Co-localisation, heterophilic interactions and regulated expression of IgLON family proteins in the chick nervous system
The chick glycoprotein GP55 has been shown to inhibit the growth and adhesion of DRG and forebrain neurons. GP55 consists of several members of the IgLON family, a group of glycoproteins including LAMP, OBCAM, CEPU-1 (chick)/neurotrimin (rat) and neurotractin (chick)/kilon (rat) thought to play a ro...
Saved in:
Published in: | Brain research. Molecular brain research. Vol. 82; no. 1; pp. 84 - 94 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
20-10-2000
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The chick glycoprotein GP55 has been shown to inhibit the growth and adhesion of DRG and forebrain neurons. GP55 consists of several members of the IgLON family, a group of glycoproteins including LAMP, OBCAM, CEPU-1 (chick)/neurotrimin (rat) and neurotractin (chick)/kilon (rat) thought to play a role in the guidance of growing axons. IgLONs belong to the Ig superfamily and have three C2 domains and a glycosyl phosphatidylinositol anchor which tethers them to the neuronal plasma membrane. We have now completed the deduced amino acid sequence for two isoforms of chicken OBCAM and used recombinant LAMP, OBCAM and CEPU-1 to raise antisera specific to these three IgLONs. LAMP and CEPU-1 are co-expressed on DRG and sympathetic neurons, while both overlapping and distinct expression patterns for LAMP, OBCAM and CEPU-1 are observed in retina. Analysis of IgLON mRNA expression reveals that alternatively spliced forms of LAMP and CEPU-1 are developmentally regulated. In an attempt to understand how the IgLONs function, we have begun to characterise their molecular interactions. LAMP and CEPU-1 have already been shown to interact homophilically. We now confirm that OBCAM will bind homophilically and also that LAMP, OBCAM and CEPU-1 will interact heterophilically with each other. We propose that IgLON activity will depend on the complement of IgLONs expressed by each neuron. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0169-328X 1872-6941 |
DOI: | 10.1016/S0169-328X(00)00184-4 |