Time dependent field correlators from holographic EPR pairs

A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2022; no. 8; pp. 99 - 18
Main Authors: Kawamoto, Shoichi, Lee, Da-Shin, Yeh, Chen-Pin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 08-08-2022
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture.
AbstractList We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture.
Abstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture.
A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture.
ArticleNumber 99
Author Kawamoto, Shoichi
Lee, Da-Shin
Yeh, Chen-Pin
Author_xml – sequence: 1
  givenname: Shoichi
  surname: Kawamoto
  fullname: Kawamoto, Shoichi
  organization: Department of Physics, National Tsing Hua University, Center for High Energy Physics, Chung Yuan Christian University, College of Arts and Sciences, J.F. Oberlin University
– sequence: 2
  givenname: Da-Shin
  surname: Lee
  fullname: Lee, Da-Shin
  organization: Department of Physics, National Dong Hwa University
– sequence: 3
  givenname: Chen-Pin
  surname: Yeh
  fullname: Yeh, Chen-Pin
  email: chenpinyeh@gms.ndhu.edu.tw
  organization: Department of Physics, National Dong Hwa University
BookMark eNp1kDFPwzAQhS1UJNrCzBqJBYZQO7FrW0wIFVpUiQqV2XLsc5sqjYOdDvx7UoKABd1wp9N7353eCA1qXwNClwTfEoz55Hk-W2FxneEsu8FSnqAhwZlMBeVy8Gc-Q6MYdxgTRiQeort1uYfEQgO1hbpNXAmVTYwPASrd-hATF_w-2frKb4JutqVJZqvXpNFliOfo1OkqwsV3H6O3x9n6YZ4uX54WD_fL1FDC29QRoUmuiaCFkNIxIxgjQljLGMCUESMxOJ5z4IJZJ50QAJZxLIzQBeZ5PkaLnmu93qkmlHsdPpTXpfpa-LBROrSlqUBxY7Xl3BnjOBVEFLSYFgUnBSWFZhQ61lXPaoJ_P0Bs1c4fQt29rzJBu2Ism3aqSa8ywccYwP1cJVgd01Z92uqYturS7hy4d8ROWW8g_HL_s3wCOtmCfw
CitedBy_id crossref_primary_10_1007_JHEP12_2023_039
Cites_doi 10.1088/1126-6708/2003/04/021
10.1063/1.3622699
10.1103/PhysRevLett.111.211602
10.1088/1126-6708/2003/03/046
10.1103/PhysRevLett.111.211603
10.1155/2010/297916
10.1016/j.physletb.2008.06.017
10.1088/1126-6708/2009/07/094
10.1007/JHEP08(2018)110
10.1007/s10701-009-9333-6
10.1103/PhysRevD.89.066007
10.1088/0264-9381/26/22/224002
10.1088/0264-9381/26/22/224003
10.1103/PhysRevD.77.105021
10.1088/1361-6455/abde53
10.1103/PhysRevD.79.085020
10.1088/1126-6708/2009/07/021
10.1002/prop.201300020
10.1103/PhysRevD.81.045019
10.1007/JHEP06(2019)068
10.1103/PhysRevD.93.126006
10.1103/PhysRevLett.102.241601
10.1103/PhysRevD.91.046009
10.1103/PhysRevLett.93.140404
10.1103/PhysRevLett.80.4859
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP08(2022)099
DatabaseName SpringerOpen (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 18
ExternalDocumentID oai_doaj_org_article_7cdad77fccf74818b4b6bb71b41ba54e
10_1007_JHEP08_2022_099
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
ABEEZ
ACULB
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c417t-f18a13a184b899f5c855188dd55ee651c90ef737e785df9f88eed5708c8ab0733
IEDL.DBID C24
ISSN 1029-8479
IngestDate Tue Oct 22 15:05:58 EDT 2024
Thu Oct 10 17:13:32 EDT 2024
Thu Nov 21 22:15:23 EST 2024
Sat Dec 16 12:07:47 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Black Holes in String Theory
AdS-CFT Correspondence
Gauge-Gravity Correspondence
Non-Equilibrium Field Theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f18a13a184b899f5c855188dd55ee651c90ef737e785df9f88eed5708c8ab0733
OpenAccessLink http://link.springer.com/10.1007/JHEP08(2022)099
PQID 2848485526
PQPubID 2034718
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_7cdad77fccf74818b4b6bb71b41ba54e
proquest_journals_2848485526
crossref_primary_10_1007_JHEP08_2022_099
springer_journals_10_1007_JHEP08_2022_099
PublicationCentury 2000
PublicationDate 2022-08-08
PublicationDateYYYYMMDD 2022-08-08
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-08
  day: 08
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References S.-Y. Lin and B.L. Hu, Temporal and Spatial Dependence of Quantum Entanglement: Quantum ‘Nonlocality’ in EPR from Field Theory Perspective, Phys. Rev. D79 (2009) 085020 [arXiv:0812.4391] [INSPIRE].
J. Sonner, Holographic Schwinger Effect and the Geometry of Entanglement, Phys. Rev. Lett.111 (2013) 211603 [arXiv:1307.6850] [INSPIRE].
MaldacenaJMEternal black holes in anti-de SitterJHEP2003040212003JHEP...04..021M198984710.1088/1126-6708/2003/04/021[hep-th/0106112] [INSPIRE]
ChernicoffMGarciaJAGuijosaARadiation Damping in a Non-Abelian Strongly-Coupled Gauge TheoryAIP Conf. Proc.201113611922011AIPC.1361..192C10.1063/1.3622699[arXiv:1004.4912] [INSPIRE]
GiataganasDLeeD-SYehC-PQuantum Fluctuation and Dissipation in Holographic Theories: A Unifying Study SchemeJHEP2018081102018JHEP...08..110G386121210.1007/JHEP08(2018)110[arXiv:1802.04983] [INSPIRE]
V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys.2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].
HsiangJ-TWuT-HLeeD-SBrownian motion of a charged particle in electromagnetic fluctuations at finite temperatureFound. Phys.200941772011FoPh...41...77H276445110.1007/s10701-009-9333-6
K. Jensen and A. Karch, Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole, Phys. Rev. Lett.111 (2013) 211602 [arXiv:1307.1132] [INSPIRE].
T. Yu and J.H. Eberly, Finite-time disentanglement via spontaneous emission, Phys. Rev. Lett.93 (2004) 140404.
M. Rangamani, Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav.26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].
W.-C. Syu, D.-S. Lee and C.-P. Yeh, Entanglement of quantum oscillators coupled to different heat baths, J. Phys. B54 (2021) 055501 [arXiv:2007.00288] [INSPIRE].
MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M310445810.1002/prop.201300020[arXiv:1306.0533] [INSPIRE]
C.-P. Yeh and D.-S. Lee, Subvacuum effects in quantum critical theories from a holographic approach, Phys. Rev. D93 (2016) 126006 [arXiv:1510.05778] [INSPIRE].
C.-P. Yeh, J.-T. Hsiang and D.-S. Lee, Holographic influence functional and its application to decoherence induced by quantum critical theories, Phys. Rev. D91 (2015) 046009 [arXiv:1410.7111] [INSPIRE].
M. Chernicoff, J.A. Garcia and A. Guijosa, Generalized Lorentz-Dirac Equation for a Strongly-Coupled Gauge Theory, Phys. Rev. Lett.102 (2009) 241601 [arXiv:0903.2407].
LeeD-SYehC-PTime evolution of entanglement entropy of moving mirrors influenced by strongly coupled quantum critical fieldsJHEP2019060682019JHEP...06..068L397984510.1007/JHEP06(2019)068[arXiv:1904.06831] [INSPIRE]
SonDTTeaneyDThermal Noise and Stochastic Strings in AdS/CFTJHEP2009070212009JHEP...07..021S254508210.1088/1126-6708/2009/07/021[arXiv:0901.2338] [INSPIRE]
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
de BoerJHubenyVERangamaniMShigemoriMBrownian motion in AdS/CFTJHEP200907094254504310.1088/1126-6708/2009/07/094[arXiv:0812.5112] [INSPIRE]
C.-P. Yeh, J.-T. Hsiang and D.-S. Lee, Holographic Approach to Nonequilibrium Dynamics of Moving Mirrors Coupled to Quantum Critical Theories, Phys. Rev. D89 (2014) 066007 [arXiv:1310.8416] [INSPIRE].
S.-Y. Lin and B.L. Hu, Entanglement creation between two causally disconnected objects, Phys. Rev. D81 (2010) 045019 [arXiv:0910.5858] [INSPIRE].
XiaoB-WOn the exact solution of the accelerating string in AdS5spacePhys. Lett. B20086651732008PhLB..665..173X10.1016/j.physletb.2008.06.017[arXiv:0804.1343] [INSPIRE]
HerzogCPSonDTSchwinger-Keldysh propagators from AdS/CFT correspondenceJHEP2003030462003JHEP...03..046H197568410.1088/1126-6708/2003/03/046[hep-th/0212072] [INSPIRE]
J.-T. Hsiang, T.-H. Wu and D.-S. Lee, Stochastic Lorentz forces on a point charge moving near the conducting plate, Phys. Rev. D77 (2008) 105021 [arXiv:0706.3075] [INSPIRE].
MaldacenaJMWilson loops in large N field theoriesPhys. Rev. Lett.19988048591998PhRvL..80.4859M173258210.1103/PhysRevLett.80.4859[hep-th/9803002] [INSPIRE]
JM Maldacena (18902_CR21) 1998; 80
DT Son (18902_CR17) 2009; 07
J-T Hsiang (18902_CR24) 2009; 41
D-S Lee (18902_CR18) 2019; 06
D Giataganas (18902_CR19) 2018; 08
18902_CR22
18902_CR25
CP Herzog (18902_CR20) 2003; 03
M Chernicoff (18902_CR23) 2011; 1361
J Maldacena (18902_CR1) 2013; 61
18902_CR5
18902_CR4
JM Maldacena (18902_CR2) 2003; 04
18902_CR9
18902_CR8
18902_CR7
18902_CR6
J de Boer (18902_CR12) 2009; 07
18902_CR10
18902_CR11
B-W Xiao (18902_CR3) 2008; 665
18902_CR14
18902_CR13
18902_CR16
18902_CR15
References_xml – volume: 04
  start-page: 021
  year: 2003
  ident: 18902_CR2
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/04/021
  contributor:
    fullname: JM Maldacena
– volume: 1361
  start-page: 192
  year: 2011
  ident: 18902_CR23
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3622699
  contributor:
    fullname: M Chernicoff
– ident: 18902_CR4
  doi: 10.1103/PhysRevLett.111.211602
– volume: 03
  start-page: 046
  year: 2003
  ident: 18902_CR20
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/03/046
  contributor:
    fullname: CP Herzog
– ident: 18902_CR5
  doi: 10.1103/PhysRevLett.111.211603
– ident: 18902_CR13
  doi: 10.1155/2010/297916
– volume: 665
  start-page: 173
  year: 2008
  ident: 18902_CR3
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.06.017
  contributor:
    fullname: B-W Xiao
– volume: 07
  start-page: 094
  year: 2009
  ident: 18902_CR12
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/07/094
  contributor:
    fullname: J de Boer
– volume: 08
  start-page: 110
  year: 2018
  ident: 18902_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)110
  contributor:
    fullname: D Giataganas
– volume: 41
  start-page: 77
  year: 2009
  ident: 18902_CR24
  publication-title: Found. Phys.
  doi: 10.1007/s10701-009-9333-6
  contributor:
    fullname: J-T Hsiang
– ident: 18902_CR14
  doi: 10.1103/PhysRevD.89.066007
– ident: 18902_CR10
  doi: 10.1088/0264-9381/26/22/224002
– ident: 18902_CR11
  doi: 10.1088/0264-9381/26/22/224003
– ident: 18902_CR25
  doi: 10.1103/PhysRevD.77.105021
– ident: 18902_CR6
  doi: 10.1088/1361-6455/abde53
– ident: 18902_CR8
  doi: 10.1103/PhysRevD.79.085020
– volume: 07
  start-page: 021
  year: 2009
  ident: 18902_CR17
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/07/021
  contributor:
    fullname: DT Son
– volume: 61
  start-page: 781
  year: 2013
  ident: 18902_CR1
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201300020
  contributor:
    fullname: J Maldacena
– ident: 18902_CR7
  doi: 10.1103/PhysRevD.81.045019
– volume: 06
  start-page: 068
  year: 2019
  ident: 18902_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)068
  contributor:
    fullname: D-S Lee
– ident: 18902_CR16
  doi: 10.1103/PhysRevD.93.126006
– ident: 18902_CR22
  doi: 10.1103/PhysRevLett.102.241601
– ident: 18902_CR15
  doi: 10.1103/PhysRevD.91.046009
– ident: 18902_CR9
  doi: 10.1103/PhysRevLett.93.140404
– volume: 80
  start-page: 4859
  year: 1998
  ident: 18902_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4859
  contributor:
    fullname: JM Maldacena
SSID ssj0015190
Score 2.4496994
Snippet A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic...
We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which...
Abstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 99
SubjectTerms AdS-CFT Correspondence
Black holes
Black Holes in String Theory
Boundaries
Classical and Quantum Gravitation
Correlation
Dissipation
Elementary Particles
Exact solutions
Gauge-Gravity Correspondence
High energy physics
Holography
Mutual coupling
Non-Equilibrium Field Theory
Perturbation
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Strings
Time dependence
Yang-Mills theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60IHgRn1itkoOH9rB0t5tssnjysaV4kOIDvIU8UZBa3Pb_m2Q3LQrixetmWYZvspkZZvJ9ABe5tLbUgiamFDrBTOJEZM4hrJAuXWamJDaI2D7S-xd2W3manJXUl58Ja-iBG-CGVGmhKbVKWYpddJFYFlLSTOJMCoJNOH3TIhZTbf_A5SVpJPJJ6fBuUk1T1neF_miQBprXdQwKVP3f8ssfLdEQaca7sNOmiOiqMW0PNsxsH7bCqKaqD-DS39pAUbx2gcIMGlJeZePdV9A18ldG0Gtko35TqJo-oLlv3BzC87h6upkkrQRConBGF4nNmMhyhx6WrjCyRLHAoKY1IcYUJFNlaizNqaGMaFtaxlzMIzRlignp9RiPoDP7mJljQKNcFMrtG5dxaWxS4uoKnBvfEGaWaKW70I-g8HnDdMEjp3GDH_f4cYdfF649aKvXPEV1eOAcx1vH8b8c14VehJy3_03NXbBknq5mVHRhEN2wXv7FnpP_sOcUtv33wnAf60Fn8bk0Z7BZ6-V52FtfwM3SzQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Time dependent field correlators from holographic EPR pairs
URI https://link.springer.com/article/10.1007/JHEP08(2022)099
https://www.proquest.com/docview/2848485526
https://doaj.org/article/7cdad77fccf74818b4b6bb71b41ba54e
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RIiQu7IhAqXzg0B6CksaOHXFiSVVxQBWLxC2KN0CgtOry_9huXFQQh96ixJGsGTvzJuN5D-Ai4VpnsqShykoZYsZxWMbGISzlBi4zlRHtRGyf6MMru8stTU60_HVRfV76iqT7UPtet_tBPoxYx-Tqva5BNQ3YNMgBW82CW9vfUNcNDB6JPIHP35dWYo-j6F_Blb9KoS7C9HfXn9se7NRoEl0v3L8PG6o6gC13qlNMD-HKNnggr3M7Q-64GhJWkOPLJttTZLtL0Lsnrv4QKB8-orGt8RzBSz9_vh2EtVpCKHBMZ6GOWRknxtCYmxxKE8Ec2ZqUhCiVklhkkdI0oYoyInWmGTPhkdCICVZyK914DM1qVKkTQL2kTIVZYgacSawiYlIQnChbO2aaSCED6Hg7FuMFKUbh6Y8XtiisLQpjiwBurJ2XwyybtbsxmrwV9eYoqJClpFQLoSk2CIJjnnJOY45jXhKsAmh5LxX1FpsWJq4yy2zTSwPoerf8PP5nPqdrjD2DbXvpjvuxFjRnk7k6h8ZUzttu1bVdAv8NmBDTAQ
link.rule.ids 315,782,786,866,2106,27933,27934,41128,42197,52242
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHrxLa7PHDy0h4XdbrLJ4slHpb5K0QrewualglTptv_fJN0oVTzoNZtAmMzsfMPMfANwlAljClXSWBelijETOC5T-yAsFxYuM10Q44fY3tPuIztvO5qcNPTC-Gr3kJL0f-rQ7HbVafcS1rDBeqtpYc0szGNrbS7eOnMNDnXiwAKSJDD4_Dw05Xw8R_8UsPyWC_Uu5mLlH5dbheUaT6KTiQKswYwerMOCr-uU1QYcuxYPFCbdjpAvWEPSjeR4deF2hVx_CXoO1NUvErV7d-jdZXk24eGi3T_rxPW8hFjilI5ik7IyzayosbBRlCGSebo1pQjROiepLBJtaEY1ZUSZwjBmHSShCZOsFG544xbMDd4GehtQKytzaZXMwjOFdUJsEIIz7bLHzBAlVQSNIEj-PqHF4IEAeSIL7mTBrSwiOHWC_tzm-Kz9wtvwidfmwalUpaLUSGkothhCYJELQVOBU1ESrCPYC8_EayOruPWszHHbtPIImuFZvj7_cp-dP-w9hMVO__aG31x2r3dhyS374j-2B3Oj4Vjvw2ylxgdeBT8AMPTV5g
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50RfHiW6zPHDzoodhukyZFPPjosj6QxQd4C81LBdld9vH_TbKNouJBvKYphJmE-YZv5huA_UwYU6iKxrqoVIyZwHGVWoewXFi4zHRBjB9ie09vn9hF6WRyTkIvjK92D5TkpKfBqTR1R0d9ZQKrf3TVLjsJO7CJe_PQQpxpmMEWN7iKrnPX7FCTCBacJEHN5-dPXwKR1-v_AjK_8aI-3LQW_3nQJViocSY6nVyMZZjS3RWY9fWecrgKx671A4UJuCPkC9mQdKM63lwaPkSu7wS9BEnrV4nKzh3qO_ZnDR5b5cN5O67nKMQSp3QUm5RVaWZdgIXNrgyRzMuwKUWI1jlJZZFoQzOqKSPKFIYxGzgJTZhklXBDHdeh0e119QagZlbl0l4-C9sU1gmxyQnOtGOVmSFKqggOglF5fyKXwYMw8sQW3NmCW1tEcOaM_rHN6Vz7hd7gmdfPhlOpKkWpkdJQbLGFwCIXgqYCp6IiWEewHVzG68c35DbiMqd508wjOAwu-vz8y3k2_7B3D-Y6Fy1-c3l7vQXzbtXXBLJtaIwGY70D00M13vW38R1MRt7B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+dependent+field+correlators+from+holographic+EPR+pairs&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kawamoto%2C+Shoichi&rft.au=Lee%2C+Da-Shin&rft.au=Yeh%2C+Chen-Pin&rft.date=2022-08-08&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282022%29099&rft.externalDocID=10_1007_JHEP08_2022_099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon