Increased neuromuscular activity causes axonal defects and muscular degeneration

Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the func...

Full description

Saved in:
Bibliographic Details
Published in:Development (Cambridge) Vol. 131; no. 11; pp. 2605 - 2618
Main Authors: Lefebvre, Julie L, Ono, Fumihito, Puglielli, Cristina, Seidner, Glen, Franzini-Armstrong, Clara, Brehm, Paul, Granato, Michael
Format: Journal Article
Language:English
Published: England The Company of Biologists Limited 01-06-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts.
AbstractList Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor alpha -subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts.
Before establishing terminal synapses with their final muscle targets,migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twistermutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts.
Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts.
Author Glen Seidner
Fumihito Ono
Cristina Puglielli
Julie L. Lefebvre
Michael Granato
Paul Brehm
Clara Franzini-Armstrong
Author_xml – sequence: 1
  givenname: Julie L
  surname: Lefebvre
  fullname: Lefebvre, Julie L
  organization: Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
– sequence: 2
  givenname: Fumihito
  surname: Ono
  fullname: Ono, Fumihito
– sequence: 3
  givenname: Cristina
  surname: Puglielli
  fullname: Puglielli, Cristina
– sequence: 4
  givenname: Glen
  surname: Seidner
  fullname: Seidner, Glen
– sequence: 5
  givenname: Clara
  surname: Franzini-Armstrong
  fullname: Franzini-Armstrong, Clara
– sequence: 6
  givenname: Paul
  surname: Brehm
  fullname: Brehm, Paul
– sequence: 7
  givenname: Michael
  surname: Granato
  fullname: Granato, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15128655$$D View this record in MEDLINE/PubMed
BookMark eNqF0DtPwzAUhmELgaBcBv4AyoTEkOLjxHY9IsRNQoIBZsuxT4pRahc74fLvSWkFI5OPpUff8O6T7RADEnIMdAqsZucO36cUgFVbZAK1lKUCprbJhCpOS1AK9sh-zq-U0kpIuUv2gAObCc4n5PEu2IQmoysCDikuhmyHzqTC2N6_-_6rsGbImAvzGYPpCoct2n78Blf8WodzDJhM72M4JDut6TIebd4D8nx99XR5W94_3NxdXtyXtgbZl0bySoBoEYyzIGfCOuacQcmAOdkKprg1QG0tWtfYhjFupIW6bRylq7M6IKfr3WWKbwPmXi98tth1JmAcspagKk4V-xeCVDOYCTrCszW0KeacsNXL5BcmfWmgetVZj531T-fRnmxGh2aB7k9uwo5gugYvfv7y4RPqxscuzn3u82oHu7jUUIEG0ExQXn0D29mMIA
CitedBy_id crossref_primary_10_1016_j_ydbio_2004_09_008
crossref_primary_10_1016_j_ydbio_2005_01_012
crossref_primary_10_1073_pnas_1215858109
crossref_primary_10_1111_j_1529_8027_2012_00371_x
crossref_primary_10_1016_j_neures_2011_06_003
crossref_primary_10_1152_jn_00454_2004
crossref_primary_10_1371_journal_pone_0271707
crossref_primary_10_1002_dneu_20872
crossref_primary_10_1073_pnas_0607450104
crossref_primary_10_1242_jeb_01826
crossref_primary_10_1089_zeb_2006_3_173
crossref_primary_10_1242_dev_01410
crossref_primary_10_1242_dev_02140
crossref_primary_10_1002_dneu_20791
crossref_primary_10_1186_s13578_015_0054_6
crossref_primary_10_1517_17460440902835483
crossref_primary_10_1242_dev_02559
crossref_primary_10_1242_jcs_02625
crossref_primary_10_3390_ijms17111941
crossref_primary_10_1097_WCO_0b013e328364dc0f
crossref_primary_10_1038_srep20466
crossref_primary_10_1523_JNEUROSCI_3656_05_2006
crossref_primary_10_1002_dvg_20631
crossref_primary_10_1016_j_etap_2017_09_009
crossref_primary_10_1016_j_taap_2015_01_022
crossref_primary_10_1111_j_1460_9568_2008_06418_x
crossref_primary_10_1016_j_ydbio_2005_06_027
crossref_primary_10_1016_j_cophys_2018_06_005
crossref_primary_10_1016_j_neuron_2008_12_025
crossref_primary_10_1093_bfgp_eln039
crossref_primary_10_1016_j_ntt_2013_01_003
crossref_primary_10_3389_fenvs_2022_1001504
crossref_primary_10_1016_j_gene_2020_145193
crossref_primary_10_1002_bies_20153
crossref_primary_10_1523_JNEUROSCI_6572_10_2011
crossref_primary_10_1016_j_taap_2008_06_025
crossref_primary_10_1007_s12576_015_0372_9
crossref_primary_10_1098_rstb_2007_2257
crossref_primary_10_1016_j_envpol_2020_115090
crossref_primary_10_1371_journal_pone_0029063
crossref_primary_10_1002_cne_21903
crossref_primary_10_1016_j_taap_2005_06_016
crossref_primary_10_1073_pnas_1119268109
crossref_primary_10_1073_pnas_0610822104
crossref_primary_10_1111_j_1471_4159_2007_04980_x
crossref_primary_10_1021_acs_est_2c00161
crossref_primary_10_1016_j_ydbio_2006_07_032
crossref_primary_10_1093_gerona_gln074
Cites_doi 10.1523/JNEUROSCI.05-04-01076.1985
10.1016/S1366-2120(08)70068-0
10.1523/JNEUROSCI.06-08-02278.1986
10.1002/cne.902460403
10.1016/0896-6273(94)90257-7
10.1523/JNEUROSCI.22-15-06491.2002
10.1093/genetics/148.1.361
10.1152/physrev.1998.78.1.143
10.1016/S0301-0082(00)00055-1
10.1038/nn788
10.1002/(SICI)1097-0177(199811)213:3<334::AID-AJA9>3.0.CO;2-4
10.1038/ng0498-338
10.1016/S0960-9822(00)00048-8
10.1523/JNEUROSCI.12-05-01859.1992
10.1152/jn.1999.81.6.2852
10.1007/BF00343370
10.1016/S0959-4388(98)80018-4
10.1093/hmg/6.5.767
10.1093/hmg/5.9.1217
10.1126/science.2462281
10.1016/0006-8993(83)90699-6
10.1242/dev.122.11.3371
10.1523/JNEUROSCI.22-06-02206.2002
10.1016/0014-4886(75)90258-7
10.1016/0012-1606(91)90051-4
10.1038/305632a0
10.1038/271364a0
10.1212/WNL.22.9.1026
10.1523/JNEUROSCI.21-24-09678.2001
10.1016/0012-1606(86)90126-0
10.1006/dbio.1994.1010
10.1038/72082
10.1523/JNEUROSCI.23-33-10467.2003
10.1016/S0896-6273(00)80506-1
10.1523/JNEUROSCI.04-07-01715.1984
10.1002/(SICI)1097-4695(19991105)41:2<242::AID-NEU7>3.0.CO;2-#
10.1002/neu.480210809
10.1038/373037a0
10.1038/79833
10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
10.1038/320269a0
10.1083/jcb.82.3.811
10.1242/dev.126.15.3461
10.1073/pnas.83.18.7069
10.1523/JNEUROSCI.06-08-02267.1986
10.1046/j.1365-313X.1998.00124.x
10.1073/pnas.191351698
10.1523/JNEUROSCI.10-12-03947.1990
10.1523/JNEUROSCI.22-15-06447.2002
10.1016/0896-6273(90)90194-K
10.1073/pnas.92.3.758
10.1038/321406a0
10.1146/annurev.ne.04.030181.000313
10.1113/jphysiol.1980.sp013145
10.1146/annurev.neuro.22.1.389
10.1016/0896-6273(93)90073-Z
10.1242/dev.127.10.2099
10.1523/JNEUROSCI.09-05-01523.1989
10.1242/dev.123.1.451
10.1016/S0896-6273(02)01020-6
10.1016/S0165-3806(96)00184-8
10.1016/j.ydbio.2004.02.027
10.1002/ana.410110603
10.1007/BF01257985
10.1523/JNEUROSCI.17-20-07796.1997
10.1038/nrn731
10.1101/SQB.1983.048.01.067
10.1101/gr.9.4.334
10.1016/0012-1606(88)90357-0
10.1038/nn753
10.1016/0896-6273(90)90139-7
10.1523/JNEUROSCI.15-12-08177.1995
10.1016/S0896-6273(01)00326-9
10.1007/BF00301878
10.1002/mus.10269
10.1523/JNEUROSCI.17-15-05651.1997
10.1073/pnas.69.1.147
10.1523/JNEUROSCI.13-01-00167.1993
10.1523/JNEUROSCI.17-11-04170.1997
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1242/dev.01123
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 2618
ExternalDocumentID 10_1242_dev_01123
15128655
develop_131_11_2605
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID -
0R
186
2WC
34G
39C
3O-
4.4
53G
55
5GY
5RE
5VS
85S
9M8
AAIKC
ABFLS
ABSGY
ABZEH
ACGFS
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFDAS
AFFNX
AGCDD
AHERT
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
GJ
GX1
H13
HZ
H~9
INIJC
KQ8
O0-
O9-
OK1
P2P
R.V
RCB
RHF
RHI
SJN
TWZ
UPT
UQL
WH7
WOQ
X
X7M
XJT
ZA5
ZCG
ZHY
ZXP
ZY4
---
-DZ
-ET
-~X
.55
.GJ
0R~
18M
AAFWJ
ABTAH
ACREN
ADFRT
AGGIJ
AI.
AMTXH
BTFSW
CGR
CUY
CVF
ECM
EIF
F9R
HZ~
MVM
NPM
OHT
TR2
VH1
W8F
XOL
XSW
ZGI
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c417t-a753616fe1adc1786cd2ddae7212d7f6295ca10c46fdbcb225a7c14fbd005a7c3
ISSN 0950-1991
IngestDate Fri Oct 25 04:01:20 EDT 2024
Fri Oct 25 11:10:44 EDT 2024
Thu Nov 21 23:23:22 EST 2024
Sat Sep 28 08:40:39 EDT 2024
Fri Jan 15 20:24:48 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-a753616fe1adc1786cd2ddae7212d7f6295ca10c46fdbcb225a7c14fbd005a7c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15128655
PQID 17981860
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_71935092
proquest_miscellaneous_17981860
crossref_primary_10_1242_dev_01123
pubmed_primary_15128655
highwire_biologists_develop_131_11_2605
PublicationCentury 2000
PublicationDate 20040601
2004-Jun
2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 20040601
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2004
Publisher The Company of Biologists Limited
Publisher_xml – name: The Company of Biologists Limited
References 2021042604403718600_REF1
2021042604403718600_REF3
2021042604403718600_REF2
2021042604403718600_REF5
2021042604403718600_REF4
2021042604403718600_REF7
2021042604403718600_REF29
2021042604403718600_REF6
2021042604403718600_REF28
2021042604403718600_REF9
2021042604403718600_REF8
2021042604403718600_REF36
2021042604403718600_REF35
2021042604403718600_REF79
2021042604403718600_REF38
2021042604403718600_REF37
2021042604403718600_REF32
2021042604403718600_REF76
2021042604403718600_REF31
2021042604403718600_REF75
2021042604403718600_REF34
2021042604403718600_REF78
2021042604403718600_REF33
2021042604403718600_REF77
2021042604403718600_REF72
2021042604403718600_REF71
2021042604403718600_REF30
2021042604403718600_REF74
2021042604403718600_REF73
2021042604403718600_REF70
2021042604403718600_REF18
2021042604403718600_REF17
2021042604403718600_REF19
2021042604403718600_REF25
2021042604403718600_REF69
2021042604403718600_REF24
2021042604403718600_REF68
2021042604403718600_REF27
2021042604403718600_REF26
2021042604403718600_REF21
2021042604403718600_REF65
2021042604403718600_REF20
2021042604403718600_REF64
2021042604403718600_REF23
2021042604403718600_REF67
2021042604403718600_REF22
2021042604403718600_REF66
2021042604403718600_REF61
2021042604403718600_REF60
2021042604403718600_REF63
2021042604403718600_REF62
2021042604403718600_REF14
2021042604403718600_REF58
2021042604403718600_REF13
2021042604403718600_REF57
2021042604403718600_REF16
2021042604403718600_REF15
2021042604403718600_REF59
2021042604403718600_REF10
2021042604403718600_REF54
2021042604403718600_REF53
2021042604403718600_REF12
2021042604403718600_REF56
2021042604403718600_REF11
2021042604403718600_REF55
2021042604403718600_REF50
2021042604403718600_REF52
2021042604403718600_REF51
2021042604403718600_REF39
2021042604403718600_REF47
2021042604403718600_REF46
2021042604403718600_REF49
2021042604403718600_REF48
2021042604403718600_REF43
2021042604403718600_REF42
2021042604403718600_REF86
2021042604403718600_REF45
2021042604403718600_REF44
2021042604403718600_REF83
2021042604403718600_REF82
2021042604403718600_REF41
2021042604403718600_REF85
2021042604403718600_REF40
2021042604403718600_REF84
2021042604403718600_REF81
2021042604403718600_REF80
References_xml – ident: 2021042604403718600_REF8
  doi: 10.1523/JNEUROSCI.05-04-01076.1985
– ident: 2021042604403718600_REF62
  doi: 10.1016/S1366-2120(08)70068-0
– ident: 2021042604403718600_REF54
  doi: 10.1523/JNEUROSCI.06-08-02278.1986
– ident: 2021042604403718600_REF9
  doi: 10.1002/cne.902460403
– ident: 2021042604403718600_REF1
  doi: 10.1016/0896-6273(94)90257-7
– ident: 2021042604403718600_REF59
  doi: 10.1523/JNEUROSCI.22-15-06491.2002
– ident: 2021042604403718600_REF68
  doi: 10.1093/genetics/148.1.361
– ident: 2021042604403718600_REF25
  doi: 10.1152/physrev.1998.78.1.143
– ident: 2021042604403718600_REF66
– ident: 2021042604403718600_REF81
  doi: 10.1016/S0301-0082(00)00055-1
– ident: 2021042604403718600_REF2
  doi: 10.1038/nn788
– ident: 2021042604403718600_REF4
  doi: 10.1002/(SICI)1097-0177(199811)213:3<334::AID-AJA9>3.0.CO;2-4
– ident: 2021042604403718600_REF39
  doi: 10.1038/ng0498-338
– ident: 2021042604403718600_REF53
  doi: 10.1016/S0960-9822(00)00048-8
– ident: 2021042604403718600_REF45
  doi: 10.1523/JNEUROSCI.12-05-01859.1992
– ident: 2021042604403718600_REF56
  doi: 10.1152/jn.1999.81.6.2852
– ident: 2021042604403718600_REF75
  doi: 10.1007/BF00343370
– ident: 2021042604403718600_REF15
  doi: 10.1016/S0959-4388(98)80018-4
– ident: 2021042604403718600_REF14
– ident: 2021042604403718600_REF11
  doi: 10.1093/hmg/6.5.767
– ident: 2021042604403718600_REF22
  doi: 10.1093/hmg/5.9.1217
– ident: 2021042604403718600_REF42
  doi: 10.1126/science.2462281
– ident: 2021042604403718600_REF34
  doi: 10.1016/0006-8993(83)90699-6
– ident: 2021042604403718600_REF16
  doi: 10.1242/dev.122.11.3371
– ident: 2021042604403718600_REF46
  doi: 10.1523/JNEUROSCI.22-06-02206.2002
– ident: 2021042604403718600_REF40
  doi: 10.1016/0014-4886(75)90258-7
– ident: 2021042604403718600_REF26
  doi: 10.1016/0012-1606(91)90051-4
– ident: 2021042604403718600_REF35
  doi: 10.1038/305632a0
– ident: 2021042604403718600_REF61
  doi: 10.1038/271364a0
– ident: 2021042604403718600_REF52
– ident: 2021042604403718600_REF24
  doi: 10.1212/WNL.22.9.1026
– ident: 2021042604403718600_REF72
  doi: 10.1523/JNEUROSCI.21-24-09678.2001
– ident: 2021042604403718600_REF10
  doi: 10.1016/0012-1606(86)90126-0
– ident: 2021042604403718600_REF67
  doi: 10.1006/dbio.1994.1010
– ident: 2021042604403718600_REF57
  doi: 10.1038/72082
– ident: 2021042604403718600_REF43
  doi: 10.1523/JNEUROSCI.23-33-10467.2003
– ident: 2021042604403718600_REF80
  doi: 10.1016/S0896-6273(00)80506-1
– ident: 2021042604403718600_REF47
  doi: 10.1523/JNEUROSCI.04-07-01715.1984
– ident: 2021042604403718600_REF32
  doi: 10.1002/(SICI)1097-4695(19991105)41:2<242::AID-NEU7>3.0.CO;2-#
– ident: 2021042604403718600_REF33
  doi: 10.1002/neu.480210809
– ident: 2021042604403718600_REF73
  doi: 10.1038/373037a0
– ident: 2021042604403718600_REF63
  doi: 10.1038/79833
– ident: 2021042604403718600_REF64
  doi: 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
– ident: 2021042604403718600_REF86
– ident: 2021042604403718600_REF19
  doi: 10.1038/320269a0
– ident: 2021042604403718600_REF30
– ident: 2021042604403718600_REF41
  doi: 10.1083/jcb.82.3.811
– ident: 2021042604403718600_REF83
  doi: 10.1242/dev.126.15.3461
– ident: 2021042604403718600_REF82
  doi: 10.1073/pnas.83.18.7069
– ident: 2021042604403718600_REF78
  doi: 10.1523/JNEUROSCI.06-08-02267.1986
– ident: 2021042604403718600_REF55
  doi: 10.1046/j.1365-313X.1998.00124.x
– ident: 2021042604403718600_REF70
  doi: 10.1073/pnas.191351698
– ident: 2021042604403718600_REF74
– ident: 2021042604403718600_REF44
  doi: 10.1523/JNEUROSCI.10-12-03947.1990
– ident: 2021042604403718600_REF29
  doi: 10.1523/JNEUROSCI.22-15-06447.2002
– ident: 2021042604403718600_REF71
  doi: 10.1016/0896-6273(90)90194-K
– ident: 2021042604403718600_REF58
  doi: 10.1073/pnas.92.3.758
– ident: 2021042604403718600_REF51
  doi: 10.1038/321406a0
– ident: 2021042604403718600_REF7
  doi: 10.1146/annurev.ne.04.030181.000313
– ident: 2021042604403718600_REF12
  doi: 10.1113/jphysiol.1980.sp013145
– ident: 2021042604403718600_REF65
  doi: 10.1146/annurev.neuro.22.1.389
– ident: 2021042604403718600_REF5
  doi: 10.1016/0896-6273(93)90073-Z
– ident: 2021042604403718600_REF84
  doi: 10.1242/dev.127.10.2099
– ident: 2021042604403718600_REF23
  doi: 10.1523/JNEUROSCI.09-05-01523.1989
– ident: 2021042604403718600_REF31
– ident: 2021042604403718600_REF38
  doi: 10.1242/dev.123.1.451
– ident: 2021042604403718600_REF50
  doi: 10.1016/S0896-6273(02)01020-6
– ident: 2021042604403718600_REF69
  doi: 10.1016/S0165-3806(96)00184-8
– ident: 2021042604403718600_REF17
  doi: 10.1016/j.ydbio.2004.02.027
– ident: 2021042604403718600_REF20
  doi: 10.1002/ana.410110603
– ident: 2021042604403718600_REF18
  doi: 10.1007/BF01257985
– ident: 2021042604403718600_REF48
  doi: 10.1523/JNEUROSCI.17-20-07796.1997
– ident: 2021042604403718600_REF37
  doi: 10.1038/nrn731
– ident: 2021042604403718600_REF79
  doi: 10.1101/SQB.1983.048.01.067
– ident: 2021042604403718600_REF27
  doi: 10.1101/gr.9.4.334
– ident: 2021042604403718600_REF13
  doi: 10.1016/0012-1606(88)90357-0
– ident: 2021042604403718600_REF85
  doi: 10.1038/nn753
– ident: 2021042604403718600_REF77
  doi: 10.1016/0896-6273(90)90139-7
– ident: 2021042604403718600_REF36
  doi: 10.1523/JNEUROSCI.15-12-08177.1995
– ident: 2021042604403718600_REF60
  doi: 10.1016/S0896-6273(01)00326-9
– ident: 2021042604403718600_REF76
  doi: 10.1007/BF00301878
– ident: 2021042604403718600_REF21
  doi: 10.1002/mus.10269
– ident: 2021042604403718600_REF49
  doi: 10.1523/JNEUROSCI.17-15-05651.1997
– ident: 2021042604403718600_REF3
  doi: 10.1073/pnas.69.1.147
– ident: 2021042604403718600_REF6
  doi: 10.1523/JNEUROSCI.13-01-00167.1993
– ident: 2021042604403718600_REF28
  doi: 10.1523/JNEUROSCI.17-11-04170.1997
SSID ssj0003677
Score 2.0691047
Snippet Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas...
Before establishing terminal synapses with their final muscle targets,migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 2605
SubjectTerms Animals
Axons - pathology
Danio rerio
Embryo, Nonmammalian
Gene Dosage
Heterozygote
Muscle Fibers, Skeletal - pathology
Muscle Fibers, Skeletal - ultrastructure
Muscular Diseases - genetics
Muscular Diseases - pathology
Mutation
Neuromuscular Junction - physiology
Protein Subunits
Receptors, Nicotinic - genetics
Receptors, Nicotinic - metabolism
Synaptic Membranes
Synaptic Transmission - genetics
Zebrafish - embryology
Zebrafish - genetics
Title Increased neuromuscular activity causes axonal defects and muscular degeneration
URI http://dev.biologists.org/content/131/11/2605.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15128655
https://search.proquest.com/docview/17981860
https://search.proquest.com/docview/71935092
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9sRfFFtH70tGoQwYcSzeaSTe6x6NWqZ1vwCsWXZb9S-uCdmKbof-9vd5NNAhb1wZcQlmUIM7-dzMzOByEv8inLNYV3UiZyFmflTMRCGINzVeW5YGmpcls7fPC5ODwt386zeT_uqF_7r5LGGmRtK2f_QdqBKBbwDpnjCanj-Vdyx4G3eeb2Vt_23fjatJmmtoDBzYlQoqlNvSt-uBigNj6fw8bPw15tzlw36iC01nodZBi529-u3msQTliAnrz0ge0PuyGyfOQmfPdpxMcw289tL9BxoNac67YA590oHJH1aVMhrpjY7BU6UrFTOsQSHWpMluSDvy8cuvK3mh2mBFivzeUraCRfojzunn14xPdPFgu-nJ8uN8j1FIrHudjvP4Y_85S5SZzhE9tOUyD9OhAe2yddz-ir_Q9nhyzvkNutAxHtecnfJdfMaovc8CNFf26Rm5_aZAksflm7xXvkOIAiGoEi6kAReVBEHhRRC4oIoIjC3iEo7pOT_fnyzUHcjtKIVUaLi1jAK2WUVYYKrXA0mdKp1sLA_091UbF0litBE5WxSksloeRFoWhWSQ0tjdfpA7K5Wq_MNomKmRFSCpUJKrOihAtcGFjlpaxg2gsjJuR5x0D-zXdM4dbTBJc5uMwdlyfkZcda7ruNQanVvC0U5MALXFNusTEhzzrOc2g-e50lVmbd1Ny22qMlS67eUcA7gUGcTshDL7L-g2Dn2pLsR3-k_pjc6mG-QzYvvjfmCdmodfPUgesXf7iMhw
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+neuromuscular+activity+causes+axonal+defects+and+muscular+degeneration&rft.jtitle=Development+%28Cambridge%29&rft.au=Lefebvre%2C+J+L&rft.au=Ono%2C+F&rft.au=Puglielli%2C+C&rft.au=Seidner%2C+G&rft.date=2004-06-01&rft.issn=0950-1991&rft.volume=131&rft.issue=11&rft.spage=2605&rft.epage=2618&rft_id=info:doi/10.1242%2Fdev.01123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon