Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing

Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Medical Informatics Association : JAMIA Vol. 29; no. 5; pp. 873 - 881
Main Authors: Xie, Kevin, Gallagher, Ryan S, Conrad, Erin C, Garrick, Chadric O, Baldassano, Steven N, Bernabei, John M, Galer, Peter D, Ghosn, Nina J, Greenblatt, Adam S, Jennings, Tara, Kornspun, Alana, Kulick-Soper, Catherine V, Panchal, Jal M, Pattnaik, Akash R, Scheid, Brittany H, Wei, Danmeng, Weitzman, Micah, Muthukrishnan, Ramya, Kim, Joongwon, Litt, Brian, Ellis, Colin A, Roth, Dan
Format: Journal Article
Language:English
Published: England Oxford University Press 13-04-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. Materials and Methods We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. Results The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. Discussion and Conclusion Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions.
AbstractList Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions.
OBJECTIVESeizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. MATERIALS AND METHODSWe developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. RESULTSThe finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. DISCUSSION AND CONCLUSIONOur novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions.
Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. Materials and Methods We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. Results The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. Discussion and Conclusion Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions.
Author Ellis, Colin A
Bernabei, John M
Wei, Danmeng
Kornspun, Alana
Baldassano, Steven N
Litt, Brian
Pattnaik, Akash R
Jennings, Tara
Muthukrishnan, Ramya
Panchal, Jal M
Gallagher, Ryan S
Greenblatt, Adam S
Garrick, Chadric O
Galer, Peter D
Conrad, Erin C
Ghosn, Nina J
Kim, Joongwon
Roth, Dan
Kulick-Soper, Catherine V
Weitzman, Micah
Xie, Kevin
Scheid, Brittany H
Author_xml – sequence: 1
  givenname: Kevin
  surname: Xie
  fullname: Xie, Kevin
– sequence: 2
  givenname: Ryan S
  surname: Gallagher
  fullname: Gallagher, Ryan S
– sequence: 3
  givenname: Erin C
  surname: Conrad
  fullname: Conrad, Erin C
– sequence: 4
  givenname: Chadric O
  surname: Garrick
  fullname: Garrick, Chadric O
– sequence: 5
  givenname: Steven N
  surname: Baldassano
  fullname: Baldassano, Steven N
– sequence: 6
  givenname: John M
  surname: Bernabei
  fullname: Bernabei, John M
– sequence: 7
  givenname: Peter D
  surname: Galer
  fullname: Galer, Peter D
– sequence: 8
  givenname: Nina J
  surname: Ghosn
  fullname: Ghosn, Nina J
– sequence: 9
  givenname: Adam S
  surname: Greenblatt
  fullname: Greenblatt, Adam S
– sequence: 10
  givenname: Tara
  surname: Jennings
  fullname: Jennings, Tara
– sequence: 11
  givenname: Alana
  surname: Kornspun
  fullname: Kornspun, Alana
– sequence: 12
  givenname: Catherine V
  surname: Kulick-Soper
  fullname: Kulick-Soper, Catherine V
– sequence: 13
  givenname: Jal M
  surname: Panchal
  fullname: Panchal, Jal M
– sequence: 14
  givenname: Akash R
  surname: Pattnaik
  fullname: Pattnaik, Akash R
– sequence: 15
  givenname: Brittany H
  surname: Scheid
  fullname: Scheid, Brittany H
– sequence: 16
  givenname: Danmeng
  surname: Wei
  fullname: Wei, Danmeng
– sequence: 17
  givenname: Micah
  surname: Weitzman
  fullname: Weitzman, Micah
– sequence: 18
  givenname: Ramya
  surname: Muthukrishnan
  fullname: Muthukrishnan, Ramya
– sequence: 19
  givenname: Joongwon
  surname: Kim
  fullname: Kim, Joongwon
– sequence: 20
  givenname: Brian
  surname: Litt
  fullname: Litt, Brian
– sequence: 21
  givenname: Colin A
  surname: Ellis
  fullname: Ellis, Colin A
  email: colin.ellis2@pennmedicine.upenn.edu
– sequence: 22
  givenname: Dan
  surname: Roth
  fullname: Roth, Dan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35190834$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtPwzAQxi1UxHtkRR5ZAraT2AkDEqp4SZVYQGKzHPfSGiV2sBNE-etxaYEyMfnk-913j28fjayzgNAxJWeUlOn5i2qNOndaaUKLLbRHcyaSUmTPo414F-2H8EII5SzNd9BumtOSFGm2h_z1e--V7o2d4QDmY_CAaw-vA1i9iJFrMXSmgS4ssG6MNRpb10O4wAq3Ss-NBexBTZf1quu8i3-4d9iqfvCqwY2ys0HNAMeUhhAid4i2a9UEOFq_B-jp5vpxfJdMHm7vx1eTRGeM9AnjKSFAgRV5VVRU5ykrhIC8qgXLgdRC0JKzvJxOS2Ap44LXWZVRQXksEPE0B-hypdsNVQtTDTZu2sjOm1b5hXTKyL8Za-Zy5t5kSQjnJYsCp2sB7-JBQi9bEzQ0cSdwQ5BxQlrwLCVZRJMVqr0LwUP904YSufRJfvkk1z5F_mRzth_625jf3m7o_tH6BLJsomY
CitedBy_id crossref_primary_10_1016_j_yebeh_2023_109572
crossref_primary_10_1111_epi_17558
crossref_primary_10_1111_epi_17833
crossref_primary_10_1007_s11910_023_01318_7
crossref_primary_10_1212_WNL_0000000000207967
crossref_primary_10_1038_s41598_023_34294_6
crossref_primary_10_1111_epi_17474
crossref_primary_10_1186_s12911_024_02557_5
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1111_epi_17633
crossref_primary_10_2196_51822
crossref_primary_10_1016_j_compbiomed_2022_106415
crossref_primary_10_1093_jamiaopen_ooad070
crossref_primary_10_1016_j_ebr_2024_100692
crossref_primary_10_1111_epi_17570
crossref_primary_10_1111_epi_17907
crossref_primary_10_1016_j_pediatrneurol_2023_01_004
crossref_primary_10_1007_s41060_023_00433_5
crossref_primary_10_1093_jamia_ocae047
crossref_primary_10_1212_WNL_0000000000207853
crossref_primary_10_1016_j_seizure_2022_07_010
crossref_primary_10_1093_jamia_ocac216
Cites_doi 10.1136/bmjopen-2018-023232
10.1093/jamia/ocaa189
10.1007/s00392-016-1025-6
10.11613/BM.2012.031
10.1146/annurev-publhealth-032315-021353
10.1200/JCO.2003.08.972
10.1200/JCO.2003.08.156
10.1177/001316446002000104
10.1097/PRS.0b013e3181f44abc
10.1371/journal.pone.0131521
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/jamia/ocac018
DatabaseName Oxford Open Access Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage 881
ExternalDocumentID 10_1093_jamia_ocac018
35190834
10.1093/jamia/ocac018
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: 1DP1 OD029758
– fundername: NINDS NIH HHS
  grantid: K23 NS121520
– fundername: NINDS NIH HHS
  grantid: DP1 NS122038
– fundername: ;
– fundername: ;
  grantid: 1DP1 OD029758
– fundername: ;
  grantid: K23NS121520
– fundername: ;
  grantid: N00014-19-1-2620
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
3V.
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABEUO
ABIXL
ABJNI
ABNHQ
ABOCM
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABUWG
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACUFI
ACUTJ
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADJQC
ADMUD
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFKRA
AFOFC
AFXEN
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0N
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NQ-
NVLIB
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
TOX
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ABEJV
CITATION
7X8
5PM
ID FETCH-LOGICAL-c420t-26300e1e285b8b1c532877e5bf725e0f77196259dd9e232676f4b4171685b7093
IEDL.DBID RPM
ISSN 1527-974X
1067-5027
IngestDate Tue Sep 17 21:27:07 EDT 2024
Fri Oct 25 05:38:32 EDT 2024
Thu Nov 21 21:48:54 EST 2024
Wed Oct 16 00:38:20 EDT 2024
Wed Aug 28 03:19:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords epilepsy
electronic medical record
question-answering
natural language processing
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-26300e1e285b8b1c532877e5bf725e0f77196259dd9e232676f4b4171685b7093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Colin A. Ellis and Dan Roth contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006692/
PMID 35190834
PQID 2631864304
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006692
proquest_miscellaneous_2631864304
crossref_primary_10_1093_jamia_ocac018
pubmed_primary_35190834
oup_primary_10_1093_jamia_ocac018
PublicationCentury 2000
PublicationDate 2022-04-13
PublicationDateYYYYMMDD 2022-04-13
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cowie (2022041311585690800_ocac018-B3) 2017; 106
Helwe (2022041311585690800_ocac018-B27) 2021
Song (2022041311585690800_ocac018-B7) 2010; 126
Yu (2022041311585690800_ocac018-B24) 2020
Vaswani (2022041311585690800_ocac018-B11)
Klie (2022041311585690800_ocac018-B13) 2018
Wright (2022041311585690800_ocac018-B5) 2003; 21
Devlin (2022041311585690800_ocac018-B9) 2019
Toledano (2022041311585690800_ocac018-B8) 2015; 10
Cohen (2022041311585690800_ocac018-B14) 1960; 20
Romanov (2022041311585690800_ocac018-B28) 2018
McHugh (2022041311585690800_ocac018-B15) 2012; 22
Chalkidis (2022041311585690800_ocac018-B10) 2020
Soni (2022041311585690800_ocac018-B18) 2020
Wolf (2022041311585690800_ocac018-B21) 2020
Rajpurkar (2022041311585690800_ocac018-B20) 2018
Liu (2022041311585690800_ocac018-B16)
Lee (2022041311585690800_ocac018-B4) 2020; 5
Sulem (2022041311585690800_ocac018-B19) 2021
Fonferko-Shadrach (2022041311585690800_ocac018-B30) 2019; 9
Casey (2022041311585690800_ocac018-B2) 2016; 37
Emanuel (2022041311585690800_ocac018-B6) 2003; 21
Zhou (2022041311585690800_ocac018-B22) 2019
Alsentzer (2022041311585690800_ocac018-B12) 2019
Han (2022041311585690800_ocac018-B17) 2019
Vashishtha (2022041311585690800_ocac018-B23) 2020
Liu (2022041311585690800_ocac018-B25) 2020
Liu (2022041311585690800_ocac018-B26) 2021; 35
Yang (2022041311585690800_ocac018-B29) 2020; 27
Beltagy (2022041311585690800_ocac018-B31) 2020
Ehrenstein (2022041311585690800_ocac018-B1) 2019
References_xml – year: 2019
  ident: 2022041311585690800_ocac018-B1
  contributor:
    fullname: Ehrenstein
– start-page: 3622
  year: 2020
  ident: 2022041311585690800_ocac018-B25
  contributor:
    fullname: Liu
– start-page: 3363
  year: 2019
  ident: 2022041311585690800_ocac018-B22
  contributor:
    fullname: Zhou
– start-page: 1586
  year: 2018
  ident: 2022041311585690800_ocac018-B28
  contributor:
    fullname: Romanov
– start-page: 72
  year: 2019
  ident: 2022041311585690800_ocac018-B12
  contributor:
    fullname: Alsentzer
– start-page: 5532
  year: 2020
  ident: 2022041311585690800_ocac018-B18
  contributor:
    fullname: Soni
– volume: 9
  start-page: e023232
  issue: 4
  year: 2019
  ident: 2022041311585690800_ocac018-B30
  article-title: Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2018-023232
  contributor:
    fullname: Fonferko-Shadrach
– start-page: 6000
  ident: 2022041311585690800_ocac018-B11
  contributor:
    fullname: Vaswani
– start-page: 38
  year: 2020
  ident: 2022041311585690800_ocac018-B21
  contributor:
    fullname: Wolf
– volume: 27
  start-page: 1935
  issue: 12
  year: 2020
  ident: 2022041311585690800_ocac018-B29
  article-title: Clinical concept extraction using transformers
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa189
  contributor:
    fullname: Yang
– volume: 106
  start-page: 1
  issue: 1
  year: 2017
  ident: 2022041311585690800_ocac018-B3
  article-title: Electronic health records to facilitate clinical research
  publication-title: Clin Res Cardiol
  doi: 10.1007/s00392-016-1025-6
  contributor:
    fullname: Cowie
– volume: 35
  start-page: 13388
  year: 2021
  ident: 2022041311585690800_ocac018-B26
  article-title: Natural language inference in context - investigating contextual reasoning over long texts
  publication-title: Proc AAAI Conf Artif Intell
  contributor:
    fullname: Liu
– start-page: 4543
  year: 2021
  ident: 2022041311585690800_ocac018-B19
  contributor:
    fullname: Sulem
– volume: 22
  start-page: 276
  year: 2012
  ident: 2022041311585690800_ocac018-B15
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem Med
  doi: 10.11613/BM.2012.031
  contributor:
    fullname: McHugh
– start-page: 4238
  year: 2019
  ident: 2022041311585690800_ocac018-B17
  contributor:
    fullname: Han
– start-page: 4171
  year: 2019
  ident: 2022041311585690800_ocac018-B9
  contributor:
    fullname: Devlin
– start-page: 2898
  year: 2020
  ident: 2022041311585690800_ocac018-B10
  contributor:
    fullname: Chalkidis
– start-page: 5
  year: 2018
  ident: 2022041311585690800_ocac018-B13
  contributor:
    fullname: Klie
– ident: 2022041311585690800_ocac018-B16
  contributor:
    fullname: Liu
– year: 2020
  ident: 2022041311585690800_ocac018-B24
  contributor:
    fullname: Yu
– start-page: 4070
  year: 2020
  ident: 2022041311585690800_ocac018-B23
  contributor:
    fullname: Vashishtha
– start-page: 784
  year: 2018
  ident: 2022041311585690800_ocac018-B20
  contributor:
    fullname: Rajpurkar
– year: 2021
  ident: 2022041311585690800_ocac018-B27
  contributor:
    fullname: Helwe
– volume: 37
  start-page: 61
  year: 2016
  ident: 2022041311585690800_ocac018-B2
  article-title: Using electronic health records for population health research: a review of methods and applications
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev-publhealth-032315-021353
  contributor:
    fullname: Casey
– volume: 21
  start-page: 4081
  issue: 22
  year: 2003
  ident: 2022041311585690800_ocac018-B5
  article-title: Researching the cost of research
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2003.08.972
  contributor:
    fullname: Wright
– volume: 21
  start-page: 4145
  issue: 22
  year: 2003
  ident: 2022041311585690800_ocac018-B6
  article-title: The costs of conducting clinical research
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2003.08.156
  contributor:
    fullname: Emanuel
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 2022041311585690800_ocac018-B14
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ Psychol Meas
  doi: 10.1177/001316446002000104
  contributor:
    fullname: Cohen
– volume: 5
  start-page: 1123
  issue: 1
  year: 2020
  ident: 2022041311585690800_ocac018-B4
  article-title: Unlocking the potential of electronic health records for health research
  publication-title: Int J Popul Data Sci
  contributor:
    fullname: Lee
– volume: 126
  start-page: 2234
  issue: 6
  year: 2010
  ident: 2022041311585690800_ocac018-B7
  article-title: Observational studies: cohort and case-control studies
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e3181f44abc
  contributor:
    fullname: Song
– volume: 10
  start-page: e0131521
  issue: 7
  year: 2015
  ident: 2022041311585690800_ocac018-B8
  article-title: How to establish and follow up a large prospective cohort study in the 21st century - lessons from UK COSMOS
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0131521
  contributor:
    fullname: Toledano
– year: 2020
  ident: 2022041311585690800_ocac018-B31
  contributor:
    fullname: Beltagy
SSID ssj0016235
Score 2.5350697
Snippet Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to...
Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically...
OBJECTIVESeizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 873
SubjectTerms Electronic Health Records
Epilepsy
Humans
Natural Language Processing
Research and Applications
Retrospective Studies
Seizures
Title Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing
URI https://www.ncbi.nlm.nih.gov/pubmed/35190834
https://search.proquest.com/docview/2631864304
https://pubmed.ncbi.nlm.nih.gov/PMC9006692
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64CeKLeHdeRgTxrW7t2rX1bc6NvUwEdeytJGmiA9eVrgXnr_ckbcfqi-Bzk15ykpzv6znnC8CNFSIJ6FJpMFxIhs25MDzq-4bwKGeMUpPpswFHL-7T1HscKJkcp6yF0Un7nM3uos_5XTT70LmV8Zy3yjyx1vO47ytH6VutGtQQG5YUvQgdoD93dIgTdwAHSVchrInMXUkNzWgLfQRvm-qgPnU4HUIQu-KTKnVuG3Dzd9bkhhsa7sNegR9JL3_PA9gS0SHsjIsI-REkg69UFz5F72QpZt9ZIohM8nzpFVHFJETEuBPEyxXJqyJJtEC4eU8omevESkGSPLGelHrjJF0QLQCKDy7_b5I4rzDAdsfwNhy89kdGca6CwW2rnRqWktkSprA8h3nM5E4HaZMrHCZdyxFt6bq4LJEWhaEvEHB13a60ma10dbCDiwN5AvVoEYkzID6TjHOljC4lUh9k5iHiG-5QilBEeqwBt-XIBnEunxHkYe9OoK0RFNZowDWO-59tSqsEuAhUZINGYpEtA_wi00Ns1bYbcJpbaX2r0sgNcCv2WzdQAtvVKzjvtNB2Mc_O_93zAnYtVS6htCE7l1BPk0xcQW0ZZk3Y7j1MJ5Omnrw_OBH3EQ
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90gvri98f8jCC-dWu7dm19k7kxcRuCE3wrSZrowHWl28D513tJ27H5Iuy5SUv4Jbn79e5-B3BrR0gC6lQaDA-S4XAuDJ8GgSF8yhmj1GK6N2D71eu9-49NJZPjFrUwOmmfs0El_hpW4sGnzq1Mhrxa5IlVX7qNQBnKwK6uwwaeV9MsSHoePECL7uogJ94BLtKuXFoTubsSGxrQKloJblqqVZ9qT4dOiLNklZYq3RYczr95kwuGqLW74hL2YCf3PMlD9ngf1kR8AJvdPLZ-CGnze6JLpuIPMhaDn2kqiEyzTOsZUWUoRCR4hyTjGcnqKUk8Qkf1nlAy1CmZgqRZSj4plMrJZES0dCh-uPgzSpKsNgHHHcFbq9lvtI28I4PBHducGLYS6BKWsH2X-czibg0JlydcJj3bFab0PDzQSKiiKBDoqtW9unSYoxR5cIKHABxDKR7F4hRIwCTjXGmqS4mkCTl9hJ4RdylFJ0b6rAx3BSJhkglvhFnAvBZqFMMcxTLcIF7_jinQDPH4qJgIjcVoOg5xRZaPXpnplOEkQ3f-qmJzlMFbwn0-QElzLz9BuLVEdw7v2cozr2Gr3e92ws5T7_kctm1VdKEVJi-gNEmn4hLWx9H0Sm_8X53XCv0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnjx_YjPFcRbzKNJk3iT2lLxgaCCt7C72dWCTUPSgvXXO7tJSutF0HNmE5ZvZ2cmM_MNwJmbYBDQotJkqEimx7kwQxpFpggpZ4xSh-nZgL2n4OE1vO4ompzpqC9dtM9Z_yL9GFyk_XddW5kNuFXXiVmP9-1IGcrItbJEWouwhDpru3WgXiUQ0Kr7OtGJ94CPoVdFr4nxuyIc6lMLLQW3HTWuT42oQ0fEm7NMc91uM07nz9rJGWPUXfvHNtZhtfJAyVUpsgELIt2E5fsqx74FeedzpFun0jdSiP7XOBdE5mXF9YSodhQiMrxLsmJCyr5Kkg7RYb0klAx0aaYgeVmaT2rGcjIaEk0hih-u_5CSrOxRQLlteOl2nts9s5rMYHLPtUemq4i6hCPc0Gchc7jfxMArED6TgesLWwYBKjYGVkkSCXTZWkFLesxTzDy4IEAQdqCRDlOxByRiknGuuNWlxOAJY_sEPSTuU4rOjAyZAec1KnFWEnDEZeK8GWsk4wpJA04Rs19lakRjVCOVG6GpGI6LGHfkhOid2Z4BuyXC01fVB8SAYA77qYCi6J5_gpBrqu4K4v0_rzyB5cfrbnx383B7ACuu6r1QRJPNQ2iM8rE4gsUiGR_rs_8N7YANfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+seizure+frequency+from+epilepsy+clinic+notes%3A+a+machine+reading+approach+to+natural+language+processing&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Xie%2C+Kevin&rft.au=Gallagher%2C+Ryan+S&rft.au=Conrad%2C+Erin+C&rft.au=Garrick%2C+Chadric+O&rft.date=2022-04-13&rft.pub=Oxford+University+Press&rft.eissn=1527-974X&rft.volume=29&rft.issue=5&rft.spage=873&rft.epage=881&rft_id=info:doi/10.1093%2Fjamia%2Focac018&rft.externalDocID=10.1093%2Fjamia%2Focac018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon