Breast Tumor Classification Using Intratumoral Quantitative Ultrasound Descriptors
Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize brea...
Saved in:
Published in: | Computational and mathematical methods in medicine Vol. 2022; pp. 1633858 - 18 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
Hindawi
07-03-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize breast tissue. Several different quantitative descriptors for breast cancer have been explored by researchers. This study proposes a breast tumor classification system using the three major types of intratumoral QUS descriptors which can be extracted from ultrasound radiofrequency (RF) data: spectral features, envelope statistics features, and texture features. A total of 16 features were extracted from ultrasound RF data across two different datasets, of which one is balanced and the other is severely imbalanced. The balanced dataset contains RF data of 100 patients with breast tumors, of which 48 are benign and 52 are malignant. The imbalanced dataset contains RF data of 130 patients with breast tumors, of which 104 are benign and 26 are malignant. Holdout validation was used to split the balanced dataset into 60% training and 40% testing sets. Feature selection was applied on the training set to identify the most relevant subset for the classification of benign and malignant breast tumors, and the performance of the features was evaluated on the test set. A maximum classification accuracy of 95% and an area under the receiver operating characteristic curve (AUC) of 0.968 was obtained on the test set. The performance of the identified relevant features was further validated on the imbalanced dataset, where a hybrid resampling strategy was firstly utilized to create an optimal balance between benign and malignant samples. A maximum classification accuracy of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and AUC of 0.966 were obtained. The results indicate that the identified features are able to distinguish between benign and malignant breast lesions very effectively, and the combination of the features identified in this research has the potential to be a significant tool in the noninvasive rapid and accurate diagnosis of breast cancer. |
---|---|
AbstractList | Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize breast tissue. Several different quantitative descriptors for breast cancer have been explored by researchers. This study proposes a breast tumor classification system using the three major types of intratumoral QUS descriptors which can be extracted from ultrasound radiofrequency (RF) data: spectral features, envelope statistics features, and texture features. A total of 16 features were extracted from ultrasound RF data across two different datasets, of which one is balanced and the other is severely imbalanced. The balanced dataset contains RF data of 100 patients with breast tumors, of which 48 are benign and 52 are malignant. The imbalanced dataset contains RF data of 130 patients with breast tumors, of which 104 are benign and 26 are malignant. Holdout validation was used to split the balanced dataset into 60% training and 40% testing sets. Feature selection was applied on the training set to identify the most relevant subset for the classification of benign and malignant breast tumors, and the performance of the features was evaluated on the test set. A maximum classification accuracy of 95% and an area under the receiver operating characteristic curve (AUC) of 0.968 was obtained on the test set. The performance of the identified relevant features was further validated on the imbalanced dataset, where a hybrid resampling strategy was firstly utilized to create an optimal balance between benign and malignant samples. A maximum classification accuracy of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and AUC of 0.966 were obtained. The results indicate that the identified features are able to distinguish between benign and malignant breast lesions very effectively, and the combination of the features identified in this research has the potential to be a significant tool in the noninvasive rapid and accurate diagnosis of breast cancer. |
Author | Muhtadi, Sabiq |
AuthorAffiliation | Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh |
AuthorAffiliation_xml | – name: Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh |
Author_xml | – sequence: 1 givenname: Sabiq orcidid: 0000-0003-0497-0808 surname: Muhtadi fullname: Muhtadi, Sabiq organization: Department of Electrical and Electronic EngineeringIslamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35295204$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNUfFR3rmWWglbznmQjaH0VCqK04C5kZjI1Mk1qklH8905pLbpxdS-cj3MP9-yDnvPOAHCE4DlCjF1giPEF4oQIJrbAHsqpGPAcid5mhy-7YD_GNwgZyhnaAbuEYckwpHvg-ToYHVM2aec-ZMNGx2hrW-pkvcum0bpZNnIp6LTUdZM9tdolmzr9w2TTplOib12V3ZhYBrtIPsQDsF3rJprD9eyD6d3tZPgwGD_ej4ZX40FJMUyDgkpc5wVCOZFElAyZAgsqueQVFLquDSG6QgZSxmRNSFFQVpRc6xxDQSiXpA8uV76LtpibqjTLnI1aBDvX4Ut5bdVfxdlXNfMfSkgMOeWdwcnaIPj31sSk5jaWpmm0M76NCnMKCeYyzzv0bIWWwccYTL05g6Ba1qCWNah1DR1-_DvaBv75ewecroBX6yr9af-3-wYL4ZMg |
CitedBy_id | crossref_primary_10_1016_j_ultras_2023_107233 crossref_primary_10_1016_j_ultras_2022_106744 crossref_primary_10_1016_j_heliyon_2024_e33133 crossref_primary_10_1016_j_ultras_2023_106987 |
Cites_doi | 10.1007/s13244-012-0196-6 10.1016/0161-7346(88)90054-5 10.2214/AJR.11.7324 10.1109/TUFFC.2009.1334 10.1016/j.ultrasmedbio.2013.07.006 10.1148/radiol.2442060712 10.1148/radiol.14140318 10.1007/978-94-007-6952-6 10.3233/CBM-2008-44-504 10.1088/0031-9155/48/14/313 10.1006/uimg.1994.1016 10.1109/TMI.2012.2206398 10.1109/TUFFC.2015.2513958 10.1177/016173469301500401 10.1002/mp.12538 10.1887/0750305932/b673c4 10.1038/labinvest.2014.155 10.1016/j.jbi.2018.12.003 10.1038/s41598-017-13977-x 10.1016/B978-0-08-009306-2.50005-4 10.1016/j.patcog.2016.02.013 10.1093/annonc/mdv298 10.1186/s12943-015-0481-3 10.1109/ICIT52682.2021.9491739 10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E 10.1016/j.ultrasmedbio.2010.04.001 10.3322/caac.21660 10.1016/j.ultrasmedbio.2019.10.024 10.1109/TSMC.1976.4309452 10.1016/S0301-5629(97)00013-6 10.1007/978-3-030-11149-6_13 10.1613/jair.953 10.1016/S0022-5347(05)64159-6 10.1177/016173461103300102 10.1109/TMI.2015.2479455 10.1038/s41598-017-09678-0 10.1121/1.1336896 10.1007/978-3-319-78759-6_18 10.1121/1.389241 10.1038/s41598-019-44376-z 10.1016/S0301-5629(97)00200-7 10.1109/58.911740 10.1016/j.knosys.2016.11.017 10.1109/58.842062 10.1016/0161-7346(90)90221-I 10.1118/1.2401039 10.1109/T-SU.1983.31404 10.1148/rg.294085199 10.2214/AJR.13.12072 10.1109/TSMC.1973.4309314 10.1118/1.3566064 10.1007/s11548-018-01908-8 10.1016/j.media.2014.11.009 10.1016/0301-5629(86)90183-3 10.1016/S0301-5629(02)00617-8 10.1158/1078-0432.CCR-14-0990 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Sabiq Muhtadi. Copyright © 2022 Sabiq Muhtadi. 2022 |
Copyright_xml | – notice: Copyright © 2022 Sabiq Muhtadi. – notice: Copyright © 2022 Sabiq Muhtadi. 2022 |
DBID | RHU RHW RHX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1155/2022/1633858 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1748-6718 |
Editor | Cesarelli, Mario |
Editor_xml | – sequence: 1 givenname: Mario surname: Cesarelli fullname: Cesarelli, Mario |
EndPage | 18 |
ExternalDocumentID | 10_1155_2022_1633858 35295204 |
Genre | Validation Study Journal Article |
GroupedDBID | --- 29F 2DF 3YN 4.4 53G 5GY 5VS 6J9 AAFWJ AAJEY ABDBF ACGFO ACIPV ACIWK ADBBV ADRAZ AENEX AFKVX AHMBA AIAGR AJWEG ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CAG CS3 DIK EAD EAP EAS EBC EBD EBS EMK EMOBN EPL EST ESX F5P GROUPED_DOAJ GX1 HYE IAO IEA IHR INH INR ITC J.P J9A KQ8 M48 M4Z ML~ O5R OK1 P2P REM RHU RHW RHX RNS RPM SV3 TFW TUS TWF 24P 3V. 7X7 88E 8FE 8FG 8FI 8FJ ABJCF ABUWG AFKRA AWYRJ BENPR BGLVJ BPHCQ BVXVI CCPQU CGR COF CUY CVF ECM EIF EJD FYUFA H13 HCIFZ HF~ HMCUK IPNFZ L6V M1P M7S NPM O5S PGMZT PQQKQ PROAC PSQYO PTHSS RIG UKHRP AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c420t-b492f7b1173938c51eb2849696d08affe33ad1e04559f33bb45bc6aa720834693 |
IEDL.DBID | RPM |
ISSN | 1748-670X |
IngestDate | Tue Sep 17 21:13:04 EDT 2024 Sat Oct 26 00:22:59 EDT 2024 Thu Nov 21 21:49:32 EST 2024 Sat Sep 28 08:21:12 EDT 2024 Sun Jun 02 18:52:32 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2022 Sabiq Muhtadi. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-b492f7b1173938c51eb2849696d08affe33ad1e04559f33bb45bc6aa720834693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Academic Editor: Mario Cesarelli |
ORCID | 0000-0003-0497-0808 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920646/ |
PMID | 35295204 |
PQID | 2640326977 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920646 proquest_miscellaneous_2640326977 crossref_primary_10_1155_2022_1633858 pubmed_primary_35295204 hindawi_primary_10_1155_2022_1633858 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-07 |
PublicationDateYYYYMMDD | 2022-03-07 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computational and mathematical methods in medicine |
PublicationTitleAlternate | Comput Math Methods Med |
PublicationYear | 2022 |
Publisher | Hindawi |
Publisher_xml | – name: Hindawi |
References | 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 13 57 14 58 15 59 16 17 18 19 World Health Organization (WHO) (1) 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 L. Svilainis (56) 1998; 29 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 34 doi: 10.1007/s13244-012-0196-6 – ident: 11 doi: 10.1016/0161-7346(88)90054-5 – ident: 7 doi: 10.2214/AJR.11.7324 – ident: 31 doi: 10.1109/TUFFC.2009.1334 – ident: 13 doi: 10.1016/j.ultrasmedbio.2013.07.006 – ident: 6 doi: 10.1148/radiol.2442060712 – ident: 32 doi: 10.1148/radiol.14140318 – ident: 10 doi: 10.1007/978-94-007-6952-6 – ident: 15 doi: 10.3233/CBM-2008-44-504 – ident: 26 doi: 10.1088/0031-9155/48/14/313 – ident: 29 doi: 10.1006/uimg.1994.1016 – ident: 41 doi: 10.1109/TMI.2012.2206398 – ident: 9 doi: 10.1109/TUFFC.2015.2513958 – ident: 39 doi: 10.1177/016173469301500401 – ident: 43 doi: 10.1002/mp.12538 – ident: 46 doi: 10.1887/0750305932/b673c4 – ident: 35 doi: 10.1038/labinvest.2014.155 – ident: 54 doi: 10.1016/j.jbi.2018.12.003 – ident: 20 doi: 10.1038/s41598-017-13977-x – ident: 51 doi: 10.1016/B978-0-08-009306-2.50005-4 – ident: 30 – volume: 29 start-page: 29 year: 1998 ident: 56 article-title: Ultrasonic data acquisition: sampling frequency versus bandwidth publication-title: Ultragarsas contributor: fullname: L. Svilainis – ident: 58 doi: 10.1016/j.patcog.2016.02.013 – ident: 3 doi: 10.1093/annonc/mdv298 – ident: 37 doi: 10.1186/s12943-015-0481-3 – ident: 57 doi: 10.1109/ICIT52682.2021.9491739 – ident: 17 doi: 10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E – ident: 49 doi: 10.1016/j.ultrasmedbio.2010.04.001 – ident: 2 doi: 10.3322/caac.21660 – ident: 33 doi: 10.1016/j.ultrasmedbio.2019.10.024 – ident: 53 doi: 10.1109/TSMC.1976.4309452 – ident: 16 doi: 10.1016/S0301-5629(97)00013-6 – ident: 1 article-title: Breast cancer contributor: fullname: World Health Organization (WHO) – ident: 4 doi: 10.1007/978-3-030-11149-6_13 – ident: 52 doi: 10.1613/jair.953 – ident: 14 doi: 10.1016/S0022-5347(05)64159-6 – ident: 19 doi: 10.1177/016173461103300102 – ident: 50 doi: 10.1109/TMI.2015.2479455 – ident: 22 doi: 10.1038/s41598-017-09678-0 – ident: 47 doi: 10.1121/1.1336896 – ident: 27 doi: 10.1007/978-3-319-78759-6_18 – ident: 44 doi: 10.1121/1.389241 – ident: 28 doi: 10.1038/s41598-019-44376-z – ident: 18 doi: 10.1016/S0301-5629(97)00200-7 – ident: 24 doi: 10.1109/58.911740 – ident: 59 doi: 10.1016/j.knosys.2016.11.017 – ident: 23 doi: 10.1109/58.842062 – ident: 12 doi: 10.1016/0161-7346(90)90221-I – ident: 42 doi: 10.1118/1.2401039 – ident: 48 doi: 10.1109/T-SU.1983.31404 – ident: 5 doi: 10.1148/rg.294085199 – ident: 8 doi: 10.2214/AJR.13.12072 – ident: 38 doi: 10.1109/TSMC.1973.4309314 – ident: 40 doi: 10.1118/1.3566064 – ident: 55 doi: 10.1007/s11548-018-01908-8 – ident: 21 doi: 10.1016/j.media.2014.11.009 – ident: 45 doi: 10.1016/0301-5629(86)90183-3 – ident: 25 doi: 10.1016/S0301-5629(02)00617-8 – ident: 36 doi: 10.1158/1078-0432.CCR-14-0990 |
SSID | ssj0051751 |
Score | 2.3504725 |
Snippet | Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast... |
SourceID | pubmedcentral proquest crossref pubmed hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1633858 |
SubjectTerms | Algorithms Breast Neoplasms - classification Breast Neoplasms - diagnostic imaging Computational Biology Databases, Factual - statistics & numerical data False Positive Reactions Female Humans Image Interpretation, Computer-Assisted - statistics & numerical data ROC Curve Sensitivity and Specificity Support Vector Machine Ultrasonography, Mammary - statistics & numerical data |
Title | Breast Tumor Classification Using Intratumoral Quantitative Ultrasound Descriptors |
URI | https://dx.doi.org/10.1155/2022/1633858 https://www.ncbi.nlm.nih.gov/pubmed/35295204 https://search.proquest.com/docview/2640326977 https://pubmed.ncbi.nlm.nih.gov/PMC8920646 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6qUPFS-q59kYI9pua1yXpsrWIPlj6ht7Abd1HQKGro3-_MJpFaCoWeN1mSmWHn-5hvZwCaLgYtixxtS-5JOxCc2WKoQluFkdIcU1BgWub3X6PHD37fpTY5rLwLY0T7iRzfpJPpTToeGW3lfJq0Sp1Y62nQ4W0PM2nYqkAFsWFJ0fPjl2E-dPNbkNwOI-ejVLszRkTfayEAoWJYHWo-Fbm8YkRbmZK2R8SFP8e_Ic6fwslvmai3CzsFhLRu80_dgy2V7kNtUBTJD-DljoTmK-stm84Wlpl6SXog4wLLSASsB9p4Reu40XMmUnPVDA8-632CK0uatWQhJTVHymyxPIT3Xvet07eL0Ql2EnjOypZB29ORdF1qeMcT5iKB5gF1whk6XGitfF8MXYV4jrW170sZMJmEQkQeQjJkzP4RVNNZqk7AkkwKxYWDHtRBoojRaskC7WiJ6MQXDbgurRfP8w4ZsWEWjMVk8LgweAOahWn_eOyqtHuMkU7lC5GqWbaMEbo5CDYRsDbgOPfDeqfSlQ2INjy0foC6aG-uYHCZbtpFMJ3--80zqNMPGGFadA7V1SJTF1BZDrNLE5lfmOHm0g |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCOiFfSlrkOAY6ixO3COriqCIpUjcIju1RSWaVm0jfp8ZJ0GAkJA4j2MlebbnjeZ5BuDIw0XLY2ZcJXzlhlJwV3Z15Ooo1kagCwptyfzWU3z3Ii4uqUwOr-7CWNF-qnon2Vv_JOu9Wm3lsJ82Kp1Y4759Lpo-etKoMQ2zuF8Zq4L04gDm6BG94h6kcKOYvVR6d84p1PcbSEEoHVaD-YDSXH7ZpK1ySnOvFA2_937jnD-lk1980dXSP79iGRZL8umcFuYVmNLZKsy3y_T6GjyekUR94nTy_mDk2H6ZpCSy4DlWXOBc0wtNyI4TPeQys5fU8Mh0nt_QMqYuTQ4Gs_YwGozG6_B8ddk5b7ll0wU3DX02cVXY9E2sPI9K5YmUexh6i5Bq6HSZkMboIJBdTyMT5E0TBEqFXKWRlLGPZA5j7WADZrJBprfAUVxJLSRD7E2YaoqFjeKhYUYhrwlkHY6rv54Mi9oaiY1JOE8IqKQEqg5HJSR_DDus8Epwj1DiQ2Z6kI8TJH0MaSpS3TpsFvh9zlQtgTrE35D9HED1t79bEFBbh7sEcPvfTx7AQqvTvk1ur-9udqBGH2PlbfEuzExGud6D6XE337er-wOYKfxd |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48cPHF-1jPCvpYe6bNPnotigee4FtJ2oRdcLvL7hb_vjNpu6gIgj4nDW2_SeYb5ssMwKGHRstiV9uS-9IOBWe2yFRkqyhWmqMLCk3J_Mun-O6Vn19QmZxJqy8j2k9l9zh_6x3n3Y7RVg56qVPrxJz72zPe8tGTRs4g0840zOKedf06UC8PYYZe0SvvQnI7it3XWvPOGIX7voM0hFJi89AIKNXlV43aasc016GI-L37E-_8Lp_85I_ai__4kiVYqEiodVJOWYYpla9A47ZKs6_C4ylJ1cfWc9HrDy3TN5MURQZEy4gMrCt6qTGN40IPhcjNZTU8Oq2XNxwZUbcmC4Nacyj1h6M1eGlfPJ9d2lXzBTsNfXdsy7Dl61h6HpXM4ynzMATnIdXSyVwutFZBIDJPISNkLR0EUoZMppEQsY-kDmPuYB1m8n6uNsGSTArFhYs2oMNUUUysJQu1qyXym0A04aj-88mgrLGRmNiEsYTASiqwmnBYwfLLtIMaswT3CiVARK76xShB8uciXUXK24SNEsPJSrUZNCH-gu5kAtXh_jqCoJp63BWIW39-ch8a9-ft5Obq7nob5ulbjMot3oGZ8bBQuzA9yoo9Y-AfnH_-3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+Tumor+Classification+Using+Intratumoral+Quantitative+Ultrasound+Descriptors&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Muhtadi%2C+Sabiq&rft.date=2022-03-07&rft.eissn=1748-6718&rft.volume=2022&rft.spage=1633858&rft.epage=1633858&rft_id=info:doi/10.1155%2F2022%2F1633858&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon |