A bismuth diethyldithiocarbamate compound promotes apoptosis in HepG2 carcinoma, cell cycle arrest and inhibits cell invasion through modulation of the NF-κB activation pathway
The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities an...
Saved in:
Published in: | Journal of inorganic biochemistry Vol. 130; pp. 38 - 51 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-01-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities and human apoptosis PCR-array analysis, both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. While both compounds activate mitochondrial and FAS apoptotic pathways, compound 1 was also found to induce another death receptor-dependent pathway by induction of CD40, CD40L and TNF-R1 (p55). Further, 1 highly expressed DAPK1, a tumour suppressor, with concomitant down-regulation of XIAP and NF-κB. Cell cycle arrest at the S and G2/M phases correlates with the inhibition of the growth of HepG2 cells. The cell invasion rate of 2 is 10-fold higher than that of 1, a finding correlated with the down-regulation of survivin and XIAP expression by 1. Compounds 1 and 2 interact with DNA through different binding motifs with 1 interacting with AT- or TA-specific sites followed by inhibition of restriction enzyme digestion; 2 did not interfere with any of the studied restriction enzymes.
The Bi(S2CNEt2)3 and Bi[S2CN(CH2CH2OH)2]3 compounds are cytotoxic towards HepG2 carcinoma and induce apoptosis by both extrinsic and intrinsic pathways. [Display omitted]
•Bi(S2CNEt2)3 is cytotoxic against several human carcinoma.•Bi(S2CNEt2)3 causes apoptosis in HepG2 cells by both extrinsic and intrinsic pathways.•Cell cycle arrest occurs at the S and G2/M phases.•Bi(S2CNEt2)3 interacts with DNA at AT- or TA-specific sites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-0134 1873-3344 |
DOI: | 10.1016/j.jinorgbio.2013.09.018 |