A lithium–aluminium heterobimetallic dimetallocene
Homobimetallic dimetallocenes exhibiting two identical metal atoms sandwiched between two η 5 bonded cyclopentadienyl rings is a narrow class of compounds, with representative examples being dizincocene and diberyllocene. Here we report the synthesis and structural characterization of a heterobimeta...
Saved in:
Published in: | Nature chemistry Vol. 16; no. 7; pp. 1093 - 1100 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-07-2024
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Homobimetallic dimetallocenes exhibiting two identical metal atoms sandwiched between two η
5
bonded cyclopentadienyl rings is a narrow class of compounds, with representative examples being dizincocene and diberyllocene. Here we report the synthesis and structural characterization of a heterobimetallic dimetallocene, accessible through heterocoupling of lithium and aluminylene fragments with pentaisopropylcyclopentadienyl ligands. The Al–Li bond features a high ionic character and profits from attractive dispersion interactions between the isopropyl groups of the cyclopentadienyl ligands. A key synthetic step is the isolation of a cyclopentadienylaluminylene monomer, which also enables the structural characterization of this species. In addition to their structural authentication by single-crystal X-ray diffraction analysis, both compounds were characterized by multinuclear NMR spectroscopy in solution and in the solid state. Furthermore, reactivity studies of the lithium–aluminium heterobimetallic dimetallocene with an N-heterocyclic carbene and different heteroallenes were performed and show that the Al–Li bond is easily cleaved.
Dimetallocenes are a narrow class of compounds represented by the homobimetallic examples dizincocene and diberyllocene. Now a heterobimetallic dimetallocene featuring lithium and aluminium centres has been synthesized. The Al–Li bond is shown to cleave upon reaction with N-heterocyclic carbenes and heteroallenes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/s41557-024-01531-y |