Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing
Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-...
Saved in:
Published in: | Journal of the American Medical Informatics Association : JAMIA Vol. 29; no. 5; pp. 873 - 881 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
13-04-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract
Objective
Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research.
Materials and Methods
We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning.
Results
The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes.
Discussion and Conclusion
Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions. |
---|---|
AbstractList | Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research.
We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning.
The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes.
Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions. OBJECTIVESeizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. MATERIALS AND METHODSWe developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. RESULTSThe finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. DISCUSSION AND CONCLUSIONOur novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions. Abstract Objective Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. Materials and Methods We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. Results The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. Discussion and Conclusion Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions. |
Author | Ellis, Colin A Bernabei, John M Wei, Danmeng Kornspun, Alana Baldassano, Steven N Litt, Brian Pattnaik, Akash R Jennings, Tara Muthukrishnan, Ramya Panchal, Jal M Gallagher, Ryan S Greenblatt, Adam S Garrick, Chadric O Galer, Peter D Conrad, Erin C Ghosn, Nina J Kim, Joongwon Roth, Dan Kulick-Soper, Catherine V Weitzman, Micah Xie, Kevin Scheid, Brittany H |
Author_xml | – sequence: 1 givenname: Kevin surname: Xie fullname: Xie, Kevin – sequence: 2 givenname: Ryan S surname: Gallagher fullname: Gallagher, Ryan S – sequence: 3 givenname: Erin C surname: Conrad fullname: Conrad, Erin C – sequence: 4 givenname: Chadric O surname: Garrick fullname: Garrick, Chadric O – sequence: 5 givenname: Steven N surname: Baldassano fullname: Baldassano, Steven N – sequence: 6 givenname: John M surname: Bernabei fullname: Bernabei, John M – sequence: 7 givenname: Peter D surname: Galer fullname: Galer, Peter D – sequence: 8 givenname: Nina J surname: Ghosn fullname: Ghosn, Nina J – sequence: 9 givenname: Adam S surname: Greenblatt fullname: Greenblatt, Adam S – sequence: 10 givenname: Tara surname: Jennings fullname: Jennings, Tara – sequence: 11 givenname: Alana surname: Kornspun fullname: Kornspun, Alana – sequence: 12 givenname: Catherine V surname: Kulick-Soper fullname: Kulick-Soper, Catherine V – sequence: 13 givenname: Jal M surname: Panchal fullname: Panchal, Jal M – sequence: 14 givenname: Akash R surname: Pattnaik fullname: Pattnaik, Akash R – sequence: 15 givenname: Brittany H surname: Scheid fullname: Scheid, Brittany H – sequence: 16 givenname: Danmeng surname: Wei fullname: Wei, Danmeng – sequence: 17 givenname: Micah surname: Weitzman fullname: Weitzman, Micah – sequence: 18 givenname: Ramya surname: Muthukrishnan fullname: Muthukrishnan, Ramya – sequence: 19 givenname: Joongwon surname: Kim fullname: Kim, Joongwon – sequence: 20 givenname: Brian surname: Litt fullname: Litt, Brian – sequence: 21 givenname: Colin A surname: Ellis fullname: Ellis, Colin A email: colin.ellis2@pennmedicine.upenn.edu – sequence: 22 givenname: Dan surname: Roth fullname: Roth, Dan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35190834$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtPwzAQxi1UxHtkRR5ZAraT2AkDEqp4SZVYQGKzHPfSGiV2sBNE-etxaYEyMfnk-913j28fjayzgNAxJWeUlOn5i2qNOndaaUKLLbRHcyaSUmTPo414F-2H8EII5SzNd9BumtOSFGm2h_z1e--V7o2d4QDmY_CAaw-vA1i9iJFrMXSmgS4ssG6MNRpb10O4wAq3Ss-NBexBTZf1quu8i3-4d9iqfvCqwY2ys0HNAMeUhhAid4i2a9UEOFq_B-jp5vpxfJdMHm7vx1eTRGeM9AnjKSFAgRV5VVRU5ykrhIC8qgXLgdRC0JKzvJxOS2Ap44LXWZVRQXksEPE0B-hypdsNVQtTDTZu2sjOm1b5hXTKyL8Za-Zy5t5kSQjnJYsCp2sB7-JBQi9bEzQ0cSdwQ5BxQlrwLCVZRJMVqr0LwUP904YSufRJfvkk1z5F_mRzth_625jf3m7o_tH6BLJsomY |
CitedBy_id | crossref_primary_10_1016_j_yebeh_2023_109572 crossref_primary_10_1111_epi_17558 crossref_primary_10_1111_epi_17833 crossref_primary_10_1007_s11910_023_01318_7 crossref_primary_10_1212_WNL_0000000000207967 crossref_primary_10_1038_s41598_023_34294_6 crossref_primary_10_1111_epi_17474 crossref_primary_10_1186_s12911_024_02557_5 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1111_epi_17633 crossref_primary_10_2196_51822 crossref_primary_10_1016_j_compbiomed_2022_106415 crossref_primary_10_1093_jamiaopen_ooad070 crossref_primary_10_1016_j_ebr_2024_100692 crossref_primary_10_1111_epi_17570 crossref_primary_10_1111_epi_17907 crossref_primary_10_1016_j_pediatrneurol_2023_01_004 crossref_primary_10_1007_s41060_023_00433_5 crossref_primary_10_1093_jamia_ocae047 crossref_primary_10_1212_WNL_0000000000207853 crossref_primary_10_1016_j_seizure_2022_07_010 crossref_primary_10_1093_jamia_ocac216 |
Cites_doi | 10.1136/bmjopen-2018-023232 10.1093/jamia/ocaa189 10.1007/s00392-016-1025-6 10.11613/BM.2012.031 10.1146/annurev-publhealth-032315-021353 10.1200/JCO.2003.08.972 10.1200/JCO.2003.08.156 10.1177/001316446002000104 10.1097/PRS.0b013e3181f44abc 10.1371/journal.pone.0131521 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
DBID | TOX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/jamia/ocac018 |
DatabaseName | Oxford Open Access Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-974X |
EndPage | 881 |
ExternalDocumentID | 10_1093_jamia_ocac018 35190834 10.1093/jamia/ocac018 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: 1DP1 OD029758 – fundername: NINDS NIH HHS grantid: K23 NS121520 – fundername: NINDS NIH HHS grantid: DP1 NS122038 – fundername: ; – fundername: ; grantid: 1DP1 OD029758 – fundername: ; grantid: K23NS121520 – fundername: ; grantid: N00014-19-1-2620 |
GroupedDBID | --- --K .DC .GJ 0R~ 18M 1B1 1TH 29L 2WC 3V. 4.4 48X 53G 5GY 5RE 5WD 6PF 7RV 7X7 7~T 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AABZA AACZT AAEDT AAJQQ AALRI AAMVS AAOGV AAPGJ AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT AAWTL AAXUO ABEUO ABIXL ABJNI ABNHQ ABOCM ABPTD ABQLI ABQNK ABSAR ABSMQ ABUWG ABWST ABXVV ACFRR ACGFO ACGFS ACGOD ACHQT ACUFI ACUTJ ACYHN ACZBC ADBBV ADGZP ADHKW ADHZD ADIPN ADJOM ADJQC ADMUD ADQBN ADRIX ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFKRA AFOFC AFXEN AFYAG AGINJ AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH AQDSO AQKUS AQUVI ARAPS ATGXG AVNTJ AVWKF AXUDD AYCSE AZQEC BAWUL BAYMD BCRHZ BENPR BEYMZ BGLVJ BHONS BKEYQ BPHCQ BTRTY BVRKM BVXVI BZKNY C1A C45 CCPQU CDBKE CS3 DAKXR DIK DILTD DU5 DWQXO E3Z EBD EBS EIHJH EJD EMOBN ENERS EO8 EX3 F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK FYUFA G-Q GAUVT GJXCC GNUQQ GX1 H13 HAR HCIFZ HMCUK IH2 IHE J21 K6V K7- KBUDW KOP KSI KSN LSO M0N M0T M1P M2P M2Q M41 MBLQV MHKGH NAPCQ NOMLY NOYVH NQ- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P62 PAFKI PCD PEELM PQQKQ PROAC PSQYO Q5Y R53 RIG ROL ROX ROZ RPM RPZ RUSNO RWL RXO S0X SSZ SV3 TAE TEORI TJX TMA TOX UKHRP WOQ WOW YAYTL YHZ YKOAZ YXANX ZGI ~S- CGR CUY CVF ECM EIF NPM AAYXX ABEJV CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c420t-26300e1e285b8b1c532877e5bf725e0f77196259dd9e232676f4b4171685b7093 |
IEDL.DBID | RPM |
ISSN | 1527-974X 1067-5027 |
IngestDate | Tue Sep 17 21:27:07 EDT 2024 Fri Oct 25 05:38:32 EDT 2024 Thu Nov 21 21:48:54 EST 2024 Wed Oct 16 00:38:20 EDT 2024 Wed Aug 28 03:19:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | epilepsy electronic medical record question-answering natural language processing |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-26300e1e285b8b1c532877e5bf725e0f77196259dd9e232676f4b4171685b7093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Colin A. Ellis and Dan Roth contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006692/ |
PMID | 35190834 |
PQID | 2631864304 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006692 proquest_miscellaneous_2631864304 crossref_primary_10_1093_jamia_ocac018 pubmed_primary_35190834 oup_primary_10_1093_jamia_ocac018 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-13 |
PublicationDateYYYYMMDD | 2022-04-13 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
PublicationTitleAlternate | J Am Med Inform Assoc |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cowie (2022041311585690800_ocac018-B3) 2017; 106 Helwe (2022041311585690800_ocac018-B27) 2021 Song (2022041311585690800_ocac018-B7) 2010; 126 Yu (2022041311585690800_ocac018-B24) 2020 Vaswani (2022041311585690800_ocac018-B11) Klie (2022041311585690800_ocac018-B13) 2018 Wright (2022041311585690800_ocac018-B5) 2003; 21 Devlin (2022041311585690800_ocac018-B9) 2019 Toledano (2022041311585690800_ocac018-B8) 2015; 10 Cohen (2022041311585690800_ocac018-B14) 1960; 20 Romanov (2022041311585690800_ocac018-B28) 2018 McHugh (2022041311585690800_ocac018-B15) 2012; 22 Chalkidis (2022041311585690800_ocac018-B10) 2020 Soni (2022041311585690800_ocac018-B18) 2020 Wolf (2022041311585690800_ocac018-B21) 2020 Rajpurkar (2022041311585690800_ocac018-B20) 2018 Liu (2022041311585690800_ocac018-B16) Lee (2022041311585690800_ocac018-B4) 2020; 5 Sulem (2022041311585690800_ocac018-B19) 2021 Fonferko-Shadrach (2022041311585690800_ocac018-B30) 2019; 9 Casey (2022041311585690800_ocac018-B2) 2016; 37 Emanuel (2022041311585690800_ocac018-B6) 2003; 21 Zhou (2022041311585690800_ocac018-B22) 2019 Alsentzer (2022041311585690800_ocac018-B12) 2019 Han (2022041311585690800_ocac018-B17) 2019 Vashishtha (2022041311585690800_ocac018-B23) 2020 Liu (2022041311585690800_ocac018-B25) 2020 Liu (2022041311585690800_ocac018-B26) 2021; 35 Yang (2022041311585690800_ocac018-B29) 2020; 27 Beltagy (2022041311585690800_ocac018-B31) 2020 Ehrenstein (2022041311585690800_ocac018-B1) 2019 |
References_xml | – year: 2019 ident: 2022041311585690800_ocac018-B1 contributor: fullname: Ehrenstein – start-page: 3622 year: 2020 ident: 2022041311585690800_ocac018-B25 contributor: fullname: Liu – start-page: 3363 year: 2019 ident: 2022041311585690800_ocac018-B22 contributor: fullname: Zhou – start-page: 1586 year: 2018 ident: 2022041311585690800_ocac018-B28 contributor: fullname: Romanov – start-page: 72 year: 2019 ident: 2022041311585690800_ocac018-B12 contributor: fullname: Alsentzer – start-page: 5532 year: 2020 ident: 2022041311585690800_ocac018-B18 contributor: fullname: Soni – volume: 9 start-page: e023232 issue: 4 year: 2019 ident: 2022041311585690800_ocac018-B30 article-title: Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system publication-title: BMJ Open doi: 10.1136/bmjopen-2018-023232 contributor: fullname: Fonferko-Shadrach – start-page: 6000 ident: 2022041311585690800_ocac018-B11 contributor: fullname: Vaswani – start-page: 38 year: 2020 ident: 2022041311585690800_ocac018-B21 contributor: fullname: Wolf – volume: 27 start-page: 1935 issue: 12 year: 2020 ident: 2022041311585690800_ocac018-B29 article-title: Clinical concept extraction using transformers publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa189 contributor: fullname: Yang – volume: 106 start-page: 1 issue: 1 year: 2017 ident: 2022041311585690800_ocac018-B3 article-title: Electronic health records to facilitate clinical research publication-title: Clin Res Cardiol doi: 10.1007/s00392-016-1025-6 contributor: fullname: Cowie – volume: 35 start-page: 13388 year: 2021 ident: 2022041311585690800_ocac018-B26 article-title: Natural language inference in context - investigating contextual reasoning over long texts publication-title: Proc AAAI Conf Artif Intell contributor: fullname: Liu – start-page: 4543 year: 2021 ident: 2022041311585690800_ocac018-B19 contributor: fullname: Sulem – volume: 22 start-page: 276 year: 2012 ident: 2022041311585690800_ocac018-B15 article-title: Interrater reliability: the kappa statistic publication-title: Biochem Med doi: 10.11613/BM.2012.031 contributor: fullname: McHugh – start-page: 4238 year: 2019 ident: 2022041311585690800_ocac018-B17 contributor: fullname: Han – start-page: 4171 year: 2019 ident: 2022041311585690800_ocac018-B9 contributor: fullname: Devlin – start-page: 2898 year: 2020 ident: 2022041311585690800_ocac018-B10 contributor: fullname: Chalkidis – start-page: 5 year: 2018 ident: 2022041311585690800_ocac018-B13 contributor: fullname: Klie – ident: 2022041311585690800_ocac018-B16 contributor: fullname: Liu – year: 2020 ident: 2022041311585690800_ocac018-B24 contributor: fullname: Yu – start-page: 4070 year: 2020 ident: 2022041311585690800_ocac018-B23 contributor: fullname: Vashishtha – start-page: 784 year: 2018 ident: 2022041311585690800_ocac018-B20 contributor: fullname: Rajpurkar – year: 2021 ident: 2022041311585690800_ocac018-B27 contributor: fullname: Helwe – volume: 37 start-page: 61 year: 2016 ident: 2022041311585690800_ocac018-B2 article-title: Using electronic health records for population health research: a review of methods and applications publication-title: Annu Rev Public Health doi: 10.1146/annurev-publhealth-032315-021353 contributor: fullname: Casey – volume: 21 start-page: 4081 issue: 22 year: 2003 ident: 2022041311585690800_ocac018-B5 article-title: Researching the cost of research publication-title: J Clin Oncol doi: 10.1200/JCO.2003.08.972 contributor: fullname: Wright – volume: 21 start-page: 4145 issue: 22 year: 2003 ident: 2022041311585690800_ocac018-B6 article-title: The costs of conducting clinical research publication-title: J Clin Oncol doi: 10.1200/JCO.2003.08.156 contributor: fullname: Emanuel – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 2022041311585690800_ocac018-B14 article-title: A coefficient of agreement for nominal scales publication-title: Educ Psychol Meas doi: 10.1177/001316446002000104 contributor: fullname: Cohen – volume: 5 start-page: 1123 issue: 1 year: 2020 ident: 2022041311585690800_ocac018-B4 article-title: Unlocking the potential of electronic health records for health research publication-title: Int J Popul Data Sci contributor: fullname: Lee – volume: 126 start-page: 2234 issue: 6 year: 2010 ident: 2022041311585690800_ocac018-B7 article-title: Observational studies: cohort and case-control studies publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e3181f44abc contributor: fullname: Song – volume: 10 start-page: e0131521 issue: 7 year: 2015 ident: 2022041311585690800_ocac018-B8 article-title: How to establish and follow up a large prospective cohort study in the 21st century - lessons from UK COSMOS publication-title: PLoS One doi: 10.1371/journal.pone.0131521 contributor: fullname: Toledano – year: 2020 ident: 2022041311585690800_ocac018-B31 contributor: fullname: Beltagy |
SSID | ssj0016235 |
Score | 2.5350697 |
Snippet | Abstract
Objective
Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to... Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically... OBJECTIVESeizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 873 |
SubjectTerms | Electronic Health Records Epilepsy Humans Natural Language Processing Research and Applications Retrospective Studies Seizures |
Title | Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35190834 https://search.proquest.com/docview/2631864304 https://pubmed.ncbi.nlm.nih.gov/PMC9006692 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64CeKLeHdeRgTxrW7t2rX1bc6NvUwEdeytJGmiA9eVrgXnr_ckbcfqi-Bzk15ykpzv6znnC8CNFSIJ6FJpMFxIhs25MDzq-4bwKGeMUpPpswFHL-7T1HscKJkcp6yF0Un7nM3uos_5XTT70LmV8Zy3yjyx1vO47ytH6VutGtQQG5YUvQgdoD93dIgTdwAHSVchrInMXUkNzWgLfQRvm-qgPnU4HUIQu-KTKnVuG3Dzd9bkhhsa7sNegR9JL3_PA9gS0SHsjIsI-REkg69UFz5F72QpZt9ZIohM8nzpFVHFJETEuBPEyxXJqyJJtEC4eU8omevESkGSPLGelHrjJF0QLQCKDy7_b5I4rzDAdsfwNhy89kdGca6CwW2rnRqWktkSprA8h3nM5E4HaZMrHCZdyxFt6bq4LJEWhaEvEHB13a60ma10dbCDiwN5AvVoEYkzID6TjHOljC4lUh9k5iHiG-5QilBEeqwBt-XIBnEunxHkYe9OoK0RFNZowDWO-59tSqsEuAhUZINGYpEtA_wi00Ns1bYbcJpbaX2r0sgNcCv2WzdQAtvVKzjvtNB2Mc_O_93zAnYtVS6htCE7l1BPk0xcQW0ZZk3Y7j1MJ5Omnrw_OBH3EQ |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90gvri98f8jCC-dWu7dm19k7kxcRuCE3wrSZrowHWl28D513tJ27H5Iuy5SUv4Jbn79e5-B3BrR0gC6lQaDA-S4XAuDJ8GgSF8yhmj1GK6N2D71eu9-49NJZPjFrUwOmmfs0El_hpW4sGnzq1Mhrxa5IlVX7qNQBnKwK6uwwaeV9MsSHoePECL7uogJ94BLtKuXFoTubsSGxrQKloJblqqVZ9qT4dOiLNklZYq3RYczr95kwuGqLW74hL2YCf3PMlD9ngf1kR8AJvdPLZ-CGnze6JLpuIPMhaDn2kqiEyzTOsZUWUoRCR4hyTjGcnqKUk8Qkf1nlAy1CmZgqRZSj4plMrJZES0dCh-uPgzSpKsNgHHHcFbq9lvtI28I4PBHducGLYS6BKWsH2X-czibg0JlydcJj3bFab0PDzQSKiiKBDoqtW9unSYoxR5cIKHABxDKR7F4hRIwCTjXGmqS4mkCTl9hJ4RdylFJ0b6rAx3BSJhkglvhFnAvBZqFMMcxTLcIF7_jinQDPH4qJgIjcVoOg5xRZaPXpnplOEkQ3f-qmJzlMFbwn0-QElzLz9BuLVEdw7v2cozr2Gr3e92ws5T7_kctm1VdKEVJi-gNEmn4hLWx9H0Sm_8X53XCv0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnjx_YjPFcRbzKNJk3iT2lLxgaCCt7C72dWCTUPSgvXXO7tJSutF0HNmE5ZvZ2cmM_MNwJmbYBDQotJkqEimx7kwQxpFpggpZ4xSh-nZgL2n4OE1vO4ompzpqC9dtM9Z_yL9GFyk_XddW5kNuFXXiVmP9-1IGcrItbJEWouwhDpru3WgXiUQ0Kr7OtGJ94CPoVdFr4nxuyIc6lMLLQW3HTWuT42oQ0fEm7NMc91uM07nz9rJGWPUXfvHNtZhtfJAyVUpsgELIt2E5fsqx74FeedzpFun0jdSiP7XOBdE5mXF9YSodhQiMrxLsmJCyr5Kkg7RYb0klAx0aaYgeVmaT2rGcjIaEk0hih-u_5CSrOxRQLlteOl2nts9s5rMYHLPtUemq4i6hCPc0Gchc7jfxMArED6TgesLWwYBKjYGVkkSCXTZWkFLesxTzDy4IEAQdqCRDlOxByRiknGuuNWlxOAJY_sEPSTuU4rOjAyZAec1KnFWEnDEZeK8GWsk4wpJA04Rs19lakRjVCOVG6GpGI6LGHfkhOid2Z4BuyXC01fVB8SAYA77qYCi6J5_gpBrqu4K4v0_rzyB5cfrbnx383B7ACuu6r1QRJPNQ2iM8rE4gsUiGR_rs_8N7YANfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+seizure+frequency+from+epilepsy+clinic+notes%3A+a+machine+reading+approach+to+natural+language+processing&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Xie%2C+Kevin&rft.au=Gallagher%2C+Ryan+S&rft.au=Conrad%2C+Erin+C&rft.au=Garrick%2C+Chadric+O&rft.date=2022-04-13&rft.pub=Oxford+University+Press&rft.eissn=1527-974X&rft.volume=29&rft.issue=5&rft.spage=873&rft.epage=881&rft_id=info:doi/10.1093%2Fjamia%2Focac018&rft.externalDocID=10.1093%2Fjamia%2Focac018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon |