Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells
A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), trans- mission electron microscopy (TEM) and...
Saved in:
Published in: | Frontiers in Energy Vol. 11; no. 3; pp. 299 - 309 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Beijing
Higher Education Press
01-09-2017
Springer Nature B.V Springer |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), trans- mission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgpd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/ Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improve- ment over most AEMFCs reported in the literature to date. |
---|---|
Bibliography: | alkaline exchange membrane (AEM), fuel cell, Pd-Cu, oxygen reduction, high performance, water 11-6017/TK A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), trans- mission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgpd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/ Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improve- ment over most AEMFCs reported in the literature to date. alkaline exchange membrane (AEM) fuel cell Document received on :2017-03-12 Document accepted on :2017-07-05 high performance water Pd-Cu oxygen reduction USDOE Office of Science (SC) SC0010531 |
ISSN: | 2095-1701 2095-1698 |
DOI: | 10.1007/s11708-017-0495-1 |