Application of machine learning combined with population pharmacokinetics to improve individual prediction of vancomycin clearance in simulated adult patients

Vancomycin, a glycopeptide antimicrobial drug. PPK has problems such as difficulty in accurately reflecting inter-individual differences, and the PPK model may not be accurate enough to predict individual pharmacokinetic parameters. Therefore, the aim of this study is to investigate whether the appl...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in pharmacology Vol. 15; p. 1352113
Main Authors: Li, Guodong, Sun, Yubo, Zhu, Liping
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 18-03-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vancomycin, a glycopeptide antimicrobial drug. PPK has problems such as difficulty in accurately reflecting inter-individual differences, and the PPK model may not be accurate enough to predict individual pharmacokinetic parameters. Therefore, the aim of this study is to investigate whether the application of machine learning combined with the PPK method can improve the prediction of vancomycin CL in adult Chinese patients. In the first step, a vancomycin CL prediction model for Chinese adult patients is given by PPK and Hamilton Monte Carlo sampling is used to obtain the reference CL of 1,000 patients; the second step is to obtain the final prediction model by machine learning using an appropriate model for the predictive factor and the reference CL; and the third step is to randomly select, in the simulated data, a total of 250 patients for prediction effect evaluation. XGBoost model is selected as final machine learning model. More than four-fifths of the subjects' predictive values regarding vancomycin CL are improved by machine learning combined with PPK. Machine learning combined with PPK models is more stable in performance than the PPK method alone for predicting models. The first combination of PPK and machine learning for predictive modeling of vancomycin clearance in adult patients. It provides a reference for clinical pharmacists or clinicians to optimize the initial dosage given to ensure the effectiveness and safety of drug therapy for each patient.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Rodrigo Cristofoletti, University of Florida, United States
Reviewed by: Muhammad Usman, University of Veterinary and Animal Sciences, Pakistan
Devam A. Desai, University of Florida, United States
ISSN:1663-9812
1663-9812
DOI:10.3389/fphar.2024.1352113