Breast Tumor Classification Using Intratumoral Quantitative Ultrasound Descriptors

Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize brea...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine Vol. 2022; pp. 1633858 - 18
Main Author: Muhtadi, Sabiq
Format: Journal Article
Language:English
Published: United States Hindawi 07-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize breast tissue. Several different quantitative descriptors for breast cancer have been explored by researchers. This study proposes a breast tumor classification system using the three major types of intratumoral QUS descriptors which can be extracted from ultrasound radiofrequency (RF) data: spectral features, envelope statistics features, and texture features. A total of 16 features were extracted from ultrasound RF data across two different datasets, of which one is balanced and the other is severely imbalanced. The balanced dataset contains RF data of 100 patients with breast tumors, of which 48 are benign and 52 are malignant. The imbalanced dataset contains RF data of 130 patients with breast tumors, of which 104 are benign and 26 are malignant. Holdout validation was used to split the balanced dataset into 60% training and 40% testing sets. Feature selection was applied on the training set to identify the most relevant subset for the classification of benign and malignant breast tumors, and the performance of the features was evaluated on the test set. A maximum classification accuracy of 95% and an area under the receiver operating characteristic curve (AUC) of 0.968 was obtained on the test set. The performance of the identified relevant features was further validated on the imbalanced dataset, where a hybrid resampling strategy was firstly utilized to create an optimal balance between benign and malignant samples. A maximum classification accuracy of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and AUC of 0.966 were obtained. The results indicate that the identified features are able to distinguish between benign and malignant breast lesions very effectively, and the combination of the features identified in this research has the potential to be a significant tool in the noninvasive rapid and accurate diagnosis of breast cancer.
AbstractList Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly applied by researchers in an attempt to characterize breast tissue. Several different quantitative descriptors for breast cancer have been explored by researchers. This study proposes a breast tumor classification system using the three major types of intratumoral QUS descriptors which can be extracted from ultrasound radiofrequency (RF) data: spectral features, envelope statistics features, and texture features. A total of 16 features were extracted from ultrasound RF data across two different datasets, of which one is balanced and the other is severely imbalanced. The balanced dataset contains RF data of 100 patients with breast tumors, of which 48 are benign and 52 are malignant. The imbalanced dataset contains RF data of 130 patients with breast tumors, of which 104 are benign and 26 are malignant. Holdout validation was used to split the balanced dataset into 60% training and 40% testing sets. Feature selection was applied on the training set to identify the most relevant subset for the classification of benign and malignant breast tumors, and the performance of the features was evaluated on the test set. A maximum classification accuracy of 95% and an area under the receiver operating characteristic curve (AUC) of 0.968 was obtained on the test set. The performance of the identified relevant features was further validated on the imbalanced dataset, where a hybrid resampling strategy was firstly utilized to create an optimal balance between benign and malignant samples. A maximum classification accuracy of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and AUC of 0.966 were obtained. The results indicate that the identified features are able to distinguish between benign and malignant breast lesions very effectively, and the combination of the features identified in this research has the potential to be a significant tool in the noninvasive rapid and accurate diagnosis of breast cancer.
Author Muhtadi, Sabiq
AuthorAffiliation Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh
AuthorAffiliation_xml – name: Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh
Author_xml – sequence: 1
  givenname: Sabiq
  orcidid: 0000-0003-0497-0808
  surname: Muhtadi
  fullname: Muhtadi, Sabiq
  organization: Department of Electrical and Electronic EngineeringIslamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35295204$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYNUfFR3rmWWglbznmQjaH0VCqK04C5kZjI1Mk1qklH8905pLbpxdS-cj3MP9-yDnvPOAHCE4DlCjF1giPEF4oQIJrbAHsqpGPAcid5mhy-7YD_GNwgZyhnaAbuEYckwpHvg-ToYHVM2aec-ZMNGx2hrW-pkvcum0bpZNnIp6LTUdZM9tdolmzr9w2TTplOib12V3ZhYBrtIPsQDsF3rJprD9eyD6d3tZPgwGD_ej4ZX40FJMUyDgkpc5wVCOZFElAyZAgsqueQVFLquDSG6QgZSxmRNSFFQVpRc6xxDQSiXpA8uV76LtpibqjTLnI1aBDvX4Ut5bdVfxdlXNfMfSkgMOeWdwcnaIPj31sSk5jaWpmm0M76NCnMKCeYyzzv0bIWWwccYTL05g6Ba1qCWNah1DR1-_DvaBv75ewecroBX6yr9af-3-wYL4ZMg
CitedBy_id crossref_primary_10_1016_j_ultras_2023_107233
crossref_primary_10_1016_j_ultras_2022_106744
crossref_primary_10_1016_j_heliyon_2024_e33133
crossref_primary_10_1016_j_ultras_2023_106987
Cites_doi 10.1007/s13244-012-0196-6
10.1016/0161-7346(88)90054-5
10.2214/AJR.11.7324
10.1109/TUFFC.2009.1334
10.1016/j.ultrasmedbio.2013.07.006
10.1148/radiol.2442060712
10.1148/radiol.14140318
10.1007/978-94-007-6952-6
10.3233/CBM-2008-44-504
10.1088/0031-9155/48/14/313
10.1006/uimg.1994.1016
10.1109/TMI.2012.2206398
10.1109/TUFFC.2015.2513958
10.1177/016173469301500401
10.1002/mp.12538
10.1887/0750305932/b673c4
10.1038/labinvest.2014.155
10.1016/j.jbi.2018.12.003
10.1038/s41598-017-13977-x
10.1016/B978-0-08-009306-2.50005-4
10.1016/j.patcog.2016.02.013
10.1093/annonc/mdv298
10.1186/s12943-015-0481-3
10.1109/ICIT52682.2021.9491739
10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
10.1016/j.ultrasmedbio.2010.04.001
10.3322/caac.21660
10.1016/j.ultrasmedbio.2019.10.024
10.1109/TSMC.1976.4309452
10.1016/S0301-5629(97)00013-6
10.1007/978-3-030-11149-6_13
10.1613/jair.953
10.1016/S0022-5347(05)64159-6
10.1177/016173461103300102
10.1109/TMI.2015.2479455
10.1038/s41598-017-09678-0
10.1121/1.1336896
10.1007/978-3-319-78759-6_18
10.1121/1.389241
10.1038/s41598-019-44376-z
10.1016/S0301-5629(97)00200-7
10.1109/58.911740
10.1016/j.knosys.2016.11.017
10.1109/58.842062
10.1016/0161-7346(90)90221-I
10.1118/1.2401039
10.1109/T-SU.1983.31404
10.1148/rg.294085199
10.2214/AJR.13.12072
10.1109/TSMC.1973.4309314
10.1118/1.3566064
10.1007/s11548-018-01908-8
10.1016/j.media.2014.11.009
10.1016/0301-5629(86)90183-3
10.1016/S0301-5629(02)00617-8
10.1158/1078-0432.CCR-14-0990
ContentType Journal Article
Copyright Copyright © 2022 Sabiq Muhtadi.
Copyright © 2022 Sabiq Muhtadi. 2022
Copyright_xml – notice: Copyright © 2022 Sabiq Muhtadi.
– notice: Copyright © 2022 Sabiq Muhtadi. 2022
DBID RHU
RHW
RHX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1155/2022/1633858
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Cesarelli, Mario
Editor_xml – sequence: 1
  givenname: Mario
  surname: Cesarelli
  fullname: Cesarelli, Mario
EndPage 18
ExternalDocumentID 10_1155_2022_1633858
35295204
Genre Validation Study
Journal Article
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
24P
3V.
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
H13
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
NPM
O5S
PGMZT
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c420t-b492f7b1173938c51eb2849696d08affe33ad1e04559f33bb45bc6aa720834693
IEDL.DBID RPM
ISSN 1748-670X
IngestDate Tue Sep 17 21:13:04 EDT 2024
Sat Oct 26 00:22:59 EDT 2024
Thu Nov 21 21:49:32 EST 2024
Sat Sep 28 08:21:12 EDT 2024
Sun Jun 02 18:52:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2022 Sabiq Muhtadi.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-b492f7b1173938c51eb2849696d08affe33ad1e04559f33bb45bc6aa720834693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Academic Editor: Mario Cesarelli
ORCID 0000-0003-0497-0808
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920646/
PMID 35295204
PQID 2640326977
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920646
proquest_miscellaneous_2640326977
crossref_primary_10_1155_2022_1633858
pubmed_primary_35295204
hindawi_primary_10_1155_2022_1633858
PublicationCentury 2000
PublicationDate 2022-03-07
PublicationDateYYYYMMDD 2022-03-07
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References 44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
13
57
14
58
15
59
16
17
18
19
World Health Organization (WHO) (1)
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
L. Svilainis (56) 1998; 29
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 34
  doi: 10.1007/s13244-012-0196-6
– ident: 11
  doi: 10.1016/0161-7346(88)90054-5
– ident: 7
  doi: 10.2214/AJR.11.7324
– ident: 31
  doi: 10.1109/TUFFC.2009.1334
– ident: 13
  doi: 10.1016/j.ultrasmedbio.2013.07.006
– ident: 6
  doi: 10.1148/radiol.2442060712
– ident: 32
  doi: 10.1148/radiol.14140318
– ident: 10
  doi: 10.1007/978-94-007-6952-6
– ident: 15
  doi: 10.3233/CBM-2008-44-504
– ident: 26
  doi: 10.1088/0031-9155/48/14/313
– ident: 29
  doi: 10.1006/uimg.1994.1016
– ident: 41
  doi: 10.1109/TMI.2012.2206398
– ident: 9
  doi: 10.1109/TUFFC.2015.2513958
– ident: 39
  doi: 10.1177/016173469301500401
– ident: 43
  doi: 10.1002/mp.12538
– ident: 46
  doi: 10.1887/0750305932/b673c4
– ident: 35
  doi: 10.1038/labinvest.2014.155
– ident: 54
  doi: 10.1016/j.jbi.2018.12.003
– ident: 20
  doi: 10.1038/s41598-017-13977-x
– ident: 51
  doi: 10.1016/B978-0-08-009306-2.50005-4
– ident: 30
– volume: 29
  start-page: 29
  year: 1998
  ident: 56
  article-title: Ultrasonic data acquisition: sampling frequency versus bandwidth
  publication-title: Ultragarsas
  contributor:
    fullname: L. Svilainis
– ident: 58
  doi: 10.1016/j.patcog.2016.02.013
– ident: 3
  doi: 10.1093/annonc/mdv298
– ident: 37
  doi: 10.1186/s12943-015-0481-3
– ident: 57
  doi: 10.1109/ICIT52682.2021.9491739
– ident: 17
  doi: 10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
– ident: 49
  doi: 10.1016/j.ultrasmedbio.2010.04.001
– ident: 2
  doi: 10.3322/caac.21660
– ident: 33
  doi: 10.1016/j.ultrasmedbio.2019.10.024
– ident: 53
  doi: 10.1109/TSMC.1976.4309452
– ident: 16
  doi: 10.1016/S0301-5629(97)00013-6
– ident: 1
  article-title: Breast cancer
  contributor:
    fullname: World Health Organization (WHO)
– ident: 4
  doi: 10.1007/978-3-030-11149-6_13
– ident: 52
  doi: 10.1613/jair.953
– ident: 14
  doi: 10.1016/S0022-5347(05)64159-6
– ident: 19
  doi: 10.1177/016173461103300102
– ident: 50
  doi: 10.1109/TMI.2015.2479455
– ident: 22
  doi: 10.1038/s41598-017-09678-0
– ident: 47
  doi: 10.1121/1.1336896
– ident: 27
  doi: 10.1007/978-3-319-78759-6_18
– ident: 44
  doi: 10.1121/1.389241
– ident: 28
  doi: 10.1038/s41598-019-44376-z
– ident: 18
  doi: 10.1016/S0301-5629(97)00200-7
– ident: 24
  doi: 10.1109/58.911740
– ident: 59
  doi: 10.1016/j.knosys.2016.11.017
– ident: 23
  doi: 10.1109/58.842062
– ident: 12
  doi: 10.1016/0161-7346(90)90221-I
– ident: 42
  doi: 10.1118/1.2401039
– ident: 48
  doi: 10.1109/T-SU.1983.31404
– ident: 5
  doi: 10.1148/rg.294085199
– ident: 8
  doi: 10.2214/AJR.13.12072
– ident: 38
  doi: 10.1109/TSMC.1973.4309314
– ident: 40
  doi: 10.1118/1.3566064
– ident: 55
  doi: 10.1007/s11548-018-01908-8
– ident: 21
  doi: 10.1016/j.media.2014.11.009
– ident: 45
  doi: 10.1016/0301-5629(86)90183-3
– ident: 25
  doi: 10.1016/S0301-5629(02)00617-8
– ident: 36
  doi: 10.1158/1078-0432.CCR-14-0990
SSID ssj0051751
Score 2.3504725
Snippet Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is becoming a popular tool for breast...
SourceID pubmedcentral
proquest
crossref
pubmed
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1633858
SubjectTerms Algorithms
Breast Neoplasms - classification
Breast Neoplasms - diagnostic imaging
Computational Biology
Databases, Factual - statistics & numerical data
False Positive Reactions
Female
Humans
Image Interpretation, Computer-Assisted - statistics & numerical data
ROC Curve
Sensitivity and Specificity
Support Vector Machine
Ultrasonography, Mammary - statistics & numerical data
Title Breast Tumor Classification Using Intratumoral Quantitative Ultrasound Descriptors
URI https://dx.doi.org/10.1155/2022/1633858
https://www.ncbi.nlm.nih.gov/pubmed/35295204
https://search.proquest.com/docview/2640326977
https://pubmed.ncbi.nlm.nih.gov/PMC8920646
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6qUPFS-q59kYI9pua1yXpsrWIPlj6ht7Abd1HQKGro3-_MJpFaCoWeN1mSmWHn-5hvZwCaLgYtixxtS-5JOxCc2WKoQluFkdIcU1BgWub3X6PHD37fpTY5rLwLY0T7iRzfpJPpTToeGW3lfJq0Sp1Y62nQ4W0PM2nYqkAFsWFJ0fPjl2E-dPNbkNwOI-ejVLszRkTfayEAoWJYHWo-Fbm8YkRbmZK2R8SFP8e_Ic6fwslvmai3CzsFhLRu80_dgy2V7kNtUBTJD-DljoTmK-stm84Wlpl6SXog4wLLSASsB9p4Reu40XMmUnPVDA8-632CK0uatWQhJTVHymyxPIT3Xvet07eL0Ql2EnjOypZB29ORdF1qeMcT5iKB5gF1whk6XGitfF8MXYV4jrW170sZMJmEQkQeQjJkzP4RVNNZqk7AkkwKxYWDHtRBoojRaskC7WiJ6MQXDbgurRfP8w4ZsWEWjMVk8LgweAOahWn_eOyqtHuMkU7lC5GqWbaMEbo5CDYRsDbgOPfDeqfSlQ2INjy0foC6aG-uYHCZbtpFMJ3--80zqNMPGGFadA7V1SJTF1BZDrNLE5lfmOHm0g
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCOiFfSlrkOAY6ixO3COriqCIpUjcIju1RSWaVm0jfp8ZJ0GAkJA4j2MlebbnjeZ5BuDIw0XLY2ZcJXzlhlJwV3Z15Ooo1kagCwptyfzWU3z3Ii4uqUwOr-7CWNF-qnon2Vv_JOu9Wm3lsJ82Kp1Y4759Lpo-etKoMQ2zuF8Zq4L04gDm6BG94h6kcKOYvVR6d84p1PcbSEEoHVaD-YDSXH7ZpK1ySnOvFA2_937jnD-lk1980dXSP79iGRZL8umcFuYVmNLZKsy3y_T6GjyekUR94nTy_mDk2H6ZpCSy4DlWXOBc0wtNyI4TPeQys5fU8Mh0nt_QMqYuTQ4Gs_YwGozG6_B8ddk5b7ll0wU3DX02cVXY9E2sPI9K5YmUexh6i5Bq6HSZkMboIJBdTyMT5E0TBEqFXKWRlLGPZA5j7WADZrJBprfAUVxJLSRD7E2YaoqFjeKhYUYhrwlkHY6rv54Mi9oaiY1JOE8IqKQEqg5HJSR_DDus8Epwj1DiQ2Z6kI8TJH0MaSpS3TpsFvh9zlQtgTrE35D9HED1t79bEFBbh7sEcPvfTx7AQqvTvk1ur-9udqBGH2PlbfEuzExGud6D6XE337er-wOYKfxd
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48cPHF-1jPCvpYe6bNPnotigee4FtJ2oRdcLvL7hb_vjNpu6gIgj4nDW2_SeYb5ssMwKGHRstiV9uS-9IOBWe2yFRkqyhWmqMLCk3J_Mun-O6Vn19QmZxJqy8j2k9l9zh_6x3n3Y7RVg56qVPrxJz72zPe8tGTRs4g0840zOKedf06UC8PYYZe0SvvQnI7it3XWvPOGIX7voM0hFJi89AIKNXlV43aasc016GI-L37E-_8Lp_85I_ai__4kiVYqEiodVJOWYYpla9A47ZKs6_C4ylJ1cfWc9HrDy3TN5MURQZEy4gMrCt6qTGN40IPhcjNZTU8Oq2XNxwZUbcmC4Nacyj1h6M1eGlfPJ9d2lXzBTsNfXdsy7Dl61h6HpXM4ynzMATnIdXSyVwutFZBIDJPISNkLR0EUoZMppEQsY-kDmPuYB1m8n6uNsGSTArFhYs2oMNUUUysJQu1qyXym0A04aj-88mgrLGRmNiEsYTASiqwmnBYwfLLtIMaswT3CiVARK76xShB8uciXUXK24SNEsPJSrUZNCH-gu5kAtXh_jqCoJp63BWIW39-ch8a9-ft5Obq7nob5ulbjMot3oGZ8bBQuzA9yoo9Y-AfnH_-3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+Tumor+Classification+Using+Intratumoral+Quantitative+Ultrasound+Descriptors&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Muhtadi%2C+Sabiq&rft.date=2022-03-07&rft.eissn=1748-6718&rft.volume=2022&rft.spage=1633858&rft.epage=1633858&rft_id=info:doi/10.1155%2F2022%2F1633858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon