Repeated Origin of Three-Dimensional Leaf Venation Releases Constraints on the Evolution of Succulence in Plants
Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances...
Saved in:
Published in: | Current biology Vol. 23; no. 8; pp. 722 - 726 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Inc
22-04-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the cells that they supply, which in turn could negatively impact photosynthesis [1–4]. We quantified water storage [5] in a group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11–12 times within this small lineage, likely via multiple developmental pathways. 3D venation “resets” internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space.
[Display omitted]
► The evolution of extreme succulence in leaves is constrained by low vein density ► An unusual 3D leaf venation has evolved repeatedly in the most succulent leaves ► 3D leaves maintain veins in close proximity to photosynthetic tissues ► 3D venation facilitates the evolution of previously inaccessible phenotypes |
---|---|
AbstractList | Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the cells that they supply, which in turn could negatively impact photosynthesis. We quantified water storage in a group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11-12 times within this small lineage, likely via multiple developmental pathways. 3D venation "resets" internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space. Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the cells that they supply, which in turn could negatively impact photosynthesis [1–4]. We quantified water storage [5] in a group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11–12 times within this small lineage, likely via multiple developmental pathways. 3D venation “resets” internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space. [Display omitted] ► The evolution of extreme succulence in leaves is constrained by low vein density ► An unusual 3D leaf venation has evolved repeatedly in the most succulent leaves ► 3D leaves maintain veins in close proximity to photosynthetic tissues ► 3D venation facilitates the evolution of previously inaccessible phenotypes Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the cells that they supply, which in turn could negatively impact photosynthesis [1–4]. We quantified water storage [5] in a group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11–12 times within this small lineage, likely via multiple developmental pathways. 3D venation “resets” internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space. |
Author | Ogburn, R. Matthew Edwards, Erika J. |
Author_xml | – sequence: 1 givenname: R. Matthew surname: Ogburn fullname: Ogburn, R. Matthew email: matthew.ogburn@yale.edu organization: Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, RI 02912, USA – sequence: 2 givenname: Erika J. surname: Edwards fullname: Edwards, Erika J. organization: Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, RI 02912, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23583553$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1rHCEUhqWkNJukP6A3rZe9me1RZ3SkV2WbpIWFlHzdiqNnEpfZcaszgfz7uN20l4UDoj7n5eU5IUdjHJGQDwyWDJj8slm6uVtyYGIJZbh-QxasVbqCum6OyAK0hEq3nB-Tk5w3AIy3Wr4jx1w0rWgasSC7a9yhndDTqxQewkhjT28fE2L1PWxxzCGOdqBrtD29x9FO5U6vcUCbMdNVHPOUbBinTMv79Ij0_CkO8x-qBN3Mzs0Djg5pSf412AKekbe9HTK-fz1Pyd3F-e3qR7W-uvy5-rauXM1hqnSjVc-87J3XVoGt21qJxoNtOdRdKa-Vt51w5cODdFrLTjJWKyc9diicOCWfD7m7FH_PmCezDdnhUEpgnLNhopaNUlpBQdkBdSnmnLA3uxS2Nj0bBmYv2mxMEW32og2U4brsfHyNn7st-n8bf80W4NMB6G009iGFbO5uSkIDAEILrgrx9UBg0fAUMJnswl6WDwndZHwM_ynwAtbTmbs |
CitedBy_id | crossref_primary_10_1016_j_cub_2017_03_021 crossref_primary_10_1111_nph_19488 crossref_primary_10_1016_j_pld_2020_01_002 crossref_primary_10_1093_jxb_eru087 crossref_primary_10_1016_j_cub_2013_03_060 crossref_primary_10_1093_jxb_ert314 crossref_primary_10_1086_671745 crossref_primary_10_1093_aobpla_plaa047 crossref_primary_10_1093_jxb_erac054 crossref_primary_10_1093_jxb_erv536 crossref_primary_10_1007_s00442_017_3956_7 crossref_primary_10_1111_pce_12610 crossref_primary_10_1111_ppl_14007 crossref_primary_10_3389_fpls_2020_00283 crossref_primary_10_12705_635_8 crossref_primary_10_1016_j_cub_2019_09_044 crossref_primary_10_1039_D2TB02056D crossref_primary_10_1093_jxb_erw393 crossref_primary_10_1111_tpj_14783 crossref_primary_10_1016_j_cub_2019_11_073 crossref_primary_10_3390_horticulturae10040308 crossref_primary_10_1016_j_ppees_2018_09_003 crossref_primary_10_1016_j_pbi_2015_06_003 crossref_primary_10_1016_j_pbi_2019_06_004 crossref_primary_10_3389_fpls_2020_578338 crossref_primary_10_1007_s40415_018_0480_x crossref_primary_10_1016_j_pbi_2020_11_003 crossref_primary_10_1111_pce_13825 crossref_primary_10_1002_ajb2_1544 crossref_primary_10_1016_j_ppees_2014_12_003 crossref_primary_10_1111_nph_17250 crossref_primary_10_1016_j_ympev_2015_06_006 crossref_primary_10_1002_ajb2_1110 crossref_primary_10_1016_j_flora_2019_151489 crossref_primary_10_1002_ajb2_1471 crossref_primary_10_1111_boj_12423 crossref_primary_10_1093_jxb_erx096 crossref_primary_10_3390_plants11081076 crossref_primary_10_1016_j_jplph_2023_154081 crossref_primary_10_1093_aob_mcad035 crossref_primary_10_1016_j_envexpbot_2021_104568 crossref_primary_10_1016_j_flora_2018_08_005 crossref_primary_10_1016_j_jaridenv_2020_104319 crossref_primary_10_1111_nph_19622 crossref_primary_10_1007_s00425_014_2093_3 crossref_primary_10_5252_adansonia2022v44a10 crossref_primary_10_3390_plants12061238 crossref_primary_10_1111_boj_12478 crossref_primary_10_1111_plb_13499 crossref_primary_10_1093_aob_mcad142 crossref_primary_10_1093_jxb_erab548 crossref_primary_10_1111_nph_14812 crossref_primary_10_1093_jxb_erz085 crossref_primary_10_1111_tpj_16396 crossref_primary_10_1086_688258 crossref_primary_10_1111_nph_15851 crossref_primary_10_1111_nph_18565 crossref_primary_10_1086_684178 crossref_primary_10_1111_pce_12954 crossref_primary_10_1371_journal_pone_0197166 crossref_primary_10_3389_fpls_2018_00783 crossref_primary_10_1002_ajb2_1051 crossref_primary_10_1093_aobpla_ply008 crossref_primary_10_3390_ijms21165768 crossref_primary_10_1126_sciadv_abn2349 crossref_primary_10_1007_s40415_016_0249_z crossref_primary_10_1111_nph_13754 crossref_primary_10_1111_nph_14449 crossref_primary_10_1111_tpj_14691 crossref_primary_10_1093_botlinnean_boz079 crossref_primary_10_1016_j_pbi_2016_03_018 |
Cites_doi | 10.1111/j.1365-3040.1987.tb01846.x 10.1104/pp.58.4.576 10.1111/j.1365-3040.2012.02503.x 10.1093/oxfordjournals.aob.a088480 10.1093/jxb/34.12.1664 10.1038/35066546 10.1073/pnas.1216777110 10.1186/1471-2148-7-214 10.2307/2399742 10.1086/666098 10.1071/PP01217 10.1007/BF00403009 10.1002/tax.604014 10.1002/j.1537-2197.1993.tb15314.x 10.3732/ajb.0800203 10.1111/j.1365-3040.1989.tb01646.x 10.1104/pp.107.101352 10.1890/05-0710 10.3732/ajb.0800142 10.1073/pnas.1100628108 10.2985/1070-0048-14.1.26 10.1242/dev.125.15.2935 10.1073/pnas.0709194105 10.1007/BF00345817 10.1080/10635150390196966 10.1104/pp.110.153023 10.1105/tpc.014969 10.1126/science.1129647 10.1086/378649 10.2307/1313100 10.1086/380978 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.cub.2013.03.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 726 |
ExternalDocumentID | 10_1016_j_cub_2013_03_029 23583553 US201500039327 S096098221300331X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F AAQXK ABPTK ADMUD AEQTP ASPBG AVWKF CAG COF FBQ FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI 0SF AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c420t-9597f1d6fcd9a70a484735d0a8204b83597dab3ca48d06c996b61147c6debe3c3 |
ISSN | 0960-9822 |
IngestDate | Fri Oct 25 02:54:52 EDT 2024 Thu Sep 26 19:58:57 EDT 2024 Sat Sep 28 08:02:04 EDT 2024 Wed Dec 27 19:28:52 EST 2023 Fri Feb 23 02:28:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-9597f1d6fcd9a70a484735d0a8204b83597dab3ca48d06c996b61147c6debe3c3 |
Notes | http://dx.doi.org/10.1016/j.cub.2013.03.029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1016/j.cub.2013.03.029 |
PMID | 23583553 |
PQID | 1346577970 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1346577970 crossref_primary_10_1016_j_cub_2013_03_029 pubmed_primary_23583553 fao_agris_US201500039327 elsevier_sciencedirect_doi_10_1016_j_cub_2013_03_029 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-22 |
PublicationDateYYYYMMDD | 2013-04-22 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Peterson, Romaschenko, Barker, Linder (bib23) 2011; 60 Pagel, Venditti, Meade (bib10) 2006; 314 Kadereit, Borsch, Weising, Freitag (bib21) 2003; 164 Manuel, Borchiellini, Alivon, Le Parco, Vacelet, Boury-Esnault (bib33) 2003; 52 Brodribb, Feild, Jordan (bib3) 2007; 144 Groom, Lamont, Kupsky (bib22) 1994; 42 Gibson, A.C. (1982). The anatomy of succulence. In Crassulacean Acid Metabolism: Proceedings of the Fifth Annual Symposium in Botany, January 14–16, 1982, University of California, Riverside, I.P. Ting and M. Gibbs, eds. (Rockville, MD, USA: American Society of Plant Physiologists), pp. 1–17. Drummond, Rambaut (bib7) 2007; 7 Cutler (bib19) 2004 Lin, Shuai, Springer (bib25) 2003; 15 Sage (bib29) 2002; 29 Mauseth, Sajeva (bib34) 1992; 70 Smith, Schulte, Nobel (bib13) 1987; 10 Schulte, Smith, Nobel (bib14) 1989; 12 McConnell, Barton (bib24) 1998; 125 Sack, Frole (bib2) 2006; 87 Maxwell, von Caemmerer, Evans (bib12) 1997; 24 Mauseth (bib35) 1993; 80 Edwards, Ogburn (bib31) 2012; 173 Noblin, Mahadevan, Coomaraswamy, Weitz, Holbrook, Zwieniecki (bib1) 2008; 105 Sinclair (bib17) 1983; 34 Balsamo, Uribe (bib20) 1988; 173 Ogburn, Edwards (bib26) 2009; 96 Smith, Vogelmann, DeLucia, Bell, Shepherd (bib27) 1997; 47 Boyce, Brodribb, Feild, Zwieniecki (bib4) 2009; 276 Beerling, Osborne, Chaloner (bib11) 2001; 410 Hearn (bib37) 2009; 96 Arakaki, Christin, Nyffeler, Lendel, Eggli, Ogburn, Spriggs, Moore, Edwards (bib28) 2011; 108 Nyffeler, Eggi, Ogburn, Edwards (bib6) 2008; 14 Turgeon (bib9) 2010; 152 Nobel (bib16) 1977; 27 Christin, Osborne, Chatelet, Columbus, Besnard, Hodkinson, Garrison, Vorontsova, Edwards (bib30) 2013; 110 Ogburn, Edwards (bib5) 2012; 35 Mauseth (bib36) 2004; 165 Nobel (bib15) 1976; 58 Hershkovitz (bib18) 1991; 78 Ueno (bib32) 1998; 10 23660350 - Curr Biol. 2013 May 6;23(9):R340-1 Smith (10.1016/j.cub.2013.03.029_bib13) 1987; 10 Schulte (10.1016/j.cub.2013.03.029_bib14) 1989; 12 Nyffeler (10.1016/j.cub.2013.03.029_bib6) 2008; 14 Mauseth (10.1016/j.cub.2013.03.029_bib36) 2004; 165 Ogburn (10.1016/j.cub.2013.03.029_bib26) 2009; 96 Lin (10.1016/j.cub.2013.03.029_bib25) 2003; 15 Sage (10.1016/j.cub.2013.03.029_bib29) 2002; 29 Cutler (10.1016/j.cub.2013.03.029_bib19) 2004 Hearn (10.1016/j.cub.2013.03.029_bib37) 2009; 96 Nobel (10.1016/j.cub.2013.03.029_bib16) 1977; 27 Arakaki (10.1016/j.cub.2013.03.029_bib28) 2011; 108 Drummond (10.1016/j.cub.2013.03.029_bib7) 2007; 7 Turgeon (10.1016/j.cub.2013.03.029_bib9) 2010; 152 Mauseth (10.1016/j.cub.2013.03.029_bib34) 1992; 70 Groom (10.1016/j.cub.2013.03.029_bib22) 1994; 42 Brodribb (10.1016/j.cub.2013.03.029_bib3) 2007; 144 Peterson (10.1016/j.cub.2013.03.029_bib23) 2011; 60 Ueno (10.1016/j.cub.2013.03.029_bib32) 1998; 10 Ogburn (10.1016/j.cub.2013.03.029_bib5) 2012; 35 Nobel (10.1016/j.cub.2013.03.029_bib15) 1976; 58 Sinclair (10.1016/j.cub.2013.03.029_bib17) 1983; 34 Hershkovitz (10.1016/j.cub.2013.03.029_bib18) 1991; 78 Pagel (10.1016/j.cub.2013.03.029_bib10) 2006; 314 Maxwell (10.1016/j.cub.2013.03.029_bib12) 1997; 24 Beerling (10.1016/j.cub.2013.03.029_bib11) 2001; 410 Mauseth (10.1016/j.cub.2013.03.029_bib35) 1993; 80 Noblin (10.1016/j.cub.2013.03.029_bib1) 2008; 105 Christin (10.1016/j.cub.2013.03.029_bib30) 2013; 110 Kadereit (10.1016/j.cub.2013.03.029_bib21) 2003; 164 Smith (10.1016/j.cub.2013.03.029_bib27) 1997; 47 Edwards (10.1016/j.cub.2013.03.029_bib31) 2012; 173 Manuel (10.1016/j.cub.2013.03.029_bib33) 2003; 52 Boyce (10.1016/j.cub.2013.03.029_bib4) 2009; 276 10.1016/j.cub.2013.03.029_bib8 Balsamo (10.1016/j.cub.2013.03.029_bib20) 1988; 173 Sack (10.1016/j.cub.2013.03.029_bib2) 2006; 87 McConnell (10.1016/j.cub.2013.03.029_bib24) 1998; 125 |
References_xml | – volume: 10 start-page: 571 year: 1998 end-page: 584 ident: bib32 article-title: Induction of kranz anatomy and C publication-title: Plant Cell contributor: fullname: Ueno – volume: 165 start-page: 1 year: 2004 end-page: 9 ident: bib36 article-title: The structure of photosynthetic, succulent stems in plants other than cacti publication-title: Int. J. Plant Sci. contributor: fullname: Mauseth – volume: 173 start-page: 183 year: 1988 end-page: 189 ident: bib20 article-title: Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant publication-title: Planta contributor: fullname: Uribe – volume: 15 start-page: 2241 year: 2003 end-page: 2252 ident: bib25 article-title: The Arabidopsis publication-title: Plant Cell contributor: fullname: Springer – volume: 52 start-page: 311 year: 2003 end-page: 333 ident: bib33 article-title: Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry publication-title: Syst. Biol. contributor: fullname: Boury-Esnault – volume: 96 start-page: 1941 year: 2009 end-page: 1956 ident: bib37 article-title: Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in publication-title: Am. J. Bot. contributor: fullname: Hearn – volume: 12 start-page: 831 year: 1989 end-page: 842 ident: bib14 article-title: Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent publication-title: Plant Cell Environ. contributor: fullname: Nobel – volume: 173 start-page: 724 year: 2012 end-page: 733 ident: bib31 article-title: Angiosperm responses to a low-CO publication-title: Int. J. Plant Sci. contributor: fullname: Ogburn – volume: 27 start-page: 117 year: 1977 end-page: 133 ident: bib16 article-title: Water relations and photosynthesis of a barrel cactus, publication-title: Oecologia contributor: fullname: Nobel – volume: 34 start-page: 1664 year: 1983 end-page: 1675 ident: bib17 article-title: Water relations of tropical epiphytes: II. Performance during droughting publication-title: J. Exp. Bot. contributor: fullname: Sinclair – volume: 42 start-page: 307 year: 1994 end-page: 320 ident: bib22 article-title: Contrasting morphology and ecophysiology of co-occurring broad and terete leaves in publication-title: Aust. J. Bot. contributor: fullname: Kupsky – volume: 10 start-page: 639 year: 1987 end-page: 648 ident: bib13 article-title: Water flow and water storage in publication-title: Plant Cell Environ. contributor: fullname: Nobel – volume: 80 start-page: 928 year: 1993 end-page: 932 ident: bib35 article-title: Medullary bundles and the evolution of cacti publication-title: Am. J. Bot. contributor: fullname: Mauseth – volume: 35 start-page: 1533 year: 2012 end-page: 1542 ident: bib5 article-title: Quantifying succulence: a rapid, physiologically meaningful metric of plant water storage publication-title: Plant Cell Environ. contributor: fullname: Edwards – volume: 108 start-page: 8379 year: 2011 end-page: 8384 ident: bib28 article-title: Contemporaneous and recent radiations of the world’s major succulent plant lineages publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Edwards – volume: 58 start-page: 576 year: 1976 end-page: 582 ident: bib15 article-title: Water relations and photosynthesis of a desert CAM plant, publication-title: Plant Physiol. contributor: fullname: Nobel – volume: 24 start-page: 777 year: 1997 end-page: 786 ident: bib12 article-title: Is a low internal conductance to CO publication-title: Aust. J. Plant Physiol. contributor: fullname: Evans – volume: 14 start-page: 26 year: 2008 end-page: 36 ident: bib6 article-title: Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales) publication-title: Haseltonia contributor: fullname: Edwards – start-page: 361 year: 2004 end-page: 366 ident: bib19 article-title: leaf anatomy publication-title: Aloes: The Genus contributor: fullname: Cutler – volume: 87 start-page: 483 year: 2006 end-page: 491 ident: bib2 article-title: Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees publication-title: Ecology contributor: fullname: Frole – volume: 152 start-page: 1817 year: 2010 end-page: 1823 ident: bib9 article-title: The role of phloem loading reconsidered publication-title: Plant Physiol. contributor: fullname: Turgeon – volume: 7 start-page: 214 year: 2007 ident: bib7 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evol. Biol. contributor: fullname: Rambaut – volume: 314 start-page: 119 year: 2006 end-page: 121 ident: bib10 article-title: Large punctuational contribution of speciation to evolutionary divergence at the molecular level publication-title: Science contributor: fullname: Meade – volume: 96 start-page: 391 year: 2009 end-page: 408 ident: bib26 article-title: Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation publication-title: Am. J. Bot. contributor: fullname: Edwards – volume: 60 start-page: 1113 year: 2011 end-page: 1122 ident: bib23 article-title: Centropodieae and publication-title: Taxon contributor: fullname: Linder – volume: 47 start-page: 785 year: 1997 end-page: 793 ident: bib27 article-title: Leaf form and photosynthesis publication-title: Bioscience contributor: fullname: Shepherd – volume: 125 start-page: 2935 year: 1998 end-page: 2942 ident: bib24 article-title: Leaf polarity and meristem formation in publication-title: Development contributor: fullname: Barton – volume: 29 start-page: 775 year: 2002 end-page: 785 ident: bib29 article-title: Are crassulacean acid metabolism and C publication-title: Funct. Plant Biol. contributor: fullname: Sage – volume: 164 start-page: 959 year: 2003 end-page: 986 ident: bib21 article-title: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C publication-title: Int. J. Plant Sci. contributor: fullname: Freitag – volume: 144 start-page: 1890 year: 2007 end-page: 1898 ident: bib3 article-title: Leaf maximum photosynthetic rate and venation are linked by hydraulics publication-title: Plant Physiol. contributor: fullname: Jordan – volume: 410 start-page: 352 year: 2001 end-page: 354 ident: bib11 article-title: Evolution of leaf-form in land plants linked to atmospheric CO publication-title: Nature contributor: fullname: Chaloner – volume: 70 start-page: 317 year: 1992 end-page: 324 ident: bib34 article-title: Cortical bundles in the persistent, photosynthetic stems of cacti publication-title: Ann. Bot. contributor: fullname: Sajeva – volume: 276 start-page: 1771 year: 2009 end-page: 1776 ident: bib4 article-title: Angiosperm leaf vein evolution was physiologically and environmentally transformative publication-title: Proc. Biol. Sci. contributor: fullname: Zwieniecki – volume: 105 start-page: 9140 year: 2008 end-page: 9144 ident: bib1 article-title: Optimal vein density in artificial and real leaves publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Zwieniecki – volume: 78 start-page: 1022 year: 1991 end-page: 1060 ident: bib18 article-title: Leaf morphology of publication-title: Ann. Mo. Bot. Gard. contributor: fullname: Hershkovitz – volume: 110 start-page: 1381 year: 2013 end-page: 1386 ident: bib30 article-title: Anatomical enablers and the evolution of C publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Edwards – volume: 10 start-page: 639 year: 1987 ident: 10.1016/j.cub.2013.03.029_bib13 article-title: Water flow and water storage in Agave deserti: osmotic implications of crassulacean acid metabolism publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1987.tb01846.x contributor: fullname: Smith – volume: 58 start-page: 576 year: 1976 ident: 10.1016/j.cub.2013.03.029_bib15 article-title: Water relations and photosynthesis of a desert CAM plant, Agave deserti publication-title: Plant Physiol. doi: 10.1104/pp.58.4.576 contributor: fullname: Nobel – volume: 35 start-page: 1533 year: 2012 ident: 10.1016/j.cub.2013.03.029_bib5 article-title: Quantifying succulence: a rapid, physiologically meaningful metric of plant water storage publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02503.x contributor: fullname: Ogburn – volume: 70 start-page: 317 year: 1992 ident: 10.1016/j.cub.2013.03.029_bib34 article-title: Cortical bundles in the persistent, photosynthetic stems of cacti publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a088480 contributor: fullname: Mauseth – volume: 34 start-page: 1664 year: 1983 ident: 10.1016/j.cub.2013.03.029_bib17 article-title: Water relations of tropical epiphytes: II. Performance during droughting publication-title: J. Exp. Bot. doi: 10.1093/jxb/34.12.1664 contributor: fullname: Sinclair – start-page: 361 year: 2004 ident: 10.1016/j.cub.2013.03.029_bib19 article-title: Aloe leaf anatomy contributor: fullname: Cutler – volume: 10 start-page: 571 year: 1998 ident: 10.1016/j.cub.2013.03.029_bib32 article-title: Induction of kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid publication-title: Plant Cell contributor: fullname: Ueno – volume: 410 start-page: 352 year: 2001 ident: 10.1016/j.cub.2013.03.029_bib11 article-title: Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era publication-title: Nature doi: 10.1038/35066546 contributor: fullname: Beerling – volume: 110 start-page: 1381 year: 2013 ident: 10.1016/j.cub.2013.03.029_bib30 article-title: Anatomical enablers and the evolution of C4 photosynthesis in grasses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1216777110 contributor: fullname: Christin – volume: 7 start-page: 214 year: 2007 ident: 10.1016/j.cub.2013.03.029_bib7 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-214 contributor: fullname: Drummond – volume: 78 start-page: 1022 year: 1991 ident: 10.1016/j.cub.2013.03.029_bib18 article-title: Leaf morphology of Cistanthe Spach (Portulacaceae) publication-title: Ann. Mo. Bot. Gard. doi: 10.2307/2399742 contributor: fullname: Hershkovitz – volume: 173 start-page: 724 year: 2012 ident: 10.1016/j.cub.2013.03.029_bib31 article-title: Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories publication-title: Int. J. Plant Sci. doi: 10.1086/666098 contributor: fullname: Edwards – volume: 29 start-page: 775 year: 2002 ident: 10.1016/j.cub.2013.03.029_bib29 article-title: Are crassulacean acid metabolism and C4 photosynthesis incompatible? publication-title: Funct. Plant Biol. doi: 10.1071/PP01217 contributor: fullname: Sage – ident: 10.1016/j.cub.2013.03.029_bib8 – volume: 173 start-page: 183 year: 1988 ident: 10.1016/j.cub.2013.03.029_bib20 article-title: Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoe daigremontana publication-title: Planta doi: 10.1007/BF00403009 contributor: fullname: Balsamo – volume: 60 start-page: 1113 year: 2011 ident: 10.1016/j.cub.2013.03.029_bib23 article-title: Centropodieae and Ellisochloa, a new tribe and genus in Chloridoideae (Poaceae) publication-title: Taxon doi: 10.1002/tax.604014 contributor: fullname: Peterson – volume: 80 start-page: 928 year: 1993 ident: 10.1016/j.cub.2013.03.029_bib35 article-title: Medullary bundles and the evolution of cacti publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1993.tb15314.x contributor: fullname: Mauseth – volume: 96 start-page: 1941 year: 2009 ident: 10.1016/j.cub.2013.03.029_bib37 article-title: Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae) publication-title: Am. J. Bot. doi: 10.3732/ajb.0800203 contributor: fullname: Hearn – volume: 12 start-page: 831 year: 1989 ident: 10.1016/j.cub.2013.03.029_bib14 article-title: Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1989.tb01646.x contributor: fullname: Schulte – volume: 144 start-page: 1890 year: 2007 ident: 10.1016/j.cub.2013.03.029_bib3 article-title: Leaf maximum photosynthetic rate and venation are linked by hydraulics publication-title: Plant Physiol. doi: 10.1104/pp.107.101352 contributor: fullname: Brodribb – volume: 24 start-page: 777 year: 1997 ident: 10.1016/j.cub.2013.03.029_bib12 article-title: Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? publication-title: Aust. J. Plant Physiol. contributor: fullname: Maxwell – volume: 87 start-page: 483 year: 2006 ident: 10.1016/j.cub.2013.03.029_bib2 article-title: Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees publication-title: Ecology doi: 10.1890/05-0710 contributor: fullname: Sack – volume: 96 start-page: 391 year: 2009 ident: 10.1016/j.cub.2013.03.029_bib26 article-title: Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation publication-title: Am. J. Bot. doi: 10.3732/ajb.0800142 contributor: fullname: Ogburn – volume: 108 start-page: 8379 year: 2011 ident: 10.1016/j.cub.2013.03.029_bib28 article-title: Contemporaneous and recent radiations of the world’s major succulent plant lineages publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1100628108 contributor: fullname: Arakaki – volume: 14 start-page: 26 year: 2008 ident: 10.1016/j.cub.2013.03.029_bib6 article-title: Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales) publication-title: Haseltonia doi: 10.2985/1070-0048-14.1.26 contributor: fullname: Nyffeler – volume: 42 start-page: 307 year: 1994 ident: 10.1016/j.cub.2013.03.029_bib22 article-title: Contrasting morphology and ecophysiology of co-occurring broad and terete leaves in Hakea trifurcata (Proteaceae) publication-title: Aust. J. Bot. contributor: fullname: Groom – volume: 125 start-page: 2935 year: 1998 ident: 10.1016/j.cub.2013.03.029_bib24 article-title: Leaf polarity and meristem formation in Arabidopsis publication-title: Development doi: 10.1242/dev.125.15.2935 contributor: fullname: McConnell – volume: 105 start-page: 9140 year: 2008 ident: 10.1016/j.cub.2013.03.029_bib1 article-title: Optimal vein density in artificial and real leaves publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709194105 contributor: fullname: Noblin – volume: 27 start-page: 117 year: 1977 ident: 10.1016/j.cub.2013.03.029_bib16 article-title: Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado Desert publication-title: Oecologia doi: 10.1007/BF00345817 contributor: fullname: Nobel – volume: 52 start-page: 311 year: 2003 ident: 10.1016/j.cub.2013.03.029_bib33 article-title: Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry publication-title: Syst. Biol. doi: 10.1080/10635150390196966 contributor: fullname: Manuel – volume: 152 start-page: 1817 year: 2010 ident: 10.1016/j.cub.2013.03.029_bib9 article-title: The role of phloem loading reconsidered publication-title: Plant Physiol. doi: 10.1104/pp.110.153023 contributor: fullname: Turgeon – volume: 15 start-page: 2241 year: 2003 ident: 10.1016/j.cub.2013.03.029_bib25 article-title: The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning publication-title: Plant Cell doi: 10.1105/tpc.014969 contributor: fullname: Lin – volume: 314 start-page: 119 year: 2006 ident: 10.1016/j.cub.2013.03.029_bib10 article-title: Large punctuational contribution of speciation to evolutionary divergence at the molecular level publication-title: Science doi: 10.1126/science.1129647 contributor: fullname: Pagel – volume: 276 start-page: 1771 year: 2009 ident: 10.1016/j.cub.2013.03.029_bib4 article-title: Angiosperm leaf vein evolution was physiologically and environmentally transformative publication-title: Proc. Biol. Sci. contributor: fullname: Boyce – volume: 164 start-page: 959 year: 2003 ident: 10.1016/j.cub.2013.03.029_bib21 article-title: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis publication-title: Int. J. Plant Sci. doi: 10.1086/378649 contributor: fullname: Kadereit – volume: 47 start-page: 785 year: 1997 ident: 10.1016/j.cub.2013.03.029_bib27 article-title: Leaf form and photosynthesis publication-title: Bioscience doi: 10.2307/1313100 contributor: fullname: Smith – volume: 165 start-page: 1 year: 2004 ident: 10.1016/j.cub.2013.03.029_bib36 article-title: The structure of photosynthetic, succulent stems in plants other than cacti publication-title: Int. J. Plant Sci. doi: 10.1086/380978 contributor: fullname: Mauseth |
SSID | ssj0012896 |
Score | 2.4386122 |
Snippet | Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated... |
SourceID | proquest crossref pubmed fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 722 |
SubjectTerms | Adaptation, Physiological arid zones Biological Evolution Biological Transport evolution leaves Magnoliopsida - anatomy & histology Magnoliopsida - classification Magnoliopsida - genetics Magnoliopsida - physiology Molecular Sequence Data Molluginaceae - anatomy & histology Molluginaceae - classification Molluginaceae - genetics Molluginaceae - physiology photosynthesis Phylogeny Plant Leaves - anatomy & histology Plant Leaves - classification Plant Leaves - genetics Plant Leaves - physiology Plant Proteins - genetics Plant Proteins - metabolism Sequence Analysis, DNA Water - metabolism |
Title | Repeated Origin of Three-Dimensional Leaf Venation Releases Constraints on the Evolution of Succulence in Plants |
URI | https://dx.doi.org/10.1016/j.cub.2013.03.029 https://www.ncbi.nlm.nih.gov/pubmed/23583553 https://search.proquest.com/docview/1346577970 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdJx2AvY99N1w0N1pcVBUdWLPuxNCndBttD0tE3IUtWoYWkLPVg_33v9OGkXTu2wSCYRMS2ovvlfB-63xHynoPBZkauYFzrkonKcVaJrGZFWVjkK3PGl4sdz-SX03IyFdNeL1UKrsf-q6RhDGSNlbN_Ie3uojAA70HmcASpw_GP5A4WNahXMCO_-pZXaAzOQV4NmyCPf-DgQFZVt_-tCZFA3BCHSZrQvdP3jOiSCPvTH3G2vrqlNab1VUoYJsF-R4EHqqM6iGRPkdmpC-CegeSCrz_cO-R7B1nsMt6Z875z9Crq5QsdvvRpuBmSwPYQgvG1A9vVytzYyom-EkO2wPDkCeq2lJiaCYSSSR-H-uOIu3JDucp0bvxU3PkICNGI86Fpa9y5l3sO2xhVucmsPfN0ezAjTOnl-ei0Tx5w0FfYgmHy8XOXjAKf1Ke80w9IyXG_TfDWbe4zb_pOL-93YrwxM39CHkcvhB4E-DwlvWbxjDwMfUl_PieXCUQ0gIguHf0FRBRBRBOIaAIR3QARhXGQM-1AhBdag4jClQOIXpCTo-n88JjF1hzMCJ5dsQr8UDeyhTO20jLTosQW1jbTYFCKGqz6Slpd50iZb7PCgFNdF-B5S1NY0Bq5yV-SrcVy0WwTyitnJBj-tdBGCDeuMi3Hsq4bqWUpajsgH9KKqsvAwKLS1sRzBcuvcPlVBi9eDYhIa66iCRlMQwXw-N1p2yAfpc_gwapOZhzDgL5qncsBeZeEpkDzYjpNL5plu1KjXBRjKSuZDcirIM1ugliADpZ8vvNv83lNHq3_V7tk6-p727wh_ZVt33poXgNZ36uo |
link.rule.ids | 315,782,786,27934,27935 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeated+Origin+of+Three-Dimensional+Leaf+Venation+Releases+Constraints+on+the+Evolution+of+Succulence+in+Plants&rft.jtitle=Current+biology&rft.au=Ogburn%2C+R.%C2%A0Matthew&rft.au=Edwards%2C+Erika%C2%A0J.&rft.date=2013-04-22&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=23&rft.issue=8&rft.spage=722&rft.epage=726&rft_id=info:doi/10.1016%2Fj.cub.2013.03.029&rft.externalDocID=S096098221300331X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |