Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume‐regulated anion channels

The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently,...

Full description

Saved in:
Bibliographic Details
Published in:Experimental dermatology Vol. 27; no. 12; pp. 1352 - 1360
Main Authors: Trothe, Janina, Ritzmann, Dirk, Lang, Victoria, Scholz, Paul, Pul, Ümit, Kaufmann, Roland, Buerger, Claudia, Ertongur‐Fauth, Torsten
Format: Journal Article
Language:English
Published: Denmark Wiley Subscription Services, Inc 01-12-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐LRRC8A knockout cells by using CRISPR‐Cas9. I− influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes.
AbstractList The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐LRRC8A knockout cells by using CRISPR‐Cas9. I− influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes.
Abstract The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐ LRRC8A knockout cells by using CRISPR‐Cas9. I − influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes.
The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume-regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT- and NHEK-LRRC8A knockout cells by using CRISPR-Cas9. I influx assays using halide-sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein-AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes.
Author Scholz, Paul
Buerger, Claudia
Ertongur‐Fauth, Torsten
Trothe, Janina
Ritzmann, Dirk
Lang, Victoria
Pul, Ümit
Kaufmann, Roland
Author_xml – sequence: 1
  givenname: Janina
  surname: Trothe
  fullname: Trothe, Janina
  organization: BRAIN AG
– sequence: 2
  givenname: Dirk
  surname: Ritzmann
  fullname: Ritzmann, Dirk
  organization: BRAIN AG
– sequence: 3
  givenname: Victoria
  surname: Lang
  fullname: Lang, Victoria
  organization: Clinic of the Goethe‐University
– sequence: 4
  givenname: Paul
  surname: Scholz
  fullname: Scholz, Paul
  organization: BRAIN AG
– sequence: 5
  givenname: Ümit
  surname: Pul
  fullname: Pul, Ümit
  organization: BRAIN AG
– sequence: 6
  givenname: Roland
  surname: Kaufmann
  fullname: Kaufmann, Roland
  organization: Clinic of the Goethe‐University
– sequence: 7
  givenname: Claudia
  surname: Buerger
  fullname: Buerger, Claudia
  email: Claudia.Buerger@kgu.de
  organization: Clinic of the Goethe‐University
– sequence: 8
  givenname: Torsten
  orcidid: 0000-0002-3544-6171
  surname: Ertongur‐Fauth
  fullname: Ertongur‐Fauth, Torsten
  email: tef@brain-biotech.de
  organization: BRAIN AG
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30252954$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1KxDAURoMoOqMufAEJuNFFNWmbplkO4_gDA4IouCtpeqMd22RM2tHZ-Qg-o09idNSFYLgkF3LuIeQbonVjDSC0R8kxDesEXqpjmvBcrKEBzQiJSBazdTQggmRRxgnbQkPvZ4RQnnC2ibYSErNYsHSA3MVybjtraoV958B7HLa5NR6w1fihb6XBj-BkVxurlh14XJuFbRahmV5fj_MRlh4r24YRMN3nTLjtW3h_fXNw3zeygwpLU1uD1YM0Bhq_gza0bDzsfp_b6PZscjO-iKZX55fj0TRSKRUiKuMKdCiiSVKyhDJWap3xPGeqYjlNieA5aJWJqpRAY53GwKiQlRZlyqTKk210uPLOnX3qwXdFW3sFTSMN2N4XMaVxFjxZEtCDP-jM9s6E1wUq4VxwkotAHa0o5az3DnQxd3Ur3bKgpPgMoghBFF9BBHb_29iXLVS_5M_PB-BkBTzXDSz_NxWTu9OV8gMwfZbB
CitedBy_id crossref_primary_10_3389_fphys_2021_805148
crossref_primary_10_3389_fcell_2020_614040
crossref_primary_10_3390_cancers13194831
crossref_primary_10_1021_acsnano_1c08632
crossref_primary_10_3390_cancers14092337
crossref_primary_10_1158_2767_9764_CRC_22_0208
crossref_primary_10_1111_exd_14985
crossref_primary_10_1080_09168451_2020_1730689
crossref_primary_10_1080_19336950_2020_1730535
crossref_primary_10_3390_ijms25052756
crossref_primary_10_1515_hsz_2019_0189
crossref_primary_10_14814_phy2_14303
crossref_primary_10_1016_j_ceca_2023_102715
crossref_primary_10_1016_j_xjidi_2021_100082
crossref_primary_10_3390_ijms24054675
Cites_doi 10.1152/physrev.00037.2007
10.1016/j.ejcb.2008.10.003
10.1111/j.0022-202X.2004.23313.x
10.1111/jdv.13301
10.1113/JP275171
10.1074/jbc.M116.739342
10.1126/science.1252826
10.3389/fphys.2013.00233
10.1016/S0014-5793(04)00332-1
10.15252/embj.201592409
10.1038/s41586-018-0134-y
10.14814/phy2.12940
10.1152/physrev.00029.2001
10.1046/j.1523-1747.2003.12366.x
10.1016/j.cell.2015.12.031
10.1007/s00424-016-1862-1
10.4161/chan.3.5.9568
10.1007/s00424-014-1561-8
10.1515/hsz-2015-0127
10.1016/j.febslet.2004.11.077
10.1111/j.1600-0625.2006.00533.x
10.1038/nrm.2016.29
10.1111/apha.12450
10.1007/s00424-015-1739-8
10.1111/exd.12543
10.1007/s00424-016-1789-6
10.1111/ced.12104
10.1152/ajpcell.2001.281.5.C1734
10.1016/S0014-5793(02)02863-6
10.1111/exd.12473
10.1016/j.cell.2014.03.024
10.1016/0005-2736(92)90251-G
10.1113/jphysiol.2014.278887
10.1016/0925-4439(91)90081-J
10.1085/jgp.200409161
10.1016/S0014-5793(01)02561-3
10.1002/bies.201100173
10.1007/s10895-013-1202-1
10.1038/sj.bjp.0704413
10.1016/S0306-3623(96)00061-4
10.1111/jdv.13707
10.1113/JP275053
10.1242/jcs.196253
10.1023/A:1016832027325
ContentType Journal Article
Copyright 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID NPM
AAYXX
CITATION
7T5
H94
7X8
DOI 10.1111/exd.13789
DatabaseName PubMed
CrossRef
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

CrossRef
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0625
EndPage 1360
ExternalDocumentID 10_1111_exd_13789
30252954
EXD13789
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: FKZ 031B0089A
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7T5
H94
7X8
ID FETCH-LOGICAL-c4199-b2defdef0f03b53155bff67885cd58140978efc69dbae12f42e519adf9b45ac83
IEDL.DBID 33P
ISSN 0906-6705
IngestDate Fri Aug 16 05:52:01 EDT 2024
Thu Oct 10 16:09:57 EDT 2024
Thu Aug 22 14:52:36 EDT 2024
Sat Sep 28 08:35:28 EDT 2024
Sat Aug 24 00:50:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cell volume regulation
LRRC8A
keratinocyte
VRAC
epidermis
Language English
License 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4199-b2defdef0f03b53155bff67885cd58140978efc69dbae12f42e519adf9b45ac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3544-6171
PMID 30252954
PQID 2137797089
PQPubID 2045157
PageCount 9
ParticipantIDs proquest_miscellaneous_2112614063
proquest_journals_2137797089
crossref_primary_10_1111_exd_13789
pubmed_primary_30252954
wiley_primary_10_1111_exd_13789_EXD13789
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Chichester
PublicationTitle Experimental dermatology
PublicationTitleAlternate Exp Dermatol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 123
2009; 89
2009; 88
2015; 34
2013; 4
1991; 1097
2004; 564
2015; 467
2001; 281
2013; 23
2002; 12
2005; 579
2016; 30
2017; 130
2016; 468
2002; 82
2017; 595
2016; 17
2012; 34
2014; 592
2014; 23
2016; 164
2007; 16
2014; 157
2016; 4
2001; 134
2013; 38
1992; 1112
2015; 213
2018; 558
2005; 125
2002; 521
2015; 396
2009; 3
2016; 291
1996; 27
2001; 499
2003; 121
2014; 344
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Lutter D. (e_1_2_8_23_1) 2017; 130
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 23
  start-page: 825
  year: 2014
  publication-title: Exp. Dermatol.
– volume: 558
  start-page: 254
  year: 2018
  publication-title: Nature
– volume: 123
  start-page: 516
  year: 2004
  publication-title: J. Invest. Dermatol.
– volume: 125
  start-page: 197
  year: 2005
  publication-title: J. Gen. Physiol.
– volume: 164
  start-page: 499
  year: 2016
  publication-title: Cell
– volume: 213
  start-page: 868
  year: 2015
  publication-title: Acta Physiol. (Oxf)
– volume: 3
  start-page: 323
  year: 2009
  publication-title: Channels (Austin)
– volume: 291
  start-page: 17040
  year: 2016
  publication-title: J. Biol. Chem.
– volume: 89
  start-page: 193
  issue: 1
  year: 2009
  publication-title: Physiol. Rev.
– volume: 468
  start-page: 1751
  year: 2016
  publication-title: Pflugers Arch.
– volume: 281
  start-page: C1734
  year: 2001
  publication-title: Am. J. Physiol.
– volume: 134
  start-page: 1467
  year: 2001
  publication-title: Br. J. Pharmacol.
– volume: 564
  start-page: 147
  year: 2004
  publication-title: FEBS Lett.
– volume: 468
  start-page: 805
  year: 2016
  publication-title: Pflugers Arch.
– volume: 12
  start-page: 139
  year: 2002
  publication-title: J. Fluoresc.
– volume: 30
  start-page: 1285
  year: 2016
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 1112
  start-page: 39
  issue: 1
  year: 1992
  publication-title: Biochim. Biophys. Acta
– volume: 23
  start-page: 534
  year: 2014
  publication-title: Exp. Dermatol.
– volume: 130
  start-page: 1122
  year: 2017
  publication-title: J. Cell Sci.
– volume: 579
  start-page: 207
  issue: 1
  year: 2005
  publication-title: FEBS Lett.
– volume: 468
  start-page: 335
  year: 2016
  publication-title: Pflugers Arch.
– volume: 396
  start-page: 975
  year: 2015
  publication-title: Biol. Chem.
– volume: 27
  start-page: 1131
  year: 1996
  publication-title: Gen. Pharmacol.
– volume: 82
  start-page: 503
  year: 2002
  publication-title: Physiol. Rev.
– volume: 16
  start-page: 302
  year: 2007
  publication-title: Exp. Dermatol.
– volume: 467
  start-page: 1215
  year: 2015
  publication-title: Pflugers Arch.
– volume: 595
  start-page: 6939
  year: 2017
  publication-title: J. Physiol.
– volume: 595
  start-page: 6807
  year: 2017
  publication-title: J. Physiol.
– volume: 30
  start-page: 223
  year: 2016
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 157
  start-page: 447
  year: 2014
  publication-title: Cell
– volume: 121
  start-page: 354
  year: 2003
  publication-title: J. Invest. Dermatol.
– volume: 38
  start-page: 231
  year: 2013
  publication-title: Clin. Exp. Dermatol.
– volume: 88
  start-page: 131
  year: 2009
  publication-title: Eur. J. Cell Biol.
– volume: 499
  start-page: 220
  year: 2001
  publication-title: FEBS Lett.
– volume: 17
  start-page: 293
  year: 2016
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 592
  start-page: 4855
  year: 2014
  publication-title: J. Physiol.
– volume: 34
  start-page: 2993
  year: 2015
  publication-title: EMBO J.
– volume: 4
  start-page: 19
  year: 2016
  publication-title: Physiol. Rep.
– volume: 4
  start-page: 233
  year: 2013
  publication-title: Front. Physiol.
– volume: 1097
  start-page: 275
  year: 1991
  publication-title: Biochim. Biophys. Acta
– volume: 521
  start-page: 152
  year: 2002
  publication-title: FEBS Lett.
– volume: 344
  start-page: 634
  year: 2014
  publication-title: Science
– volume: 34
  start-page: 551
  year: 2012
  publication-title: BioEssays
– volume: 23
  start-page: 393
  year: 2013
  publication-title: J. Fluoresc.
– ident: e_1_2_8_8_1
  doi: 10.1152/physrev.00037.2007
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ejcb.2008.10.003
– ident: e_1_2_8_3_1
  doi: 10.1111/j.0022-202X.2004.23313.x
– ident: e_1_2_8_4_1
  doi: 10.1111/jdv.13301
– ident: e_1_2_8_40_1
  doi: 10.1113/JP275171
– ident: e_1_2_8_26_1
  doi: 10.1074/jbc.M116.739342
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1252826
– ident: e_1_2_8_14_1
  doi: 10.3389/fphys.2013.00233
– ident: e_1_2_8_20_1
  doi: 10.1016/S0014-5793(04)00332-1
– ident: e_1_2_8_24_1
  doi: 10.15252/embj.201592409
– ident: e_1_2_8_22_1
  doi: 10.1038/s41586-018-0134-y
– ident: e_1_2_8_38_1
  doi: 10.14814/phy2.12940
– ident: e_1_2_8_35_1
  doi: 10.1152/physrev.00029.2001
– ident: e_1_2_8_41_1
  doi: 10.1046/j.1523-1747.2003.12366.x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2015.12.031
– ident: e_1_2_8_27_1
  doi: 10.1007/s00424-016-1862-1
– ident: e_1_2_8_33_1
  doi: 10.4161/chan.3.5.9568
– ident: e_1_2_8_42_1
  doi: 10.1007/s00424-014-1561-8
– ident: e_1_2_8_16_1
  doi: 10.1515/hsz-2015-0127
– ident: e_1_2_8_6_1
  doi: 10.1016/j.febslet.2004.11.077
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1600-0625.2006.00533.x
– ident: e_1_2_8_9_1
  doi: 10.1038/nrm.2016.29
– ident: e_1_2_8_15_1
  doi: 10.1111/apha.12450
– ident: e_1_2_8_28_1
  doi: 10.1007/s00424-015-1739-8
– ident: e_1_2_8_30_1
  doi: 10.1111/exd.12543
– ident: e_1_2_8_29_1
  doi: 10.1007/s00424-016-1789-6
– ident: e_1_2_8_7_1
  doi: 10.1111/ced.12104
– ident: e_1_2_8_31_1
  doi: 10.1152/ajpcell.2001.281.5.C1734
– ident: e_1_2_8_44_1
  doi: 10.1016/S0014-5793(02)02863-6
– ident: e_1_2_8_2_1
  doi: 10.1111/exd.12473
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cell.2014.03.024
– ident: e_1_2_8_11_1
  doi: 10.1016/0005-2736(92)90251-G
– ident: e_1_2_8_39_1
  doi: 10.1113/jphysiol.2014.278887
– ident: e_1_2_8_43_1
  doi: 10.1016/0925-4439(91)90081-J
– ident: e_1_2_8_12_1
  doi: 10.1085/jgp.200409161
– ident: e_1_2_8_32_1
  doi: 10.1016/S0014-5793(01)02561-3
– ident: e_1_2_8_19_1
  doi: 10.1002/bies.201100173
– ident: e_1_2_8_37_1
  doi: 10.1007/s10895-013-1202-1
– ident: e_1_2_8_34_1
  doi: 10.1038/sj.bjp.0704413
– ident: e_1_2_8_45_1
  doi: 10.1016/S0306-3623(96)00061-4
– ident: e_1_2_8_5_1
  doi: 10.1111/jdv.13707
– ident: e_1_2_8_25_1
  doi: 10.1113/JP275053
– volume: 130
  start-page: 1122
  year: 2017
  ident: e_1_2_8_23_1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.196253
  contributor:
    fullname: Lutter D.
– ident: e_1_2_8_36_1
  doi: 10.1023/A:1016832027325
SSID ssj0017375
Score 2.3671246
Snippet The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is...
Abstract The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1352
SubjectTerms Anion channels
Calcein
Cell size
cell volume regulation
Cellular stress response
CRISPR
Epidermis
keratinocyte
Keratinocytes
LRRC8A
Osmotic pressure
Ribonucleic acid
RNA
Stress response
VRAC
Title Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume‐regulated anion channels
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexd.13789
https://www.ncbi.nlm.nih.gov/pubmed/30252954
https://www.proquest.com/docview/2137797089
https://search.proquest.com/docview/2112614063
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66B_Hi-1FfRPHgpdI2faR4El3Zg4r4AG8laVIQoV3aXXFv_gR_o7_EmaRbFBEEoYdAE5JmMpNvOpkvhBwKHXE_VMyVysvdEMmGJFe-KzTYSxEnKpaY7zy4S64f-XkfaXJOprkwlh-i--GGmmHsNSq4kM0XJdev6thnCcfkPfASTPoGu-kiCAkzJLteCh5znHhRyyqEp3i6lt_3oh8A8zteNRvOxeK_hrpEFlqcSU_twlgmM7pcIXNXbSR9ldSDybAaIS8utekitLanZTWtCmpu7qPPSLj8VFb5BPAofSrBkr1A4fL29oyfUtFQPI9elbBtYRtr5z7e3mt7vb1WVJQgdYq5xfAFzRp5uOjfnw3c9v4FNw_9NHVloHQBj1d4TIKuRpEsCtjceJSryDJlcV3kcaqk0H5QhIEGPChUkcowEjln66RXwig2CZVodFkiNUZiearSSPpKx7ECNKfBZXLIwVQS2dDSbGRT9wRmLzOz55CdqYyyVtOaLDCUiYmHr_e716AjGPgQpa7GWMcHRxGgC3PIhpVt1wsD0IexToccGRH-3n3Wfzw3ha2_V90m84CwuD3_skN6o3qsd8lso8Z7Zrl-Ak-67nU
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB88C60v2mqrp7bG4oMvK7uX_ZOAL6InVzylWAv3tiSbLEhhV-480Tc_gp_RT-JMsrcoIhSEfQgkIdlMZvKbTPILwI6yiYhiwwNtwiKIiWxICxMFyqK9VGlmUk33nQd_srOROOoTTc7-7C6M54doN9xIM5y9JgWnDelnWm5vzV7EMyE78CFOY0kPN3D-u40hZNzR7IYSfeY0C5OGV4jO8bRVX65GryDmS8Tqlpzjpfd19jMsNlCTHfi58QXmbLUMH0-bYPoKjAd3V_U1UeMyf2OEjf2BWcvqkrnH-9g_4ly-rOriDiEpu6zQmN1gYnh-figOmJowOpJeV7hyUR1v6h7vH8b-hXtrmKpQ8IyuF-MvTL7C3-P-xeEgaJ5gCIo4kjLQPWNL_MIy5BrVNUl0WeL6JpLCJJ4sS9iySKXRyka9Mu5ZhITKlFLHiSoE_wbzFfZiDZgmu8szbSkYK6SRiY6MTVODgM6i19SFnzNR5FeeaSOfeSg4erkbvS5szoSUN8o2yXuONTELKXu7zUY1odiHqmw9pTIR-oqIXngXVr1w21Y44j4Kd3Zh18nw7ebz_ujIJdb_v-gWfBpcnA7z4a-zkw1YQMAl_HGYTZi_Hk_td-hMzPSHm7tPRkDylg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC58gHjxseo662Oj7MFLS_ekH2k8iTPDyLoiugvemqSTgCx0DzPOst72J_gb_SVWJT2NsgiC0IdAJySdSlW-6kp9AfgmTSKiWPNA6bAMYiIbUkJHgTRoL2Wa6VRRvvPwJru8Fb0-0eSczHJhPD9E-8ONNMPZa1LwkbYvlNz81ccRz0Q-D4sxwXDK3-BXbQgh445lN8zRZU6zMGlohegYT9v09Wb0H8J8DVjdjjNY_dBY12ClAZrs1K-MdZgz1SdY-tGE0jdgPHwY1fdEjMt8vggb--OyhtWWuav72G9iXL6r6vIBASm7q9CU_cHCxfX1mThlcsLoQHpd4b5Fbbyhe_r3OPb32xvNZIViZ5RcjF8w2YRfg_7Ps2HQXMAQlHGU54HqamPxCW3IFSprkihrcXcTSakTT5UljC3TXCtpoq6NuwYBodQ2V3EiS8G3YKHCUWwDU2R1eaYMhWJFrvNERdqkqUY4Z9Bn6sDhTBLFyPNsFDP_BGevcLPXgd2ZjIpG1SZF13EmZiG9Pmhfo5JQ5ENWpp5SnQg9RcQuvAOfvWzbXjiiPgp2duDIifDt7ov-bc8Vvry_6ldYuuoNiovzy-87sIxoS_izMLuwcD-emj2Yn-jpvlu5z37w8UU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypotonic+stress+response+of+human+keratinocytes+involves+LRRC8A+as+component+of+volume%E2%80%90regulated+anion+channels&rft.jtitle=Experimental+dermatology&rft.au=Trothe%2C+Janina&rft.au=Ritzmann%2C+Dirk&rft.au=Lang%2C+Victoria&rft.au=Scholz%2C+Paul&rft.date=2018-12-01&rft.issn=0906-6705&rft.eissn=1600-0625&rft.volume=27&rft.issue=12&rft.spage=1352&rft.epage=1360&rft_id=info:doi/10.1111%2Fexd.13789&rft.externalDBID=10.1111%252Fexd.13789&rft.externalDocID=EXD13789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-6705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-6705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-6705&client=summon