Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility
Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing...
Saved in:
Published in: | Journal of cell science Vol. 117; no. Pt 24; pp. 5835 - 5845 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
15-11-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing receptor in mouse germ cells. In situ hybridization showed that MOR23 was expressed in round spermatids during stages VI-VIII of spermatogenesis. Lyral, a cognate ligand of MOR23, caused an increase in intracellular Ca2+ in a fraction of spermatogenic cells and spermatozoa. We also generated transgenic mice that express high levels of MOR23 in the testis and examined the response of their germ cells to lyral. The results provided evidence that lyral-induced Ca2+ increases were indeed mediated by MOR23. In a sperm accumulation assay, spermatozoa migrated towards an increasing gradient of lyral. Tracking and sperm flagellar analyses suggest that Ca2+ increases caused by MOR23 activation lead to modulation of flagellar configuration, resulting in chemotaxis. By contrast, a gradient of a cAMP analog or K8.6 solution, which elicit Ca2+ influx in spermatozoa, did not cause sperm accumulation, indicating that chemosensing and regulation of sperm motility was due to an OR-mediated local Ca2+ increase. The present studies indicate that mouse testicular ORs might play a role in chemoreception during sperm-egg communication and thereby regulate fertilization. |
---|---|
AbstractList | Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing receptor in mouse germ cells. In situ hybridization showed that MOR23 was expressed in round spermatids during stages VI-VIII of spermatogenesis. Lyral, a cognate ligand of MOR23, caused an increase in intracellular Ca2+ in a fraction of spermatogenic cells and spermatozoa. We also generated transgenic mice that express high levels of MOR23 in the testis and examined the response of their germ cells to lyral. The results provided evidence that lyral-induced Ca2+ increases were indeed mediated by MOR23. In a sperm accumulation assay, spermatozoa migrated towards an increasing gradient of lyral. Tracking and sperm flagellar analyses suggest that Ca2+ increases caused by MOR23 activation lead to modulation of flagellar configuration, resulting in chemotaxis. By contrast, a gradient of a cAMP analog or K8.6 solution, which elicit Ca2+ influx in spermatozoa, did not cause sperm accumulation, indicating that chemosensing and regulation of sperm motility was due to an OR-mediated local Ca2+ increase. The present studies indicate that mouse testicular ORs might play a role in chemoreception during sperm-egg communication and thereby regulate fertilization. Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing receptor in mouse germ cells. In situ hybridization showed that MOR23 was expressed in round spermatids during stages VI-VIII of spermatogenesis. Lyral, a cognate ligand of MOR23, caused an increase in intracellular Ca super(2+) in a fraction of spermatogenic cells and spermatozoa. We also generated transgenic mice that express high levels of MOR23 in the testis and examined the response of their germ cells to lyral. The results provided evidence that lyral-induced Ca super(2+) increases were indeed mediated by MOR23. In a sperm accumulation assay, spermatozoa migrated towards an increasing gradient of lyral. Tracking and sperm flagellar analyses suggest that Ca super(2+) increases caused by MOR23 activation lead to modulation of flagellar configuration, resulting in chemotaxis. By contrast, a gradient of a cAMP analog or K8.6 solution, which elicit Ca super(2+) influx in spermatozoa, did not cause sperm accumulation, indicating that chemosensing and regulation of sperm motility was due to an OR-mediated local Ca super(2+) increase. The present studies indicate that mouse testicular ORs might play a role in chemoreception during sperm-egg communication and thereby regulate fertilization. |
Author | Yomogida, Kentaro Okabe, Masaru Fukuda, Nanaho Touhara, Kazushige |
Author_xml | – sequence: 1 givenname: Nanaho surname: Fukuda fullname: Fukuda, Nanaho organization: Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan – sequence: 2 givenname: Kentaro surname: Yomogida fullname: Yomogida, Kentaro – sequence: 3 givenname: Masaru surname: Okabe fullname: Okabe, Masaru – sequence: 4 givenname: Kazushige surname: Touhara fullname: Touhara, Kazushige |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15522887$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAURS1UBKUw8AeQJySGFH_EdjMixJdUiQXmyHGei1FiFzsZys7_xqVFjOgNfrKPj3R1T9DEBw8InVMyp6xk1-8mzQkVRB2gKS2VKirK1QRNCWG0qATnx-gkpXdCiGKVOkLHVAjGFgs1RV_3ozeDC1532LzpqM0A0X3q7RUOFmvchzEBHiANzoydjjh0NlMhbnAEA-u8Ye1b7IaEY-gAO59N0IcEPjm_2j36DK_y919vWkPss3twnRs2p-jQ6i7B2f6codf7u5fbx2L5_PB0e7MsTEnVUIAo6UIJQkCpitumVVZWUhnBaCssk5WtGpKHGyYtb5igTUt1ZQHalokS-Axd7rzrGD7GHKnuXTLQddpDjllLRSRjkv8LUqUklaLM4NUONDGkFMHW6-h6HTc1JfW2nDqXU_-Uk9mLvXRsemj_yH0b_BvMJ48y |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2011_09_028 crossref_primary_10_1016_j_fob_2014_11_008 crossref_primary_10_1016_j_jff_2024_106097 crossref_primary_10_1073_pnas_1322923111 crossref_primary_10_1071_RD06015 crossref_primary_10_5483_BMBRep_2012_45_11_232 crossref_primary_10_1111_febs_15606 crossref_primary_10_3390_ijms22136858 crossref_primary_10_1016_j_ydbio_2009_10_024 crossref_primary_10_1007_s13765_015_0142_7 crossref_primary_10_1002_ijch_201200094 crossref_primary_10_12750_JARB_36_4_292 crossref_primary_10_3390_nu11081749 crossref_primary_10_1111_bph_15666 crossref_primary_10_1086_BBLv224n3p156 crossref_primary_10_1111_and_14623 crossref_primary_10_1080_07391102_2022_2138976 crossref_primary_10_1016_j_gep_2015_06_002 crossref_primary_10_1016_j_humimm_2010_06_011 crossref_primary_10_1007_s10815_021_02377_w crossref_primary_10_1074_jbc_M110_211524 crossref_primary_10_1155_2015_403919 crossref_primary_10_1007_s00418_016_1486_8 crossref_primary_10_1093_molehr_gar041 crossref_primary_10_3390_ijms25073855 crossref_primary_10_1016_j_anireprosci_2014_01_012 crossref_primary_10_1007_s00467_015_3181_8 crossref_primary_10_1152_ajprenal_00069_2018 crossref_primary_10_1016_j_cub_2013_02_007 crossref_primary_10_1371_journal_pgen_1004712 crossref_primary_10_1155_2015_237183 crossref_primary_10_3389_fmolb_2015_00073 crossref_primary_10_4161_cam_4_4_12291 crossref_primary_10_1371_journal_pone_0116097 crossref_primary_10_1007_s00335_011_9371_1 crossref_primary_10_34067_KID_0000712021 crossref_primary_10_1155_2019_5129263 crossref_primary_10_1016_j_neuroscience_2013_06_034 crossref_primary_10_1016_j_theriogenology_2014_03_016 crossref_primary_10_3389_fendo_2017_00379 crossref_primary_10_1186_1471_2156_15_S2_S8 crossref_primary_10_1242_jcs_03046 crossref_primary_10_1254_fpj_124_201 crossref_primary_10_1152_physrev_00028_2010 crossref_primary_10_3390_cells13070615 crossref_primary_10_1095_biolreprod_109_083113 crossref_primary_10_1134_S1990747810010186 crossref_primary_10_1002_ece3_534 crossref_primary_10_3390_molecules25245822 crossref_primary_10_1016_j_jevs_2013_10_020 crossref_primary_10_1016_j_mce_2005_12_035 crossref_primary_10_3390_pharmaceutics13081314 crossref_primary_10_1021_bi2008596 crossref_primary_10_1074_jbc_M109_012096 crossref_primary_10_3390_bios13030329 crossref_primary_10_1007_s12064_007_0010_z crossref_primary_10_1371_journal_pone_0032354 crossref_primary_10_1111_j_1447_0578_2005_00099_x crossref_primary_10_1007_s00251_010_0468_6 crossref_primary_10_1074_jbc_M116_734517 crossref_primary_10_1038_ncomms11157 crossref_primary_10_3389_fgene_2019_00893 crossref_primary_10_1126_scisignal_2005912 crossref_primary_10_3390_ijms241411277 crossref_primary_10_1371_journal_pone_0267356 crossref_primary_10_1134_S0022093014040024 crossref_primary_10_1002_mnfr_201901329 crossref_primary_10_1530_REP_11_0113 crossref_primary_10_1002_bit_23327 crossref_primary_10_1007_s12035_018_1196_4 crossref_primary_10_1186_1471_2164_7_121 crossref_primary_10_1186_s13395_016_0077_7 crossref_primary_10_1016_j_mrfmmm_2006_11_012 crossref_primary_10_1111_j_1365_2583_2011_01083_x crossref_primary_10_1002_bies_201000066 crossref_primary_10_3390_ijms21051558 crossref_primary_10_1016_j_it_2005_07_003 crossref_primary_10_1016_j_jbior_2016_03_001 crossref_primary_10_1152_physrev_00013_2017 crossref_primary_10_3390_ijms232112726 crossref_primary_10_1097_NEN_0b013e318294fd76 crossref_primary_10_1016_j_csbj_2023_12_037 crossref_primary_10_1016_j_pharmthera_2013_11_004 crossref_primary_10_1146_annurev_cellbio_100616_060432 crossref_primary_10_1002_pmic_200800795 crossref_primary_10_3389_fcell_2021_792994 crossref_primary_10_1016_j_mce_2020_110954 crossref_primary_10_1371_journal_pone_0232536 crossref_primary_10_1016_j_jinsphys_2010_04_013 crossref_primary_10_1016_j_jbc_2021_100475 crossref_primary_10_1038_s41598_023_30895_3 crossref_primary_10_1098_rstb_2009_0323 crossref_primary_10_1186_1471_2164_15_729 crossref_primary_10_1007_s12038_016_9607_z crossref_primary_10_1111_j_1365_2443_2005_00915_x crossref_primary_10_1095_biolreprod_115_135368 crossref_primary_10_1210_en_2008_0512 crossref_primary_10_3390_toxics12060442 crossref_primary_10_1007_s11010_024_05024_x crossref_primary_10_1242_jeb_060889 crossref_primary_10_1016_j_mcn_2020_103469 crossref_primary_10_3390_molecules201219840 crossref_primary_10_1369_0022155420939833 crossref_primary_10_1016_j_cell_2013_06_039 crossref_primary_10_1038_aps_2011_210 crossref_primary_10_1016_j_febslet_2011_05_050 crossref_primary_10_1016_j_neures_2011_08_009 crossref_primary_10_1152_ajpgi_00503_2010 crossref_primary_10_3390_genes12040488 crossref_primary_10_1016_j_bbapap_2014_09_002 crossref_primary_10_1038_s41573_018_0002_3 crossref_primary_10_1371_journal_pgen_1004593 crossref_primary_10_1002_jcp_22962 crossref_primary_10_3389_fnagi_2016_00163 crossref_primary_10_1016_j_bbrc_2015_03_046 crossref_primary_10_1038_ncb0307_235 crossref_primary_10_3390_vetsci9040155 crossref_primary_10_1111_andr_13593 crossref_primary_10_1038_s41598_018_19765_5 crossref_primary_10_1371_journal_pone_0111053 crossref_primary_10_1007_s00359_006_0168_8 crossref_primary_10_1016_j_jpsychires_2014_09_012 crossref_primary_10_1016_j_pneurobio_2019_101680 crossref_primary_10_1002_jcp_25929 crossref_primary_10_1016_j_aspen_2023_102097 crossref_primary_10_1016_j_devcel_2009_09_004 crossref_primary_10_3390_nu10111781 crossref_primary_10_1038_nrm1893 crossref_primary_10_3389_fcell_2022_854115 crossref_primary_10_1111_mec_13222 crossref_primary_10_1371_journal_pone_0190446 crossref_primary_10_3390_ijms21186493 crossref_primary_10_3390_metabo11120853 crossref_primary_10_3390_ijms24021664 crossref_primary_10_1016_j_fertnstert_2011_10_013 crossref_primary_10_1074_jbc_M501430200 crossref_primary_10_1152_ajprenal_00624_2018 crossref_primary_10_1016_j_bbalip_2019_01_004 crossref_primary_10_1007_s00359_010_0580_y crossref_primary_10_1042_BCJ20190946 crossref_primary_10_1002_cplu_201300008 crossref_primary_10_1016_j_anireprosci_2018_03_029 crossref_primary_10_1016_j_reprotox_2014_09_016 crossref_primary_10_1007_s00497_007_0062_8 crossref_primary_10_1007_s12304_011_9113_5 crossref_primary_10_1016_j_biocel_2015_03_008 crossref_primary_10_1186_1471_213X_14_15 crossref_primary_10_1007_s11010_009_0329_5 crossref_primary_10_1074_jbc_M109_040964 crossref_primary_10_1186_s43043_020_00049_w crossref_primary_10_1093_molehr_gas040 crossref_primary_10_1186_1741_7007_7_28 crossref_primary_10_2171_jao_36_135 |
Cites_doi | 10.1038/ncb0203-93 10.1046/j.1439-0531.2003.00397.x 10.1530/ror.0.0040056 10.1523/JNEUROSCI.21-16-06018.2001 10.1002/jemt.10131 10.1530/jrf.0.1150023 10.1095/biolreprod50.4.774 10.1006/dbio.2001.0387 10.1073/pnas.92.24.11039 10.1038/nn800 10.1071/RD9890369 10.1016/S0024-3205(01)01006-2 10.1002/(SICI)1521-1878(199903)21:3<203::AID-BIES4>3.0.CO;2-T 10.1038/81774 10.1083/jcb.142.2.473 10.1095/biolreprod60.6.1314 10.1074/jbc.M403913200 10.1074/jbc.273.16.9378 10.1210/endo.139.5.5967 10.1007/BF02484408 10.1016/S0165-0378(01)00089-4 10.1016/S0014-5793(00)02411-X 10.1073/pnas.242470599 10.1016/S0014-5793(98)00178-1 10.1038/ncb915 10.1006/dbio.1993.1152 10.1126/science.1080376 10.1006/geno.1996.4490 10.1083/jcb.84.1.13 10.1006/dbio.1999.9367 10.1126/science.286.5440.707 10.1247/csf.26.131 10.1016/S0006-291X(03)00863-5 10.1073/pnas.96.7.4040 10.1038/35093026 10.1016/S0092-8674(00)80581-4 10.1083/jcb.101.6.2324 10.1126/science.8381559 10.1126/science.279.5348.237 10.1002/cm.970100309 10.1006/bbrc.1996.0580 10.1262/jrd1955.16.152 10.1007/BF03401561 10.1038/368859a0 10.1083/jcb.123.6.1441 10.1095/biolreprod50.4.786 10.1038/355453a0 10.1016/S0021-9258(17)37349-0 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 8FD FR3 P64 7X8 |
DOI | 10.1242/jcs.01507 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Chemoreception Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 5845 |
ExternalDocumentID | 10_1242_jcs_01507 15522887 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 2WC 34G 39C 3O- 4.4 4R4 53G 5GY 5RE 5VS 85S ABDNZ ABEFU ABPPZ ABTAH ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 NPM O9- OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ X7M YQT ZXP ZY4 ~02 ~KM AAYXX CITATION 7QP 7QR 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c417t-e54187500e7793fbd7f6967c521d5f269f9b0b0b3c26f3b251bd1a9feedd254e3 |
ISSN | 0021-9533 |
IngestDate | Fri Oct 25 01:32:29 EDT 2024 Fri Oct 25 07:58:24 EDT 2024 Thu Nov 21 22:46:57 EST 2024 Sat Sep 28 07:48:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-e54187500e7793fbd7f6967c521d5f269f9b0b0b3c26f3b251bd1a9feedd254e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15522887 |
PQID | 17761654 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_67062263 proquest_miscellaneous_17761654 crossref_primary_10_1242_jcs_01507 pubmed_primary_15522887 |
PublicationCentury | 2000 |
PublicationDate | 2004-Nov-15 2004-11-15 20041115 |
PublicationDateYYYYMMDD | 2004-11-15 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-Nov-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2004 |
References | 2021042518442487200_REF51 2021042518442487200_REF50 2021042518442487200_REF11 2021042518442487200_REF12 2021042518442487200_REF10 2021042518442487200_REF15 2021042518442487200_REF16 2021042518442487200_REF13 2021042518442487200_REF14 2021042518442487200_REF22 2021042518442487200_REF23 2021042518442487200_REF20 2021042518442487200_REF21 2021042518442487200_REF26 2021042518442487200_REF27 2021042518442487200_REF24 2021042518442487200_REF25 2021042518442487200_REF19 2021042518442487200_REF17 2021042518442487200_REF18 2021042518442487200_REF30 2021042518442487200_REF33 2021042518442487200_REF34 2021042518442487200_REF31 2021042518442487200_REF32 2021042518442487200_REF37 2021042518442487200_REF38 2021042518442487200_REF35 2021042518442487200_REF36 2021042518442487200_REF28 2021042518442487200_REF29 2021042518442487200_REF40 2021042518442487200_REF41 2021042518442487200_REF44 2021042518442487200_REF45 2021042518442487200_REF42 2021042518442487200_REF43 2021042518442487200_REF48 2021042518442487200_REF49 2021042518442487200_REF46 2021042518442487200_REF47 2021042518442487200_REF6 2021042518442487200_REF7 2021042518442487200_REF8 2021042518442487200_REF39 2021042518442487200_REF9 2021042518442487200_REF2 2021042518442487200_REF3 2021042518442487200_REF4 2021042518442487200_REF5 2021042518442487200_REF1 |
References_xml | – ident: 2021042518442487200_REF20 doi: 10.1038/ncb0203-93 – ident: 2021042518442487200_REF32 doi: 10.1046/j.1439-0531.2003.00397.x – ident: 2021042518442487200_REF44 – ident: 2021042518442487200_REF10 doi: 10.1530/ror.0.0040056 – ident: 2021042518442487200_REF29 – ident: 2021042518442487200_REF17 doi: 10.1523/JNEUROSCI.21-16-06018.2001 – ident: 2021042518442487200_REF35 doi: 10.1002/jemt.10131 – ident: 2021042518442487200_REF26 doi: 10.1530/jrf.0.1150023 – ident: 2021042518442487200_REF28 doi: 10.1095/biolreprod50.4.774 – ident: 2021042518442487200_REF6 doi: 10.1006/dbio.2001.0387 – ident: 2021042518442487200_REF5 doi: 10.1073/pnas.92.24.11039 – ident: 2021042518442487200_REF50 doi: 10.1038/nn800 – ident: 2021042518442487200_REF22 doi: 10.1071/RD9890369 – ident: 2021042518442487200_REF34 doi: 10.1016/S0024-3205(01)01006-2 – ident: 2021042518442487200_REF45 – ident: 2021042518442487200_REF11 doi: 10.1002/(SICI)1521-1878(199903)21:3<203::AID-BIES4>3.0.CO;2-T – ident: 2021042518442487200_REF1 doi: 10.1038/81774 – ident: 2021042518442487200_REF47 doi: 10.1083/jcb.142.2.473 – ident: 2021042518442487200_REF16 doi: 10.1095/biolreprod60.6.1314 – ident: 2021042518442487200_REF31 doi: 10.1074/jbc.M403913200 – ident: 2021042518442487200_REF41 doi: 10.1074/jbc.273.16.9378 – ident: 2021042518442487200_REF13 doi: 10.1210/endo.139.5.5967 – ident: 2021042518442487200_REF9 doi: 10.1007/BF02484408 – ident: 2021042518442487200_REF3 doi: 10.1016/S0165-0378(01)00089-4 – ident: 2021042518442487200_REF33 doi: 10.1016/S0014-5793(00)02411-X – ident: 2021042518442487200_REF49 doi: 10.1073/pnas.242470599 – ident: 2021042518442487200_REF8 doi: 10.1016/S0014-5793(98)00178-1 – ident: 2021042518442487200_REF19 doi: 10.1038/ncb915 – ident: 2021042518442487200_REF48 doi: 10.1006/dbio.1993.1152 – ident: 2021042518442487200_REF30 doi: 10.1126/science.1080376 – ident: 2021042518442487200_REF39 doi: 10.1006/geno.1996.4490 – ident: 2021042518442487200_REF14 doi: 10.1083/jcb.84.1.13 – ident: 2021042518442487200_REF15 doi: 10.1006/dbio.1999.9367 – ident: 2021042518442487200_REF24 doi: 10.1126/science.286.5440.707 – ident: 2021042518442487200_REF25 doi: 10.1247/csf.26.131 – ident: 2021042518442487200_REF18 doi: 10.1016/S0006-291X(03)00863-5 – ident: 2021042518442487200_REF36 doi: 10.1073/pnas.96.7.4040 – ident: 2021042518442487200_REF12 doi: 10.1038/35093026 – ident: 2021042518442487200_REF23 doi: 10.1016/S0092-8674(00)80581-4 – ident: 2021042518442487200_REF42 doi: 10.1083/jcb.101.6.2324 – ident: 2021042518442487200_REF7 doi: 10.1126/science.8381559 – ident: 2021042518442487200_REF51 doi: 10.1126/science.279.5348.237 – ident: 2021042518442487200_REF21 doi: 10.1002/cm.970100309 – ident: 2021042518442487200_REF2 doi: 10.1006/bbrc.1996.0580 – ident: 2021042518442487200_REF37 doi: 10.1262/jrd1955.16.152 – ident: 2021042518442487200_REF40 doi: 10.1007/BF03401561 – ident: 2021042518442487200_REF46 doi: 10.1038/368859a0 – ident: 2021042518442487200_REF38 doi: 10.1083/jcb.123.6.1441 – ident: 2021042518442487200_REF4 doi: 10.1095/biolreprod50.4.786 – ident: 2021042518442487200_REF27 doi: 10.1038/355453a0 – ident: 2021042518442487200_REF43 doi: 10.1016/S0021-9258(17)37349-0 |
SSID | ssj0007297 |
Score | 2.2948816 |
Snippet | Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 5835 |
SubjectTerms | Animals Calcium - metabolism Cell Line Cell Movement Chemotaxis Cyclic AMP - metabolism Dose-Response Relationship, Drug Fertilization Flagella - metabolism Germ Cells - cytology Germ Cells - metabolism Humans In Situ Hybridization Male Mice Mice, Transgenic Models, Chemical Olfactory Receptor Neurons - metabolism Receptors, Odorant Reverse Transcriptase Polymerase Chain Reaction Sperm Motility Sperm-Ovum Interactions Spermatids - metabolism Spermatozoa - cytology Spermatozoa - metabolism Testis - metabolism Time Factors Tissue Distribution |
Title | Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15522887 https://search.proquest.com/docview/17761654 https://search.proquest.com/docview/67062263 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lRUhcEG_Cc4W4WQavX1sfESSqoEoPTaXerPU-SFViV3F8aO_8b2a863VBRMABRbKidbROZr7MfLM7M0vIW6YZ04UG8BZJFKZMqVAYZiBUMUqJBP4jEnd0D0_44uzg0yydTSbDkVHj2H_VNIyBrrFy9h-07SeFAXgPOocraB2uf6X3OTgqt74nfTPma08MRYCxvg622F3D5qA23-yhO1cBWD99uXVplf2OAuYeYqb6Sq-bFnPdXUljXwXz1R39hfNiw_F1gJl9yOt3UF7cJQicz_XA6S46JZyhF6tmNENrsMr2zhdMcN_4W8cXorIL6qIVm25cKO_wB9sckeuuXZ27PKdhUSPF6j5b1umLDBjuLFvbp61tTnG3mdkeMd5428pPh9I4vWGLswPbCMX5dWBa2W99BpAU9BmyfYerP3x0jEMywOK4nJ8eHZXL2dlyj9yKwaShRT35vPA-H0IUdziw_dquhxVM_d5P_DPz2RHO9LRmeY_cdcqhHyyQ7pOJrh-Q2_aE0quH5PsIJ_ornGhjqKA9nOgIJ-rhRAc4UUAMBThRhBM9r-lNONmbNR3hhPP2cKIDnB6R0_ls-fEwdCd3hDJlfBvqLGUQCEeR5iAsUylu8iLnEriiykycF6aoInglMs5NUgHHrhQThQHCpuIs1cljsl83tX5KaJQpnUYciLECsisr4NcyT3QkTIxCl1PyZpBqeWkbtJQY2ILoSxB92Yt-Sl4P8i7BfCLaRa1BPiXjPMeCvt2fyHmUQ4ySTMkTq6jxMRkEL-Ckn_1x9ufkzojyF2R_u-n0S7LXqu5Vj6MfDsKqNQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+a+mouse+testicular+olfactory+receptor+and+its+role+in+chemosensing+and+in+regulation+of+sperm+motility&rft.jtitle=Journal+of+cell+science&rft.au=Fukuda%2C+Nanaho&rft.au=Yomogida%2C+Kentaro&rft.au=Okabe%2C+Masaru&rft.au=Touhara%2C+Kazushige&rft.date=2004-11-15&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=117&rft.issue=24&rft.spage=5835&rft.epage=5845&rft_id=info:doi/10.1242%2Fjcs.01507&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |