A multiscale physical model of a polymer electrolyte membrane water electrolyzer
In this paper we report a multiscale physical and transient model describing the operation of a polymer electrolyte membrane water electrolyzer single cell. This model includes a detailed description of the elementary electrode kinetics, a description of the behavior of the nanoscale catalyst–electr...
Saved in:
Published in: | Electrochimica acta Vol. 110; no. November 2013; pp. 363 - 374 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-11-2013
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we report a multiscale physical and transient model describing the operation of a polymer electrolyte membrane water electrolyzer single cell. This model includes a detailed description of the elementary electrode kinetics, a description of the behavior of the nanoscale catalyst–electrolyte interface, and a microstructural description of the transport of chemical species and charges at the microscale along the whole membrane electrodes assembly (MEA). We present an impact study of different catalyst materials on the performance of the PEMWEs and a sensitivity study to the operation conditions, both evaluated from numerical simulations and with results discussed in comparison with available experimental data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2013.07.214 |