Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume‐regulated anion channels
The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently,...
Saved in:
Published in: | Experimental dermatology Vol. 27; no. 12; pp. 1352 - 1360 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Denmark
Wiley Subscription Services, Inc
01-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐LRRC8A knockout cells by using CRISPR‐Cas9. I− influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes. |
---|---|
AbstractList | The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐LRRC8A knockout cells by using CRISPR‐Cas9. I− influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes. Abstract The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume‐regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT‐ and NHEK‐ LRRC8A knockout cells by using CRISPR‐Cas9. I − influx assays using halide‐sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein‐AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes. The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume-regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT- and NHEK-LRRC8A knockout cells by using CRISPR-Cas9. I influx assays using halide-sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein-AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes. |
Author | Scholz, Paul Buerger, Claudia Ertongur‐Fauth, Torsten Trothe, Janina Ritzmann, Dirk Lang, Victoria Pul, Ümit Kaufmann, Roland |
Author_xml | – sequence: 1 givenname: Janina surname: Trothe fullname: Trothe, Janina organization: BRAIN AG – sequence: 2 givenname: Dirk surname: Ritzmann fullname: Ritzmann, Dirk organization: BRAIN AG – sequence: 3 givenname: Victoria surname: Lang fullname: Lang, Victoria organization: Clinic of the Goethe‐University – sequence: 4 givenname: Paul surname: Scholz fullname: Scholz, Paul organization: BRAIN AG – sequence: 5 givenname: Ümit surname: Pul fullname: Pul, Ümit organization: BRAIN AG – sequence: 6 givenname: Roland surname: Kaufmann fullname: Kaufmann, Roland organization: Clinic of the Goethe‐University – sequence: 7 givenname: Claudia surname: Buerger fullname: Buerger, Claudia email: Claudia.Buerger@kgu.de organization: Clinic of the Goethe‐University – sequence: 8 givenname: Torsten orcidid: 0000-0002-3544-6171 surname: Ertongur‐Fauth fullname: Ertongur‐Fauth, Torsten email: tef@brain-biotech.de organization: BRAIN AG |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30252954$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1KxDAURoMoOqMufAEJuNFFNWmbplkO4_gDA4IouCtpeqMd22RM2tHZ-Qg-o09idNSFYLgkF3LuIeQbonVjDSC0R8kxDesEXqpjmvBcrKEBzQiJSBazdTQggmRRxgnbQkPvZ4RQnnC2ibYSErNYsHSA3MVybjtraoV958B7HLa5NR6w1fihb6XBj-BkVxurlh14XJuFbRahmV5fj_MRlh4r24YRMN3nTLjtW3h_fXNw3zeygwpLU1uD1YM0Bhq_gza0bDzsfp_b6PZscjO-iKZX55fj0TRSKRUiKuMKdCiiSVKyhDJWap3xPGeqYjlNieA5aJWJqpRAY53GwKiQlRZlyqTKk210uPLOnX3qwXdFW3sFTSMN2N4XMaVxFjxZEtCDP-jM9s6E1wUq4VxwkotAHa0o5az3DnQxd3Ur3bKgpPgMoghBFF9BBHb_29iXLVS_5M_PB-BkBTzXDSz_NxWTu9OV8gMwfZbB |
CitedBy_id | crossref_primary_10_3389_fphys_2021_805148 crossref_primary_10_3389_fcell_2020_614040 crossref_primary_10_3390_cancers13194831 crossref_primary_10_1021_acsnano_1c08632 crossref_primary_10_3390_cancers14092337 crossref_primary_10_1158_2767_9764_CRC_22_0208 crossref_primary_10_1111_exd_14985 crossref_primary_10_1080_09168451_2020_1730689 crossref_primary_10_1080_19336950_2020_1730535 crossref_primary_10_3390_ijms25052756 crossref_primary_10_1515_hsz_2019_0189 crossref_primary_10_14814_phy2_14303 crossref_primary_10_1016_j_ceca_2023_102715 crossref_primary_10_1016_j_xjidi_2021_100082 crossref_primary_10_3390_ijms24054675 |
Cites_doi | 10.1152/physrev.00037.2007 10.1016/j.ejcb.2008.10.003 10.1111/j.0022-202X.2004.23313.x 10.1111/jdv.13301 10.1113/JP275171 10.1074/jbc.M116.739342 10.1126/science.1252826 10.3389/fphys.2013.00233 10.1016/S0014-5793(04)00332-1 10.15252/embj.201592409 10.1038/s41586-018-0134-y 10.14814/phy2.12940 10.1152/physrev.00029.2001 10.1046/j.1523-1747.2003.12366.x 10.1016/j.cell.2015.12.031 10.1007/s00424-016-1862-1 10.4161/chan.3.5.9568 10.1007/s00424-014-1561-8 10.1515/hsz-2015-0127 10.1016/j.febslet.2004.11.077 10.1111/j.1600-0625.2006.00533.x 10.1038/nrm.2016.29 10.1111/apha.12450 10.1007/s00424-015-1739-8 10.1111/exd.12543 10.1007/s00424-016-1789-6 10.1111/ced.12104 10.1152/ajpcell.2001.281.5.C1734 10.1016/S0014-5793(02)02863-6 10.1111/exd.12473 10.1016/j.cell.2014.03.024 10.1016/0005-2736(92)90251-G 10.1113/jphysiol.2014.278887 10.1016/0925-4439(91)90081-J 10.1085/jgp.200409161 10.1016/S0014-5793(01)02561-3 10.1002/bies.201100173 10.1007/s10895-013-1202-1 10.1038/sj.bjp.0704413 10.1016/S0306-3623(96)00061-4 10.1111/jdv.13707 10.1113/JP275053 10.1242/jcs.196253 10.1023/A:1016832027325 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | NPM AAYXX CITATION 7T5 H94 7X8 |
DOI | 10.1111/exd.13789 |
DatabaseName | PubMed CrossRef Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1600-0625 |
EndPage | 1360 |
ExternalDocumentID | 10_1111_exd_13789 30252954 EXD13789 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: FKZ 031B0089A |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT NPM AAYXX CITATION 7T5 H94 7X8 |
ID | FETCH-LOGICAL-c4199-b2defdef0f03b53155bff67885cd58140978efc69dbae12f42e519adf9b45ac83 |
IEDL.DBID | 33P |
ISSN | 0906-6705 |
IngestDate | Fri Aug 16 05:52:01 EDT 2024 Thu Oct 10 16:09:57 EDT 2024 Thu Aug 22 14:52:36 EDT 2024 Sat Sep 28 08:35:28 EDT 2024 Sat Aug 24 00:50:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cell volume regulation LRRC8A keratinocyte VRAC epidermis |
Language | English |
License | 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4199-b2defdef0f03b53155bff67885cd58140978efc69dbae12f42e519adf9b45ac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3544-6171 |
PMID | 30252954 |
PQID | 2137797089 |
PQPubID | 2045157 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2112614063 proquest_journals_2137797089 crossref_primary_10_1111_exd_13789 pubmed_primary_30252954 wiley_primary_10_1111_exd_13789_EXD13789 |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark – name: Chichester |
PublicationTitle | Experimental dermatology |
PublicationTitleAlternate | Exp Dermatol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 123 2009; 89 2009; 88 2015; 34 2013; 4 1991; 1097 2004; 564 2015; 467 2001; 281 2013; 23 2002; 12 2005; 579 2016; 30 2017; 130 2016; 468 2002; 82 2017; 595 2016; 17 2012; 34 2014; 592 2014; 23 2016; 164 2007; 16 2014; 157 2016; 4 2001; 134 2013; 38 1992; 1112 2015; 213 2018; 558 2005; 125 2002; 521 2015; 396 2009; 3 2016; 291 1996; 27 2001; 499 2003; 121 2014; 344 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Lutter D. (e_1_2_8_23_1) 2017; 130 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 23 start-page: 825 year: 2014 publication-title: Exp. Dermatol. – volume: 558 start-page: 254 year: 2018 publication-title: Nature – volume: 123 start-page: 516 year: 2004 publication-title: J. Invest. Dermatol. – volume: 125 start-page: 197 year: 2005 publication-title: J. Gen. Physiol. – volume: 164 start-page: 499 year: 2016 publication-title: Cell – volume: 213 start-page: 868 year: 2015 publication-title: Acta Physiol. (Oxf) – volume: 3 start-page: 323 year: 2009 publication-title: Channels (Austin) – volume: 291 start-page: 17040 year: 2016 publication-title: J. Biol. Chem. – volume: 89 start-page: 193 issue: 1 year: 2009 publication-title: Physiol. Rev. – volume: 468 start-page: 1751 year: 2016 publication-title: Pflugers Arch. – volume: 281 start-page: C1734 year: 2001 publication-title: Am. J. Physiol. – volume: 134 start-page: 1467 year: 2001 publication-title: Br. J. Pharmacol. – volume: 564 start-page: 147 year: 2004 publication-title: FEBS Lett. – volume: 468 start-page: 805 year: 2016 publication-title: Pflugers Arch. – volume: 12 start-page: 139 year: 2002 publication-title: J. Fluoresc. – volume: 30 start-page: 1285 year: 2016 publication-title: J. Eur. Acad. Dermatol. Venereol. – volume: 1112 start-page: 39 issue: 1 year: 1992 publication-title: Biochim. Biophys. Acta – volume: 23 start-page: 534 year: 2014 publication-title: Exp. Dermatol. – volume: 130 start-page: 1122 year: 2017 publication-title: J. Cell Sci. – volume: 579 start-page: 207 issue: 1 year: 2005 publication-title: FEBS Lett. – volume: 468 start-page: 335 year: 2016 publication-title: Pflugers Arch. – volume: 396 start-page: 975 year: 2015 publication-title: Biol. Chem. – volume: 27 start-page: 1131 year: 1996 publication-title: Gen. Pharmacol. – volume: 82 start-page: 503 year: 2002 publication-title: Physiol. Rev. – volume: 16 start-page: 302 year: 2007 publication-title: Exp. Dermatol. – volume: 467 start-page: 1215 year: 2015 publication-title: Pflugers Arch. – volume: 595 start-page: 6939 year: 2017 publication-title: J. Physiol. – volume: 595 start-page: 6807 year: 2017 publication-title: J. Physiol. – volume: 30 start-page: 223 year: 2016 publication-title: J. Eur. Acad. Dermatol. Venereol. – volume: 157 start-page: 447 year: 2014 publication-title: Cell – volume: 121 start-page: 354 year: 2003 publication-title: J. Invest. Dermatol. – volume: 38 start-page: 231 year: 2013 publication-title: Clin. Exp. Dermatol. – volume: 88 start-page: 131 year: 2009 publication-title: Eur. J. Cell Biol. – volume: 499 start-page: 220 year: 2001 publication-title: FEBS Lett. – volume: 17 start-page: 293 year: 2016 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 592 start-page: 4855 year: 2014 publication-title: J. Physiol. – volume: 34 start-page: 2993 year: 2015 publication-title: EMBO J. – volume: 4 start-page: 19 year: 2016 publication-title: Physiol. Rep. – volume: 4 start-page: 233 year: 2013 publication-title: Front. Physiol. – volume: 1097 start-page: 275 year: 1991 publication-title: Biochim. Biophys. Acta – volume: 521 start-page: 152 year: 2002 publication-title: FEBS Lett. – volume: 344 start-page: 634 year: 2014 publication-title: Science – volume: 34 start-page: 551 year: 2012 publication-title: BioEssays – volume: 23 start-page: 393 year: 2013 publication-title: J. Fluoresc. – ident: e_1_2_8_8_1 doi: 10.1152/physrev.00037.2007 – ident: e_1_2_8_13_1 doi: 10.1016/j.ejcb.2008.10.003 – ident: e_1_2_8_3_1 doi: 10.1111/j.0022-202X.2004.23313.x – ident: e_1_2_8_4_1 doi: 10.1111/jdv.13301 – ident: e_1_2_8_40_1 doi: 10.1113/JP275171 – ident: e_1_2_8_26_1 doi: 10.1074/jbc.M116.739342 – ident: e_1_2_8_18_1 doi: 10.1126/science.1252826 – ident: e_1_2_8_14_1 doi: 10.3389/fphys.2013.00233 – ident: e_1_2_8_20_1 doi: 10.1016/S0014-5793(04)00332-1 – ident: e_1_2_8_24_1 doi: 10.15252/embj.201592409 – ident: e_1_2_8_22_1 doi: 10.1038/s41586-018-0134-y – ident: e_1_2_8_38_1 doi: 10.14814/phy2.12940 – ident: e_1_2_8_35_1 doi: 10.1152/physrev.00029.2001 – ident: e_1_2_8_41_1 doi: 10.1046/j.1523-1747.2003.12366.x – ident: e_1_2_8_21_1 doi: 10.1016/j.cell.2015.12.031 – ident: e_1_2_8_27_1 doi: 10.1007/s00424-016-1862-1 – ident: e_1_2_8_33_1 doi: 10.4161/chan.3.5.9568 – ident: e_1_2_8_42_1 doi: 10.1007/s00424-014-1561-8 – ident: e_1_2_8_16_1 doi: 10.1515/hsz-2015-0127 – ident: e_1_2_8_6_1 doi: 10.1016/j.febslet.2004.11.077 – ident: e_1_2_8_10_1 doi: 10.1111/j.1600-0625.2006.00533.x – ident: e_1_2_8_9_1 doi: 10.1038/nrm.2016.29 – ident: e_1_2_8_15_1 doi: 10.1111/apha.12450 – ident: e_1_2_8_28_1 doi: 10.1007/s00424-015-1739-8 – ident: e_1_2_8_30_1 doi: 10.1111/exd.12543 – ident: e_1_2_8_29_1 doi: 10.1007/s00424-016-1789-6 – ident: e_1_2_8_7_1 doi: 10.1111/ced.12104 – ident: e_1_2_8_31_1 doi: 10.1152/ajpcell.2001.281.5.C1734 – ident: e_1_2_8_44_1 doi: 10.1016/S0014-5793(02)02863-6 – ident: e_1_2_8_2_1 doi: 10.1111/exd.12473 – ident: e_1_2_8_17_1 doi: 10.1016/j.cell.2014.03.024 – ident: e_1_2_8_11_1 doi: 10.1016/0005-2736(92)90251-G – ident: e_1_2_8_39_1 doi: 10.1113/jphysiol.2014.278887 – ident: e_1_2_8_43_1 doi: 10.1016/0925-4439(91)90081-J – ident: e_1_2_8_12_1 doi: 10.1085/jgp.200409161 – ident: e_1_2_8_32_1 doi: 10.1016/S0014-5793(01)02561-3 – ident: e_1_2_8_19_1 doi: 10.1002/bies.201100173 – ident: e_1_2_8_37_1 doi: 10.1007/s10895-013-1202-1 – ident: e_1_2_8_34_1 doi: 10.1038/sj.bjp.0704413 – ident: e_1_2_8_45_1 doi: 10.1016/S0306-3623(96)00061-4 – ident: e_1_2_8_5_1 doi: 10.1111/jdv.13707 – ident: e_1_2_8_25_1 doi: 10.1113/JP275053 – volume: 130 start-page: 1122 year: 2017 ident: e_1_2_8_23_1 publication-title: J. Cell Sci. doi: 10.1242/jcs.196253 contributor: fullname: Lutter D. – ident: e_1_2_8_36_1 doi: 10.1023/A:1016832027325 |
SSID | ssj0017375 |
Score | 2.3671246 |
Snippet | The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is... Abstract The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1352 |
SubjectTerms | Anion channels Calcein Cell size cell volume regulation Cellular stress response CRISPR Epidermis keratinocyte Keratinocytes LRRC8A Osmotic pressure Ribonucleic acid RNA Stress response VRAC |
Title | Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume‐regulated anion channels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexd.13789 https://www.ncbi.nlm.nih.gov/pubmed/30252954 https://www.proquest.com/docview/2137797089 https://search.proquest.com/docview/2112614063 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66B_Hi-1FfRPHgpdI2faR4El3Zg4r4AG8laVIQoV3aXXFv_gR_o7_EmaRbFBEEoYdAE5JmMpNvOpkvhBwKHXE_VMyVysvdEMmGJFe-KzTYSxEnKpaY7zy4S64f-XkfaXJOprkwlh-i--GGmmHsNSq4kM0XJdev6thnCcfkPfASTPoGu-kiCAkzJLteCh5znHhRyyqEp3i6lt_3oh8A8zteNRvOxeK_hrpEFlqcSU_twlgmM7pcIXNXbSR9ldSDybAaIS8utekitLanZTWtCmpu7qPPSLj8VFb5BPAofSrBkr1A4fL29oyfUtFQPI9elbBtYRtr5z7e3mt7vb1WVJQgdYq5xfAFzRp5uOjfnw3c9v4FNw_9NHVloHQBj1d4TIKuRpEsCtjceJSryDJlcV3kcaqk0H5QhIEGPChUkcowEjln66RXwig2CZVodFkiNUZiearSSPpKx7ECNKfBZXLIwVQS2dDSbGRT9wRmLzOz55CdqYyyVtOaLDCUiYmHr_e716AjGPgQpa7GWMcHRxGgC3PIhpVt1wsD0IexToccGRH-3n3Wfzw3ha2_V90m84CwuD3_skN6o3qsd8lso8Z7Zrl-Ak-67nU |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB88C60v2mqrp7bG4oMvK7uX_ZOAL6InVzylWAv3tiSbLEhhV-480Tc_gp_RT-JMsrcoIhSEfQgkIdlMZvKbTPILwI6yiYhiwwNtwiKIiWxICxMFyqK9VGlmUk33nQd_srOROOoTTc7-7C6M54doN9xIM5y9JgWnDelnWm5vzV7EMyE78CFOY0kPN3D-u40hZNzR7IYSfeY0C5OGV4jO8bRVX65GryDmS8Tqlpzjpfd19jMsNlCTHfi58QXmbLUMH0-bYPoKjAd3V_U1UeMyf2OEjf2BWcvqkrnH-9g_4ly-rOriDiEpu6zQmN1gYnh-figOmJowOpJeV7hyUR1v6h7vH8b-hXtrmKpQ8IyuF-MvTL7C3-P-xeEgaJ5gCIo4kjLQPWNL_MIy5BrVNUl0WeL6JpLCJJ4sS9iySKXRyka9Mu5ZhITKlFLHiSoE_wbzFfZiDZgmu8szbSkYK6SRiY6MTVODgM6i19SFnzNR5FeeaSOfeSg4erkbvS5szoSUN8o2yXuONTELKXu7zUY1odiHqmw9pTIR-oqIXngXVr1w21Y44j4Kd3Zh18nw7ebz_ujIJdb_v-gWfBpcnA7z4a-zkw1YQMAl_HGYTZi_Hk_td-hMzPSHm7tPRkDylg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC58gHjxseo662Oj7MFLS_ekH2k8iTPDyLoiugvemqSTgCx0DzPOst72J_gb_SVWJT2NsgiC0IdAJySdSlW-6kp9AfgmTSKiWPNA6bAMYiIbUkJHgTRoL2Wa6VRRvvPwJru8Fb0-0eSczHJhPD9E-8ONNMPZa1LwkbYvlNz81ccRz0Q-D4sxwXDK3-BXbQgh445lN8zRZU6zMGlohegYT9v09Wb0H8J8DVjdjjNY_dBY12ClAZrs1K-MdZgz1SdY-tGE0jdgPHwY1fdEjMt8vggb--OyhtWWuav72G9iXL6r6vIBASm7q9CU_cHCxfX1mThlcsLoQHpd4b5Fbbyhe_r3OPb32xvNZIViZ5RcjF8w2YRfg_7Ps2HQXMAQlHGU54HqamPxCW3IFSprkihrcXcTSakTT5UljC3TXCtpoq6NuwYBodQ2V3EiS8G3YKHCUWwDU2R1eaYMhWJFrvNERdqkqUY4Z9Bn6sDhTBLFyPNsFDP_BGevcLPXgd2ZjIpG1SZF13EmZiG9Pmhfo5JQ5ENWpp5SnQg9RcQuvAOfvWzbXjiiPgp2duDIifDt7ov-bc8Vvry_6ldYuuoNiovzy-87sIxoS_izMLuwcD-emj2Yn-jpvlu5z37w8UU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypotonic+stress+response+of+human+keratinocytes+involves+LRRC8A+as+component+of+volume%E2%80%90regulated+anion+channels&rft.jtitle=Experimental+dermatology&rft.au=Trothe%2C+Janina&rft.au=Ritzmann%2C+Dirk&rft.au=Lang%2C+Victoria&rft.au=Scholz%2C+Paul&rft.date=2018-12-01&rft.issn=0906-6705&rft.eissn=1600-0625&rft.volume=27&rft.issue=12&rft.spage=1352&rft.epage=1360&rft_id=info:doi/10.1111%2Fexd.13789&rft.externalDBID=10.1111%252Fexd.13789&rft.externalDocID=EXD13789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-6705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-6705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-6705&client=summon |