A novel pH-sensitive membrane from chitosan — TEOS IPN; preparation and its drug permeation characteristics
A novel organic–inorganic composite membrane was prepared, using tetra ethyl ortho silicate (TEOS) as an inorganic material and chitosan as an organic compound. Equilibrium and oscillatory swelling studies were conducted to investigate swelling behaviors of the membrane according to the pH of the sw...
Saved in:
Published in: | Biomaterials Vol. 22; no. 4; pp. 323 - 330 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2001
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel organic–inorganic composite membrane was prepared, using tetra ethyl ortho silicate (TEOS) as an inorganic material and chitosan as an organic compound. Equilibrium and oscillatory swelling studies were conducted to investigate swelling behaviors of the membrane according to the pH of the swelling medium. Drug permeation experiments were also performed in phosphate buffer solution of the pH of 2.5 and 7.5, respectively. Lidocaine·HCl, sodium salicylate and 4-acetamidophenol were selected as model drugs to examine the effect of ionic property of drug on the permeation behavior. The effects of membrane composition and the external pH on the swelling and the drug permeation behavior of IPN membrane could be summarized as follows; chitosan incorporated into TEOS IPN swelled at pH
2.5 while shrunk at pH
7.5. This swelling behavior was completely reversible and the membrane responded rapidly to the change in environmental pH condition. According to swelling behavior, an increase in pH from 2.5 to 7.5 yielded an increase in the rate of drug permeation because of the shrinking of the incorporated chitosan in TEOS IPN, while decrease in pH resulted in low permeation rate. The optimal TEOS-chitosan ratio for maximum pH-sensitivity existed and drug permeation was influenced not only with the external pH but also with the ionic interactions between the drug and membrane. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/S0142-9612(00)00187-3 |