Time dependent field correlators from holographic EPR pairs
A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are...
Saved in:
Published in: | The journal of high energy physics Vol. 2022; no. 8; pp. 99 - 18 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
08-08-2022
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A
bstract
We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture. |
---|---|
AbstractList | We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture. Abstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture. A bstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which is a string in AdS space with its two ends anchoring on the boundaries. We consider the cases that the endpoints of the string are static and that the endpoints are uniformly accelerated in opposite directions where the exact solutions for the string’s profiles are available. In both cases, the two-point correlators of the boundary field, described by the linearized perturbations in the worldsheet, can also be derived exactly where we obtain the all-time evolution of the correlators. In the case of the accelerating string, the induced geometry on the string worldsheet has the causal structure of a two-sided AdS black hole with a wormhole connecting two causally disconnected boundaries, which can be a realization of the ER=EPR conjecture. We find that causality plays a crucial role in determining the nature of the dispersion relation of the particle and the feature of the induced mutual interaction between two particles from the field. In the case that two boundaries of the worldsheet are causally disconnected, the induced effect from the field gives the dissipative dynamics of each particle with no dependence on the distance between two particles, and the induced mutual coupling between them vanishes in the late times, following a power law. When two ends are causally connected, the induced dispersion relation becomes non-dissipative in the late times. Here, we will also comment on the implications of our findings to the entangled particle dynamics and the ER=EPR conjecture. |
ArticleNumber | 99 |
Author | Kawamoto, Shoichi Lee, Da-Shin Yeh, Chen-Pin |
Author_xml | – sequence: 1 givenname: Shoichi surname: Kawamoto fullname: Kawamoto, Shoichi organization: Department of Physics, National Tsing Hua University, Center for High Energy Physics, Chung Yuan Christian University, College of Arts and Sciences, J.F. Oberlin University – sequence: 2 givenname: Da-Shin surname: Lee fullname: Lee, Da-Shin organization: Department of Physics, National Dong Hwa University – sequence: 3 givenname: Chen-Pin surname: Yeh fullname: Yeh, Chen-Pin email: chenpinyeh@gms.ndhu.edu.tw organization: Department of Physics, National Dong Hwa University |
BookMark | eNp1kDFPwzAQhS1UJNrCzBqJBYZQO7FrW0wIFVpUiQqV2XLsc5sqjYOdDvx7UoKABd1wp9N7353eCA1qXwNClwTfEoz55Hk-W2FxneEsu8FSnqAhwZlMBeVy8Gc-Q6MYdxgTRiQeort1uYfEQgO1hbpNXAmVTYwPASrd-hATF_w-2frKb4JutqVJZqvXpNFliOfo1OkqwsV3H6O3x9n6YZ4uX54WD_fL1FDC29QRoUmuiaCFkNIxIxgjQljLGMCUESMxOJ5z4IJZJ50QAJZxLIzQBeZ5PkaLnmu93qkmlHsdPpTXpfpa-LBROrSlqUBxY7Xl3BnjOBVEFLSYFgUnBSWFZhQ61lXPaoJ_P0Bs1c4fQt29rzJBu2Ism3aqSa8ywccYwP1cJVgd01Z92uqYturS7hy4d8ROWW8g_HL_s3wCOtmCfw |
CitedBy_id | crossref_primary_10_1007_JHEP12_2023_039 |
Cites_doi | 10.1088/1126-6708/2003/04/021 10.1063/1.3622699 10.1103/PhysRevLett.111.211602 10.1088/1126-6708/2003/03/046 10.1103/PhysRevLett.111.211603 10.1155/2010/297916 10.1016/j.physletb.2008.06.017 10.1088/1126-6708/2009/07/094 10.1007/JHEP08(2018)110 10.1007/s10701-009-9333-6 10.1103/PhysRevD.89.066007 10.1088/0264-9381/26/22/224002 10.1088/0264-9381/26/22/224003 10.1103/PhysRevD.77.105021 10.1088/1361-6455/abde53 10.1103/PhysRevD.79.085020 10.1088/1126-6708/2009/07/021 10.1002/prop.201300020 10.1103/PhysRevD.81.045019 10.1007/JHEP06(2019)068 10.1103/PhysRevD.93.126006 10.1103/PhysRevLett.102.241601 10.1103/PhysRevD.91.046009 10.1103/PhysRevLett.93.140404 10.1103/PhysRevLett.80.4859 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP08(2022)099 |
DatabaseName | SpringerOpen (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_7cdad77fccf74818b4b6bb71b41ba54e 10_1007_JHEP08_2022_099 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ACACY ACGFS ACHIP ACREN ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFNRJ AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX ABEEZ ACULB CITATION ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c417t-f18a13a184b899f5c855188dd55ee651c90ef737e785df9f88eed5708c8ab0733 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Tue Oct 22 15:05:58 EDT 2024 Thu Oct 10 17:13:32 EDT 2024 Thu Nov 21 22:15:23 EST 2024 Sat Dec 16 12:07:47 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Black Holes in String Theory AdS-CFT Correspondence Gauge-Gravity Correspondence Non-Equilibrium Field Theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-f18a13a184b899f5c855188dd55ee651c90ef737e785df9f88eed5708c8ab0733 |
OpenAccessLink | http://link.springer.com/10.1007/JHEP08(2022)099 |
PQID | 2848485526 |
PQPubID | 2034718 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7cdad77fccf74818b4b6bb71b41ba54e proquest_journals_2848485526 crossref_primary_10_1007_JHEP08_2022_099 springer_journals_10_1007_JHEP08_2022_099 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-08 |
PublicationDateYYYYMMDD | 2022-08-08 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | S.-Y. Lin and B.L. Hu, Temporal and Spatial Dependence of Quantum Entanglement: Quantum ‘Nonlocality’ in EPR from Field Theory Perspective, Phys. Rev. D79 (2009) 085020 [arXiv:0812.4391] [INSPIRE]. J. Sonner, Holographic Schwinger Effect and the Geometry of Entanglement, Phys. Rev. Lett.111 (2013) 211603 [arXiv:1307.6850] [INSPIRE]. MaldacenaJMEternal black holes in anti-de SitterJHEP2003040212003JHEP...04..021M198984710.1088/1126-6708/2003/04/021[hep-th/0106112] [INSPIRE] ChernicoffMGarciaJAGuijosaARadiation Damping in a Non-Abelian Strongly-Coupled Gauge TheoryAIP Conf. Proc.201113611922011AIPC.1361..192C10.1063/1.3622699[arXiv:1004.4912] [INSPIRE] GiataganasDLeeD-SYehC-PQuantum Fluctuation and Dissipation in Holographic Theories: A Unifying Study SchemeJHEP2018081102018JHEP...08..110G386121210.1007/JHEP08(2018)110[arXiv:1802.04983] [INSPIRE] V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys.2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE]. HsiangJ-TWuT-HLeeD-SBrownian motion of a charged particle in electromagnetic fluctuations at finite temperatureFound. Phys.200941772011FoPh...41...77H276445110.1007/s10701-009-9333-6 K. Jensen and A. Karch, Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole, Phys. Rev. Lett.111 (2013) 211602 [arXiv:1307.1132] [INSPIRE]. T. Yu and J.H. Eberly, Finite-time disentanglement via spontaneous emission, Phys. Rev. Lett.93 (2004) 140404. M. Rangamani, Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav.26 (2009) 224003 [arXiv:0905.4352] [INSPIRE]. W.-C. Syu, D.-S. Lee and C.-P. Yeh, Entanglement of quantum oscillators coupled to different heat baths, J. Phys. B54 (2021) 055501 [arXiv:2007.00288] [INSPIRE]. MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M310445810.1002/prop.201300020[arXiv:1306.0533] [INSPIRE] C.-P. Yeh and D.-S. Lee, Subvacuum effects in quantum critical theories from a holographic approach, Phys. Rev. D93 (2016) 126006 [arXiv:1510.05778] [INSPIRE]. C.-P. Yeh, J.-T. Hsiang and D.-S. Lee, Holographic influence functional and its application to decoherence induced by quantum critical theories, Phys. Rev. D91 (2015) 046009 [arXiv:1410.7111] [INSPIRE]. M. Chernicoff, J.A. Garcia and A. Guijosa, Generalized Lorentz-Dirac Equation for a Strongly-Coupled Gauge Theory, Phys. Rev. Lett.102 (2009) 241601 [arXiv:0903.2407]. LeeD-SYehC-PTime evolution of entanglement entropy of moving mirrors influenced by strongly coupled quantum critical fieldsJHEP2019060682019JHEP...06..068L397984510.1007/JHEP06(2019)068[arXiv:1904.06831] [INSPIRE] SonDTTeaneyDThermal Noise and Stochastic Strings in AdS/CFTJHEP2009070212009JHEP...07..021S254508210.1088/1126-6708/2009/07/021[arXiv:0901.2338] [INSPIRE] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. de BoerJHubenyVERangamaniMShigemoriMBrownian motion in AdS/CFTJHEP200907094254504310.1088/1126-6708/2009/07/094[arXiv:0812.5112] [INSPIRE] C.-P. Yeh, J.-T. Hsiang and D.-S. Lee, Holographic Approach to Nonequilibrium Dynamics of Moving Mirrors Coupled to Quantum Critical Theories, Phys. Rev. D89 (2014) 066007 [arXiv:1310.8416] [INSPIRE]. S.-Y. Lin and B.L. Hu, Entanglement creation between two causally disconnected objects, Phys. Rev. D81 (2010) 045019 [arXiv:0910.5858] [INSPIRE]. XiaoB-WOn the exact solution of the accelerating string in AdS5spacePhys. Lett. B20086651732008PhLB..665..173X10.1016/j.physletb.2008.06.017[arXiv:0804.1343] [INSPIRE] HerzogCPSonDTSchwinger-Keldysh propagators from AdS/CFT correspondenceJHEP2003030462003JHEP...03..046H197568410.1088/1126-6708/2003/03/046[hep-th/0212072] [INSPIRE] J.-T. Hsiang, T.-H. Wu and D.-S. Lee, Stochastic Lorentz forces on a point charge moving near the conducting plate, Phys. Rev. D77 (2008) 105021 [arXiv:0706.3075] [INSPIRE]. MaldacenaJMWilson loops in large N field theoriesPhys. Rev. Lett.19988048591998PhRvL..80.4859M173258210.1103/PhysRevLett.80.4859[hep-th/9803002] [INSPIRE] JM Maldacena (18902_CR21) 1998; 80 DT Son (18902_CR17) 2009; 07 J-T Hsiang (18902_CR24) 2009; 41 D-S Lee (18902_CR18) 2019; 06 D Giataganas (18902_CR19) 2018; 08 18902_CR22 18902_CR25 CP Herzog (18902_CR20) 2003; 03 M Chernicoff (18902_CR23) 2011; 1361 J Maldacena (18902_CR1) 2013; 61 18902_CR5 18902_CR4 JM Maldacena (18902_CR2) 2003; 04 18902_CR9 18902_CR8 18902_CR7 18902_CR6 J de Boer (18902_CR12) 2009; 07 18902_CR10 18902_CR11 B-W Xiao (18902_CR3) 2008; 665 18902_CR14 18902_CR13 18902_CR16 18902_CR15 |
References_xml | – volume: 04 start-page: 021 year: 2003 ident: 18902_CR2 publication-title: JHEP doi: 10.1088/1126-6708/2003/04/021 contributor: fullname: JM Maldacena – volume: 1361 start-page: 192 year: 2011 ident: 18902_CR23 publication-title: AIP Conf. Proc. doi: 10.1063/1.3622699 contributor: fullname: M Chernicoff – ident: 18902_CR4 doi: 10.1103/PhysRevLett.111.211602 – volume: 03 start-page: 046 year: 2003 ident: 18902_CR20 publication-title: JHEP doi: 10.1088/1126-6708/2003/03/046 contributor: fullname: CP Herzog – ident: 18902_CR5 doi: 10.1103/PhysRevLett.111.211603 – ident: 18902_CR13 doi: 10.1155/2010/297916 – volume: 665 start-page: 173 year: 2008 ident: 18902_CR3 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.06.017 contributor: fullname: B-W Xiao – volume: 07 start-page: 094 year: 2009 ident: 18902_CR12 publication-title: JHEP doi: 10.1088/1126-6708/2009/07/094 contributor: fullname: J de Boer – volume: 08 start-page: 110 year: 2018 ident: 18902_CR19 publication-title: JHEP doi: 10.1007/JHEP08(2018)110 contributor: fullname: D Giataganas – volume: 41 start-page: 77 year: 2009 ident: 18902_CR24 publication-title: Found. Phys. doi: 10.1007/s10701-009-9333-6 contributor: fullname: J-T Hsiang – ident: 18902_CR14 doi: 10.1103/PhysRevD.89.066007 – ident: 18902_CR10 doi: 10.1088/0264-9381/26/22/224002 – ident: 18902_CR11 doi: 10.1088/0264-9381/26/22/224003 – ident: 18902_CR25 doi: 10.1103/PhysRevD.77.105021 – ident: 18902_CR6 doi: 10.1088/1361-6455/abde53 – ident: 18902_CR8 doi: 10.1103/PhysRevD.79.085020 – volume: 07 start-page: 021 year: 2009 ident: 18902_CR17 publication-title: JHEP doi: 10.1088/1126-6708/2009/07/021 contributor: fullname: DT Son – volume: 61 start-page: 781 year: 2013 ident: 18902_CR1 publication-title: Fortsch. Phys. doi: 10.1002/prop.201300020 contributor: fullname: J Maldacena – ident: 18902_CR7 doi: 10.1103/PhysRevD.81.045019 – volume: 06 start-page: 068 year: 2019 ident: 18902_CR18 publication-title: JHEP doi: 10.1007/JHEP06(2019)068 contributor: fullname: D-S Lee – ident: 18902_CR16 doi: 10.1103/PhysRevD.93.126006 – ident: 18902_CR22 doi: 10.1103/PhysRevLett.102.241601 – ident: 18902_CR15 doi: 10.1103/PhysRevD.91.046009 – ident: 18902_CR9 doi: 10.1103/PhysRevLett.93.140404 – volume: 80 start-page: 4859 year: 1998 ident: 18902_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4859 contributor: fullname: JM Maldacena |
SSID | ssj0015190 |
Score | 2.4496994 |
Snippet | A
bstract
We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic... We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic description, which... Abstract We study the correlators of the fields that couple to the quark and anti-quark EPR pair in the super Yang-Mills theory using the holographic... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 99 |
SubjectTerms | AdS-CFT Correspondence Black holes Black Holes in String Theory Boundaries Classical and Quantum Gravitation Correlation Dissipation Elementary Particles Exact solutions Gauge-Gravity Correspondence High energy physics Holography Mutual coupling Non-Equilibrium Field Theory Perturbation Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory String Theory Strings Time dependence Yang-Mills theory |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60IHgRn1itkoOH9rB0t5tssnjysaV4kOIDvIU8UZBa3Pb_m2Q3LQrixetmWYZvspkZZvJ9ABe5tLbUgiamFDrBTOJEZM4hrJAuXWamJDaI2D7S-xd2W3manJXUl58Ja-iBG-CGVGmhKbVKWYpddJFYFlLSTOJMCoJNOH3TIhZTbf_A5SVpJPJJ6fBuUk1T1neF_miQBprXdQwKVP3f8ssfLdEQaca7sNOmiOiqMW0PNsxsH7bCqKaqD-DS39pAUbx2gcIMGlJeZePdV9A18ldG0Gtko35TqJo-oLlv3BzC87h6upkkrQRConBGF4nNmMhyhx6WrjCyRLHAoKY1IcYUJFNlaizNqaGMaFtaxlzMIzRlignp9RiPoDP7mJljQKNcFMrtG5dxaWxS4uoKnBvfEGaWaKW70I-g8HnDdMEjp3GDH_f4cYdfF649aKvXPEV1eOAcx1vH8b8c14VehJy3_03NXbBknq5mVHRhEN2wXv7FnpP_sOcUtv33wnAf60Fn8bk0Z7BZ6-V52FtfwM3SzQ priority: 102 providerName: Directory of Open Access Journals |
Title | Time dependent field correlators from holographic EPR pairs |
URI | https://link.springer.com/article/10.1007/JHEP08(2022)099 https://www.proquest.com/docview/2848485526 https://doaj.org/article/7cdad77fccf74818b4b6bb71b41ba54e |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RIiQu7IhAqXzg0B6CksaOHXFiSVVxQBWLxC2KN0CgtOry_9huXFQQh96ixJGsGTvzJuN5D-Ai4VpnsqShykoZYsZxWMbGISzlBi4zlRHtRGyf6MMru8stTU60_HVRfV76iqT7UPtet_tBPoxYx-Tqva5BNQ3YNMgBW82CW9vfUNcNDB6JPIHP35dWYo-j6F_Blb9KoS7C9HfXn9se7NRoEl0v3L8PG6o6gC13qlNMD-HKNnggr3M7Q-64GhJWkOPLJttTZLtL0Lsnrv4QKB8-orGt8RzBSz9_vh2EtVpCKHBMZ6GOWRknxtCYmxxKE8Ec2ZqUhCiVklhkkdI0oYoyInWmGTPhkdCICVZyK914DM1qVKkTQL2kTIVZYgacSawiYlIQnChbO2aaSCED6Hg7FuMFKUbh6Y8XtiisLQpjiwBurJ2XwyybtbsxmrwV9eYoqJClpFQLoSk2CIJjnnJOY45jXhKsAmh5LxX1FpsWJq4yy2zTSwPoerf8PP5nPqdrjD2DbXvpjvuxFjRnk7k6h8ZUzttu1bVdAv8NmBDTAQ |
link.rule.ids | 315,782,786,866,2106,27933,27934,41128,42197,52242 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHrxLa7PHDy0h4XdbrLJ4slHpb5K0QrewualglTptv_fJN0oVTzoNZtAmMzsfMPMfANwlAljClXSWBelijETOC5T-yAsFxYuM10Q44fY3tPuIztvO5qcNPTC-Gr3kJL0f-rQ7HbVafcS1rDBeqtpYc0szGNrbS7eOnMNDnXiwAKSJDD4_Dw05Xw8R_8UsPyWC_Uu5mLlH5dbheUaT6KTiQKswYwerMOCr-uU1QYcuxYPFCbdjpAvWEPSjeR4deF2hVx_CXoO1NUvErV7d-jdZXk24eGi3T_rxPW8hFjilI5ik7IyzayosbBRlCGSebo1pQjROiepLBJtaEY1ZUSZwjBmHSShCZOsFG544xbMDd4GehtQKytzaZXMwjOFdUJsEIIz7bLHzBAlVQSNIEj-PqHF4IEAeSIL7mTBrSwiOHWC_tzm-Kz9wtvwidfmwalUpaLUSGkothhCYJELQVOBU1ESrCPYC8_EayOruPWszHHbtPIImuFZvj7_cp-dP-w9hMVO__aG31x2r3dhyS374j-2B3Oj4Vjvw2ylxgdeBT8AMPTV5g |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50RfHiW6zPHDzoodhukyZFPPjosj6QxQd4C81LBdld9vH_TbKNouJBvKYphJmE-YZv5huA_UwYU6iKxrqoVIyZwHGVWoewXFi4zHRBjB9ie09vn9hF6WRyTkIvjK92D5TkpKfBqTR1R0d9ZQKrf3TVLjsJO7CJe_PQQpxpmMEWN7iKrnPX7FCTCBacJEHN5-dPXwKR1-v_AjK_8aI-3LQW_3nQJViocSY6nVyMZZjS3RWY9fWecrgKx671A4UJuCPkC9mQdKM63lwaPkSu7wS9BEnrV4nKzh3qO_ZnDR5b5cN5O67nKMQSp3QUm5RVaWZdgIXNrgyRzMuwKUWI1jlJZZFoQzOqKSPKFIYxGzgJTZhklXBDHdeh0e119QagZlbl0l4-C9sU1gmxyQnOtGOVmSFKqggOglF5fyKXwYMw8sQW3NmCW1tEcOaM_rHN6Vz7hd7gmdfPhlOpKkWpkdJQbLGFwCIXgqYCp6IiWEewHVzG68c35DbiMqd508wjOAwu-vz8y3k2_7B3D-Y6Fy1-c3l7vQXzbtXXBLJtaIwGY70D00M13vW38R1MRt7B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+dependent+field+correlators+from+holographic+EPR+pairs&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kawamoto%2C+Shoichi&rft.au=Lee%2C+Da-Shin&rft.au=Yeh%2C+Chen-Pin&rft.date=2022-08-08&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282022%29099&rft.externalDocID=10_1007_JHEP08_2022_099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |