Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway

The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcy...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 622-623; pp. 127 - 139
Main Authors: Powell, David E., Schøyen, Merete, Øxnevad, Sigurd, Gerhards, Reinhard, Böhmer, Thomas, Koerner, Martin, Durham, Jeremy, Huff, Darren W.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-05-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated for the marine food webs of the Inner and Outer Oslofjord, Norway. The sampled food webs included zooplankton, benthic macroinvertebrates, shellfish, and finfish species. Zooplankton, benthic macroinvertebrates, and shellfish occupied the lowest trophic levels (TL ≈2 to 3); northern shrimp (Pandalus borealis) and Atlantic herring (Clupea harengus) occupied the middle trophic levels (TL ≈3 to 4), and Atlantic cod (Gadus morhua) occupied the highest tropic level (TL>4.0). Trophic dynamics in the Oslofjord were best described as a compressed food web defined by demersal and pelagic components that were confounded by a diversity in prey organisms and feeding relationships. Lipid-normalized concentrations of D4, D5, and D6 were greatest in the lowest trophic levels and significantly decreased up the food web, with the lowest concentrations being observed in the highest trophic level species. Trophic magnification factors (TMF) for D4, D5, and D6 were <1.0 (range 0.3 to 0.9) and were consistent between the Inner and Outer Oslofjord, indicating that exposure did not impact TMF across the marine food web. There was no evidence to suggest biomagnification of cVMS in the Oslofjord. Rather, results indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food webs. [Display omitted] •Cyclic volatile methysiloxanes (cVMS) monitored in biota and sediment from the Oslofjord, Norway.•Assessed bioaccumulation of cVMS across the decoupled demersal and pelagic food webs.•TMFs calculated by standard and alternative methods, to control bias and incorporate uncertainty.•TMFs in the Inner Oslofjord same as in the less polluted Outer Oslofjord, hence not related to exposure.•No indication of biomagnification of cVMS across food webs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.11.237