Increased neuromuscular activity causes axonal defects and muscular degeneration
Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the func...
Saved in:
Published in: | Development (Cambridge) Vol. 131; no. 11; pp. 2605 - 2618 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
The Company of Biologists Limited
01-06-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts. |
---|---|
AbstractList | Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor alpha -subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts. Before establishing terminal synapses with their final muscle targets,migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twistermutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts. Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twister mutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts. |
Author | Glen Seidner Fumihito Ono Cristina Puglielli Julie L. Lefebvre Michael Granato Paul Brehm Clara Franzini-Armstrong |
Author_xml | – sequence: 1 givenname: Julie L surname: Lefebvre fullname: Lefebvre, Julie L organization: Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA – sequence: 2 givenname: Fumihito surname: Ono fullname: Ono, Fumihito – sequence: 3 givenname: Cristina surname: Puglielli fullname: Puglielli, Cristina – sequence: 4 givenname: Glen surname: Seidner fullname: Seidner, Glen – sequence: 5 givenname: Clara surname: Franzini-Armstrong fullname: Franzini-Armstrong, Clara – sequence: 6 givenname: Paul surname: Brehm fullname: Brehm, Paul – sequence: 7 givenname: Michael surname: Granato fullname: Granato, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15128655$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0DtPwzAUhmELgaBcBv4AyoTEkOLjxHY9IsRNQoIBZsuxT4pRahc74fLvSWkFI5OPpUff8O6T7RADEnIMdAqsZucO36cUgFVbZAK1lKUCprbJhCpOS1AK9sh-zq-U0kpIuUv2gAObCc4n5PEu2IQmoysCDikuhmyHzqTC2N6_-_6rsGbImAvzGYPpCoct2n78Blf8WodzDJhM72M4JDut6TIebd4D8nx99XR5W94_3NxdXtyXtgbZl0bySoBoEYyzIGfCOuacQcmAOdkKprg1QG0tWtfYhjFupIW6bRylq7M6IKfr3WWKbwPmXi98tth1JmAcspagKk4V-xeCVDOYCTrCszW0KeacsNXL5BcmfWmgetVZj531T-fRnmxGh2aB7k9uwo5gugYvfv7y4RPqxscuzn3u82oHu7jUUIEG0ExQXn0D29mMIA |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2004_09_008 crossref_primary_10_1016_j_ydbio_2005_01_012 crossref_primary_10_1073_pnas_1215858109 crossref_primary_10_1111_j_1529_8027_2012_00371_x crossref_primary_10_1016_j_neures_2011_06_003 crossref_primary_10_1152_jn_00454_2004 crossref_primary_10_1371_journal_pone_0271707 crossref_primary_10_1002_dneu_20872 crossref_primary_10_1073_pnas_0607450104 crossref_primary_10_1242_jeb_01826 crossref_primary_10_1089_zeb_2006_3_173 crossref_primary_10_1242_dev_01410 crossref_primary_10_1242_dev_02140 crossref_primary_10_1002_dneu_20791 crossref_primary_10_1186_s13578_015_0054_6 crossref_primary_10_1517_17460440902835483 crossref_primary_10_1242_dev_02559 crossref_primary_10_1242_jcs_02625 crossref_primary_10_3390_ijms17111941 crossref_primary_10_1097_WCO_0b013e328364dc0f crossref_primary_10_1038_srep20466 crossref_primary_10_1523_JNEUROSCI_3656_05_2006 crossref_primary_10_1002_dvg_20631 crossref_primary_10_1016_j_etap_2017_09_009 crossref_primary_10_1016_j_taap_2015_01_022 crossref_primary_10_1111_j_1460_9568_2008_06418_x crossref_primary_10_1016_j_ydbio_2005_06_027 crossref_primary_10_1016_j_cophys_2018_06_005 crossref_primary_10_1016_j_neuron_2008_12_025 crossref_primary_10_1093_bfgp_eln039 crossref_primary_10_1016_j_ntt_2013_01_003 crossref_primary_10_3389_fenvs_2022_1001504 crossref_primary_10_1016_j_gene_2020_145193 crossref_primary_10_1002_bies_20153 crossref_primary_10_1523_JNEUROSCI_6572_10_2011 crossref_primary_10_1016_j_taap_2008_06_025 crossref_primary_10_1007_s12576_015_0372_9 crossref_primary_10_1098_rstb_2007_2257 crossref_primary_10_1016_j_envpol_2020_115090 crossref_primary_10_1371_journal_pone_0029063 crossref_primary_10_1002_cne_21903 crossref_primary_10_1016_j_taap_2005_06_016 crossref_primary_10_1073_pnas_1119268109 crossref_primary_10_1073_pnas_0610822104 crossref_primary_10_1111_j_1471_4159_2007_04980_x crossref_primary_10_1021_acs_est_2c00161 crossref_primary_10_1016_j_ydbio_2006_07_032 crossref_primary_10_1093_gerona_gln074 |
Cites_doi | 10.1523/JNEUROSCI.05-04-01076.1985 10.1016/S1366-2120(08)70068-0 10.1523/JNEUROSCI.06-08-02278.1986 10.1002/cne.902460403 10.1016/0896-6273(94)90257-7 10.1523/JNEUROSCI.22-15-06491.2002 10.1093/genetics/148.1.361 10.1152/physrev.1998.78.1.143 10.1016/S0301-0082(00)00055-1 10.1038/nn788 10.1002/(SICI)1097-0177(199811)213:3<334::AID-AJA9>3.0.CO;2-4 10.1038/ng0498-338 10.1016/S0960-9822(00)00048-8 10.1523/JNEUROSCI.12-05-01859.1992 10.1152/jn.1999.81.6.2852 10.1007/BF00343370 10.1016/S0959-4388(98)80018-4 10.1093/hmg/6.5.767 10.1093/hmg/5.9.1217 10.1126/science.2462281 10.1016/0006-8993(83)90699-6 10.1242/dev.122.11.3371 10.1523/JNEUROSCI.22-06-02206.2002 10.1016/0014-4886(75)90258-7 10.1016/0012-1606(91)90051-4 10.1038/305632a0 10.1038/271364a0 10.1212/WNL.22.9.1026 10.1523/JNEUROSCI.21-24-09678.2001 10.1016/0012-1606(86)90126-0 10.1006/dbio.1994.1010 10.1038/72082 10.1523/JNEUROSCI.23-33-10467.2003 10.1016/S0896-6273(00)80506-1 10.1523/JNEUROSCI.04-07-01715.1984 10.1002/(SICI)1097-4695(19991105)41:2<242::AID-NEU7>3.0.CO;2-# 10.1002/neu.480210809 10.1038/373037a0 10.1038/79833 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S 10.1038/320269a0 10.1083/jcb.82.3.811 10.1242/dev.126.15.3461 10.1073/pnas.83.18.7069 10.1523/JNEUROSCI.06-08-02267.1986 10.1046/j.1365-313X.1998.00124.x 10.1073/pnas.191351698 10.1523/JNEUROSCI.10-12-03947.1990 10.1523/JNEUROSCI.22-15-06447.2002 10.1016/0896-6273(90)90194-K 10.1073/pnas.92.3.758 10.1038/321406a0 10.1146/annurev.ne.04.030181.000313 10.1113/jphysiol.1980.sp013145 10.1146/annurev.neuro.22.1.389 10.1016/0896-6273(93)90073-Z 10.1242/dev.127.10.2099 10.1523/JNEUROSCI.09-05-01523.1989 10.1242/dev.123.1.451 10.1016/S0896-6273(02)01020-6 10.1016/S0165-3806(96)00184-8 10.1016/j.ydbio.2004.02.027 10.1002/ana.410110603 10.1007/BF01257985 10.1523/JNEUROSCI.17-20-07796.1997 10.1038/nrn731 10.1101/SQB.1983.048.01.067 10.1101/gr.9.4.334 10.1016/0012-1606(88)90357-0 10.1038/nn753 10.1016/0896-6273(90)90139-7 10.1523/JNEUROSCI.15-12-08177.1995 10.1016/S0896-6273(01)00326-9 10.1007/BF00301878 10.1002/mus.10269 10.1523/JNEUROSCI.17-15-05651.1997 10.1073/pnas.69.1.147 10.1523/JNEUROSCI.13-01-00167.1993 10.1523/JNEUROSCI.17-11-04170.1997 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
DOI | 10.1242/dev.01123 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 2618 |
ExternalDocumentID | 10_1242_dev_01123 15128655 develop_131_11_2605 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GroupedDBID | - 0R 186 2WC 34G 39C 3O- 4.4 53G 55 5GY 5RE 5VS 85S 9M8 AAIKC ABFLS ABSGY ABZEH ACGFS ACPRK ADACO ADBBV ADBIT AENEX AETEA AFDAS AFFNX AGCDD AHERT ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 DZ E3Z EBS EJD ET F20 F5P GJ GX1 H13 HZ H~9 INIJC KQ8 O0- O9- OK1 P2P R.V RCB RHF RHI SJN TWZ UPT UQL WH7 WOQ X X7M XJT ZA5 ZCG ZHY ZXP ZY4 --- -DZ -ET -~X .55 .GJ 0R~ 18M AAFWJ ABTAH ACREN ADFRT AGGIJ AI. AMTXH BTFSW CGR CUY CVF ECM EIF F9R HZ~ MVM NPM OHT TR2 VH1 W8F XOL XSW ZGI AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c417t-a753616fe1adc1786cd2ddae7212d7f6295ca10c46fdbcb225a7c14fbd005a7c3 |
ISSN | 0950-1991 |
IngestDate | Fri Oct 25 04:01:20 EDT 2024 Fri Oct 25 11:10:44 EDT 2024 Thu Nov 21 23:23:22 EST 2024 Sat Sep 28 08:40:39 EDT 2024 Fri Jan 15 20:24:48 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-a753616fe1adc1786cd2ddae7212d7f6295ca10c46fdbcb225a7c14fbd005a7c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15128655 |
PQID | 17981860 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_71935092 proquest_miscellaneous_17981860 crossref_primary_10_1242_dev_01123 pubmed_primary_15128655 highwire_biologists_develop_131_11_2605 |
PublicationCentury | 2000 |
PublicationDate | 20040601 2004-Jun 2004-06-01 |
PublicationDateYYYYMMDD | 2004-06-01 |
PublicationDate_xml | – month: 06 year: 2004 text: 20040601 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2004 |
Publisher | The Company of Biologists Limited |
Publisher_xml | – name: The Company of Biologists Limited |
References | 2021042604403718600_REF1 2021042604403718600_REF3 2021042604403718600_REF2 2021042604403718600_REF5 2021042604403718600_REF4 2021042604403718600_REF7 2021042604403718600_REF29 2021042604403718600_REF6 2021042604403718600_REF28 2021042604403718600_REF9 2021042604403718600_REF8 2021042604403718600_REF36 2021042604403718600_REF35 2021042604403718600_REF79 2021042604403718600_REF38 2021042604403718600_REF37 2021042604403718600_REF32 2021042604403718600_REF76 2021042604403718600_REF31 2021042604403718600_REF75 2021042604403718600_REF34 2021042604403718600_REF78 2021042604403718600_REF33 2021042604403718600_REF77 2021042604403718600_REF72 2021042604403718600_REF71 2021042604403718600_REF30 2021042604403718600_REF74 2021042604403718600_REF73 2021042604403718600_REF70 2021042604403718600_REF18 2021042604403718600_REF17 2021042604403718600_REF19 2021042604403718600_REF25 2021042604403718600_REF69 2021042604403718600_REF24 2021042604403718600_REF68 2021042604403718600_REF27 2021042604403718600_REF26 2021042604403718600_REF21 2021042604403718600_REF65 2021042604403718600_REF20 2021042604403718600_REF64 2021042604403718600_REF23 2021042604403718600_REF67 2021042604403718600_REF22 2021042604403718600_REF66 2021042604403718600_REF61 2021042604403718600_REF60 2021042604403718600_REF63 2021042604403718600_REF62 2021042604403718600_REF14 2021042604403718600_REF58 2021042604403718600_REF13 2021042604403718600_REF57 2021042604403718600_REF16 2021042604403718600_REF15 2021042604403718600_REF59 2021042604403718600_REF10 2021042604403718600_REF54 2021042604403718600_REF53 2021042604403718600_REF12 2021042604403718600_REF56 2021042604403718600_REF11 2021042604403718600_REF55 2021042604403718600_REF50 2021042604403718600_REF52 2021042604403718600_REF51 2021042604403718600_REF39 2021042604403718600_REF47 2021042604403718600_REF46 2021042604403718600_REF49 2021042604403718600_REF48 2021042604403718600_REF43 2021042604403718600_REF42 2021042604403718600_REF86 2021042604403718600_REF45 2021042604403718600_REF44 2021042604403718600_REF83 2021042604403718600_REF82 2021042604403718600_REF41 2021042604403718600_REF85 2021042604403718600_REF40 2021042604403718600_REF84 2021042604403718600_REF81 2021042604403718600_REF80 |
References_xml | – ident: 2021042604403718600_REF8 doi: 10.1523/JNEUROSCI.05-04-01076.1985 – ident: 2021042604403718600_REF62 doi: 10.1016/S1366-2120(08)70068-0 – ident: 2021042604403718600_REF54 doi: 10.1523/JNEUROSCI.06-08-02278.1986 – ident: 2021042604403718600_REF9 doi: 10.1002/cne.902460403 – ident: 2021042604403718600_REF1 doi: 10.1016/0896-6273(94)90257-7 – ident: 2021042604403718600_REF59 doi: 10.1523/JNEUROSCI.22-15-06491.2002 – ident: 2021042604403718600_REF68 doi: 10.1093/genetics/148.1.361 – ident: 2021042604403718600_REF25 doi: 10.1152/physrev.1998.78.1.143 – ident: 2021042604403718600_REF66 – ident: 2021042604403718600_REF81 doi: 10.1016/S0301-0082(00)00055-1 – ident: 2021042604403718600_REF2 doi: 10.1038/nn788 – ident: 2021042604403718600_REF4 doi: 10.1002/(SICI)1097-0177(199811)213:3<334::AID-AJA9>3.0.CO;2-4 – ident: 2021042604403718600_REF39 doi: 10.1038/ng0498-338 – ident: 2021042604403718600_REF53 doi: 10.1016/S0960-9822(00)00048-8 – ident: 2021042604403718600_REF45 doi: 10.1523/JNEUROSCI.12-05-01859.1992 – ident: 2021042604403718600_REF56 doi: 10.1152/jn.1999.81.6.2852 – ident: 2021042604403718600_REF75 doi: 10.1007/BF00343370 – ident: 2021042604403718600_REF15 doi: 10.1016/S0959-4388(98)80018-4 – ident: 2021042604403718600_REF14 – ident: 2021042604403718600_REF11 doi: 10.1093/hmg/6.5.767 – ident: 2021042604403718600_REF22 doi: 10.1093/hmg/5.9.1217 – ident: 2021042604403718600_REF42 doi: 10.1126/science.2462281 – ident: 2021042604403718600_REF34 doi: 10.1016/0006-8993(83)90699-6 – ident: 2021042604403718600_REF16 doi: 10.1242/dev.122.11.3371 – ident: 2021042604403718600_REF46 doi: 10.1523/JNEUROSCI.22-06-02206.2002 – ident: 2021042604403718600_REF40 doi: 10.1016/0014-4886(75)90258-7 – ident: 2021042604403718600_REF26 doi: 10.1016/0012-1606(91)90051-4 – ident: 2021042604403718600_REF35 doi: 10.1038/305632a0 – ident: 2021042604403718600_REF61 doi: 10.1038/271364a0 – ident: 2021042604403718600_REF52 – ident: 2021042604403718600_REF24 doi: 10.1212/WNL.22.9.1026 – ident: 2021042604403718600_REF72 doi: 10.1523/JNEUROSCI.21-24-09678.2001 – ident: 2021042604403718600_REF10 doi: 10.1016/0012-1606(86)90126-0 – ident: 2021042604403718600_REF67 doi: 10.1006/dbio.1994.1010 – ident: 2021042604403718600_REF57 doi: 10.1038/72082 – ident: 2021042604403718600_REF43 doi: 10.1523/JNEUROSCI.23-33-10467.2003 – ident: 2021042604403718600_REF80 doi: 10.1016/S0896-6273(00)80506-1 – ident: 2021042604403718600_REF47 doi: 10.1523/JNEUROSCI.04-07-01715.1984 – ident: 2021042604403718600_REF32 doi: 10.1002/(SICI)1097-4695(19991105)41:2<242::AID-NEU7>3.0.CO;2-# – ident: 2021042604403718600_REF33 doi: 10.1002/neu.480210809 – ident: 2021042604403718600_REF73 doi: 10.1038/373037a0 – ident: 2021042604403718600_REF63 doi: 10.1038/79833 – ident: 2021042604403718600_REF64 doi: 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S – ident: 2021042604403718600_REF86 – ident: 2021042604403718600_REF19 doi: 10.1038/320269a0 – ident: 2021042604403718600_REF30 – ident: 2021042604403718600_REF41 doi: 10.1083/jcb.82.3.811 – ident: 2021042604403718600_REF83 doi: 10.1242/dev.126.15.3461 – ident: 2021042604403718600_REF82 doi: 10.1073/pnas.83.18.7069 – ident: 2021042604403718600_REF78 doi: 10.1523/JNEUROSCI.06-08-02267.1986 – ident: 2021042604403718600_REF55 doi: 10.1046/j.1365-313X.1998.00124.x – ident: 2021042604403718600_REF70 doi: 10.1073/pnas.191351698 – ident: 2021042604403718600_REF74 – ident: 2021042604403718600_REF44 doi: 10.1523/JNEUROSCI.10-12-03947.1990 – ident: 2021042604403718600_REF29 doi: 10.1523/JNEUROSCI.22-15-06447.2002 – ident: 2021042604403718600_REF71 doi: 10.1016/0896-6273(90)90194-K – ident: 2021042604403718600_REF58 doi: 10.1073/pnas.92.3.758 – ident: 2021042604403718600_REF51 doi: 10.1038/321406a0 – ident: 2021042604403718600_REF7 doi: 10.1146/annurev.ne.04.030181.000313 – ident: 2021042604403718600_REF12 doi: 10.1113/jphysiol.1980.sp013145 – ident: 2021042604403718600_REF65 doi: 10.1146/annurev.neuro.22.1.389 – ident: 2021042604403718600_REF5 doi: 10.1016/0896-6273(93)90073-Z – ident: 2021042604403718600_REF84 doi: 10.1242/dev.127.10.2099 – ident: 2021042604403718600_REF23 doi: 10.1523/JNEUROSCI.09-05-01523.1989 – ident: 2021042604403718600_REF31 – ident: 2021042604403718600_REF38 doi: 10.1242/dev.123.1.451 – ident: 2021042604403718600_REF50 doi: 10.1016/S0896-6273(02)01020-6 – ident: 2021042604403718600_REF69 doi: 10.1016/S0165-3806(96)00184-8 – ident: 2021042604403718600_REF17 doi: 10.1016/j.ydbio.2004.02.027 – ident: 2021042604403718600_REF20 doi: 10.1002/ana.410110603 – ident: 2021042604403718600_REF18 doi: 10.1007/BF01257985 – ident: 2021042604403718600_REF48 doi: 10.1523/JNEUROSCI.17-20-07796.1997 – ident: 2021042604403718600_REF37 doi: 10.1038/nrn731 – ident: 2021042604403718600_REF79 doi: 10.1101/SQB.1983.048.01.067 – ident: 2021042604403718600_REF27 doi: 10.1101/gr.9.4.334 – ident: 2021042604403718600_REF13 doi: 10.1016/0012-1606(88)90357-0 – ident: 2021042604403718600_REF85 doi: 10.1038/nn753 – ident: 2021042604403718600_REF77 doi: 10.1016/0896-6273(90)90139-7 – ident: 2021042604403718600_REF36 doi: 10.1523/JNEUROSCI.15-12-08177.1995 – ident: 2021042604403718600_REF60 doi: 10.1016/S0896-6273(01)00326-9 – ident: 2021042604403718600_REF76 doi: 10.1007/BF00301878 – ident: 2021042604403718600_REF21 doi: 10.1002/mus.10269 – ident: 2021042604403718600_REF49 doi: 10.1523/JNEUROSCI.17-15-05651.1997 – ident: 2021042604403718600_REF3 doi: 10.1073/pnas.69.1.147 – ident: 2021042604403718600_REF6 doi: 10.1523/JNEUROSCI.13-01-00167.1993 – ident: 2021042604403718600_REF28 doi: 10.1523/JNEUROSCI.17-11-04170.1997 |
SSID | ssj0003677 |
Score | 2.0691047 |
Snippet | Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas... Before establishing terminal synapses with their final muscle targets,migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2605 |
SubjectTerms | Animals Axons - pathology Danio rerio Embryo, Nonmammalian Gene Dosage Heterozygote Muscle Fibers, Skeletal - pathology Muscle Fibers, Skeletal - ultrastructure Muscular Diseases - genetics Muscular Diseases - pathology Mutation Neuromuscular Junction - physiology Protein Subunits Receptors, Nicotinic - genetics Receptors, Nicotinic - metabolism Synaptic Membranes Synaptic Transmission - genetics Zebrafish - embryology Zebrafish - genetics |
Title | Increased neuromuscular activity causes axonal defects and muscular degeneration |
URI | http://dev.biologists.org/content/131/11/2605.abstract https://www.ncbi.nlm.nih.gov/pubmed/15128655 https://search.proquest.com/docview/17981860 https://search.proquest.com/docview/71935092 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9sRfFFtH70tGoQwYcSzeaSTe6x6NWqZ1vwCsWXZb9S-uCdmKbof-9vd5NNAhb1wZcQlmUIM7-dzMzOByEv8inLNYV3UiZyFmflTMRCGINzVeW5YGmpcls7fPC5ODwt386zeT_uqF_7r5LGGmRtK2f_QdqBKBbwDpnjCanj-Vdyx4G3eeb2Vt_23fjatJmmtoDBzYlQoqlNvSt-uBigNj6fw8bPw15tzlw36iC01nodZBi529-u3msQTliAnrz0ge0PuyGyfOQmfPdpxMcw289tL9BxoNac67YA590oHJH1aVMhrpjY7BU6UrFTOsQSHWpMluSDvy8cuvK3mh2mBFivzeUraCRfojzunn14xPdPFgu-nJ8uN8j1FIrHudjvP4Y_85S5SZzhE9tOUyD9OhAe2yddz-ir_Q9nhyzvkNutAxHtecnfJdfMaovc8CNFf26Rm5_aZAksflm7xXvkOIAiGoEi6kAReVBEHhRRC4oIoIjC3iEo7pOT_fnyzUHcjtKIVUaLi1jAK2WUVYYKrXA0mdKp1sLA_091UbF0litBE5WxSksloeRFoWhWSQ0tjdfpA7K5Wq_MNomKmRFSCpUJKrOihAtcGFjlpaxg2gsjJuR5x0D-zXdM4dbTBJc5uMwdlyfkZcda7ruNQanVvC0U5MALXFNusTEhzzrOc2g-e50lVmbd1Ny22qMlS67eUcA7gUGcTshDL7L-g2Dn2pLsR3-k_pjc6mG-QzYvvjfmCdmodfPUgesXf7iMhw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+neuromuscular+activity+causes+axonal+defects+and+muscular+degeneration&rft.jtitle=Development+%28Cambridge%29&rft.au=Lefebvre%2C+J+L&rft.au=Ono%2C+F&rft.au=Puglielli%2C+C&rft.au=Seidner%2C+G&rft.date=2004-06-01&rft.issn=0950-1991&rft.volume=131&rft.issue=11&rft.spage=2605&rft.epage=2618&rft_id=info:doi/10.1242%2Fdev.01123&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |