCiiNPWI4b9gE41rswvQCwWpXT6hYqkPOaqELrAokiUbZJS6AAOWyjySS21kdsQxQGYvwIwgN0WqryxuVlOneCyz6MHsL_ottbiUiCyMuO5H5NiGyHFLICfNbKLZ7VLIoB4BfPFAKfEvdpjofaK3A202---8w98Ou9nV_nVxfXlDmxQd8YCk5CKXeg8TudmD9Zmev7br_NnjjwDkg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkCouy2sXsjzWSBw4bIgd23kcEaUCLUGVAGlvkWM7u5Vo2m3pYf89tpOUFm5wi2zHifx5Mh7Nl28ATiUVuFQs8qOSS5_RmPlJipkfKmnCoSJUDLsitvfx3e-ke2VlcualvhxpXxaD8-ppeF4N_jpu5Xgog5YnFvSzS1sgl2McjFUZrMK6sVnMFgJ19xGmxjFGcS3mQ01gH0i7ipOp1afD5tS-AR1qfLmxMbbskt6dM9_SJRf8T2_zE2--BV-aQye6qIdsw4qudqCTNWn1XfiXOUqlRo3a6h8kKoW6Wo9fWy4WMt1oUKGsYSKi7L9-Gg0F6takvcH0J-pPRu2lneihJbOje1d1x0zxFR57Vw-X135Ti8GXLCTPPqURMassSVIyWqqw4DrROomSVKXExDwpE1pRXBIuORU6LFIszEmESGI19oim32CtGlV6HxCNeSmsjqEkKYuZLLgqMC8SaZqE4MqDsxaOfFxLbuQmVLEg5m9A9OCwhStvbG-ah1Z42eXTPTiZdxursakQUenRzI1JsYmUYurBXo3u_FnttvAgXsJ9PsAqci_3GLidMncD7_cP3_kDOv1uL7-9uft1ABuh_dUCEz_kh7D2PJnpI1idqtmx2-ovtj4GEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+and+Deep+Learning+Applications+in+Multiple+Myeloma+Diagnosis%2C+Prognosis%2C+and+Treatment+Selection&rft.jtitle=Cancers&rft.au=Allegra%2C+Alessandro&rft.au=Tonacci%2C+Alessandro&rft.au=Sciaccotta%2C+Raffaele&rft.au=Genovese%2C+Sara&rft.date=2022-01-25&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fcancers14030606&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |