Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy

Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise m...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Vol. 77; no. 5; pp. 1108 - 1118
Main Authors: Mahne, Ashley E, Mauze, Smita, Joyce-Shaikh, Barbara, Xia, Jane, Bowman, Edward P, Beebe, Amy M, Cua, Daniel J, Jain, Renu
Format: Journal Article
Language:English
Published: United States American Association for Cancer Research, Inc 01-03-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44 ICOS intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8 T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8 T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. .
AbstractList These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg depletion and costimulatory signaling in this therapeutic approach to engage antitumor T-cell attack.Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non–Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108–18. ©2016 AACR.
Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. ©2016 AACR.
These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg depletion and costimulatory signaling in this therapeutic approach to engage antitumor T-cell attack. Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. [copy2016 AACR.
Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44 ICOS intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8 T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8 T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. .
Author Mauze, Smita
Bowman, Edward P
Cua, Daniel J
Joyce-Shaikh, Barbara
Jain, Renu
Xia, Jane
Mahne, Ashley E
Beebe, Amy M
Author_xml – sequence: 1
  givenname: Ashley E
  surname: Mahne
  fullname: Mahne, Ashley E
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 2
  givenname: Smita
  surname: Mauze
  fullname: Mauze, Smita
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 3
  givenname: Barbara
  surname: Joyce-Shaikh
  fullname: Joyce-Shaikh, Barbara
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 4
  givenname: Jane
  surname: Xia
  fullname: Xia, Jane
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 5
  givenname: Edward P
  surname: Bowman
  fullname: Bowman, Edward P
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 6
  givenname: Amy M
  surname: Beebe
  fullname: Beebe, Amy M
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 7
  givenname: Daniel J
  surname: Cua
  fullname: Cua, Daniel J
  organization: Merck Research Laboratories, Palo Alto, California
– sequence: 8
  givenname: Renu
  surname: Jain
  fullname: Jain, Renu
  email: renujain429@gmail.com
  organization: Merck Research Laboratories, Palo Alto, California. renujain429@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28122327$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGUKpk8fkIqpG6ycQoYDF6OJq-RolSaOmuE8R3XkQ1TsBeTXx-sPBZZZQNC5zvnintO0KHzDhC6oOSKUqF-E0JUJrhkV6vlY0aLjMhSHqAFFbnKJOfiEC0-mWN0EuNzegpKxBE6ZooyljO5QC_Xk-nxxvcQ8dYHvIF26s3owx5XmYW-x9ew62HsvMPGNXjl49gNH8jfrnWm71yLO4eXrXddUi2-W1cbXJnQJl_S5txqGtK5HobJ-fEfBLPbn6EfW9NHOH-_T9HT7U21us8e_tytV8uHzHIqx6zkhBglWW5FU1NpLRM12NwUtQBrLOUMGlaygth6C4znTV0WvCyZBZCkqXl-ii7fcnfB_58gjnro4vw148BPUVOlqBSlovk30IIxJWipEvrrC_rsp5C2kagks7R1Oc8Wb5QNPsYAW70L3WDCXlOi5x713JGeO9KpR00LPfeYfD_f06d6gObT9VFc_grWmpsq
CitedBy_id crossref_primary_10_1200_JCO_2017_75_1610
crossref_primary_10_1158_1078_0432_CCR_19_0289
crossref_primary_10_1080_2162402X_2017_1371896
crossref_primary_10_3390_cells11010179
crossref_primary_10_1002_adfm_202008061
crossref_primary_10_1038_s41467_017_00449_z
crossref_primary_10_3233_HAB_160308
crossref_primary_10_1038_s41401_020_0424_4
crossref_primary_10_3389_fonc_2019_00279
crossref_primary_10_1016_j_jri_2022_103492
crossref_primary_10_1073_pnas_2200757119
crossref_primary_10_1080_2162402X_2019_1596005
crossref_primary_10_1158_0008_5472_CAN_16_1439
crossref_primary_10_3389_fimmu_2018_00610
crossref_primary_10_1016_j_jacc_2021_11_048
crossref_primary_10_1016_j_intimp_2021_108469
crossref_primary_10_1158_2326_6066_CIR_17_0632
crossref_primary_10_1016_j_intimp_2020_107097
crossref_primary_10_1134_S0026893317060097
crossref_primary_10_1158_1541_7786_MCR_20_0622
crossref_primary_10_1186_s13578_023_00961_4
crossref_primary_10_3389_fimmu_2020_629722
crossref_primary_10_1158_1078_0432_CCR_22_0339
crossref_primary_10_1007_s11886_023_01908_4
crossref_primary_10_1186_s13046_024_02973_5
crossref_primary_10_3390_cancers16051021
crossref_primary_10_1007_s11864_022_01007_6
crossref_primary_10_2217_imt_2017_0024
crossref_primary_10_1093_noajnl_vdz009
crossref_primary_10_1242_dmm_040386
crossref_primary_10_1186_s40425_018_0407_x
crossref_primary_10_1146_annurev_cancerbio_030419_033428
crossref_primary_10_18632_oncotarget_28461
crossref_primary_10_2139_ssrn_3981894
crossref_primary_10_1038_s41598_022_07153_z
crossref_primary_10_1016_j_esmoop_2023_100784
crossref_primary_10_1080_14728222_2018_1512588
crossref_primary_10_1186_s40425_019_0786_7
crossref_primary_10_3389_fimmu_2021_597761
crossref_primary_10_1016_j_vph_2021_106884
crossref_primary_10_1002_eji_202048992
crossref_primary_10_15252_emmm_201708662
crossref_primary_10_1002_jcp_26604
crossref_primary_10_3390_ijms221910800
crossref_primary_10_1016_j_cytogfr_2017_04_001
crossref_primary_10_1186_s13045_022_01282_8
crossref_primary_10_3390_ijms21114071
crossref_primary_10_1126_scitranslmed_abg8693
crossref_primary_10_4049_jimmunol_1901413
crossref_primary_10_1007_s12032_023_02289_y
crossref_primary_10_3389_fimmu_2021_643544
crossref_primary_10_1038_s41467_021_21099_2
crossref_primary_10_1186_s12943_020_01234_1
crossref_primary_10_1016_j_jaccao_2022_11_011
crossref_primary_10_1038_s41467_021_21563_z
crossref_primary_10_1016_j_smim_2021_101476
crossref_primary_10_1158_2326_6066_CIR_19_0748
crossref_primary_10_1016_j_cell_2021_05_027
crossref_primary_10_4103_0366_6999_204113
crossref_primary_10_1080_2162402X_2017_1315487
crossref_primary_10_1093_bbb_zbaa057
crossref_primary_10_3389_fimmu_2018_01048
crossref_primary_10_1016_j_xcrm_2022_100660
crossref_primary_10_1016_j_intimp_2020_106663
crossref_primary_10_1038_nrd_2018_75
crossref_primary_10_3389_fimmu_2021_695056
crossref_primary_10_1016_j_ccell_2023_02_014
crossref_primary_10_1158_0008_5472_CAN_23_2455
crossref_primary_10_3390_jcm8101667
crossref_primary_10_1136_jitc_2020_001584
crossref_primary_10_1016_j_jri_2020_103208
crossref_primary_10_3389_fimmu_2021_736269
crossref_primary_10_1016_j_it_2018_07_001
crossref_primary_10_1016_j_radonc_2023_109981
crossref_primary_10_1002_ijc_32181
crossref_primary_10_1007_s12032_024_02300_0
crossref_primary_10_1016_j_jcyt_2018_05_002
crossref_primary_10_1038_s41591_019_0420_8
crossref_primary_10_3389_fimmu_2019_00008
crossref_primary_10_1126_sciimmunol_aat7061
crossref_primary_10_1016_j_jcmgh_2022_09_007
crossref_primary_10_3390_v14010135
crossref_primary_10_1016_j_cellimm_2017_12_004
Cites_doi 10.4049/jimmunol.0902420
10.1158/2326-6066.CIR-13-0086
10.1038/ni759
10.1002/ijc.25429
10.1074/jbc.M009483200
10.4049/jimmunol.179.11.7365
10.1038/nri3311
10.1084/jem.20130579
10.1073/pnas.94.12.6216
10.1038/nm.3432
10.1016/S0960-9822(99)80093-1
10.1182/blood-2013-12-544742
10.1371/journal.pone.0030793
10.4049/jimmunol.1303204
10.1158/0008-5472.CAN-14-3510
10.1080/08820130802608238
10.1158/0008-5472.CAN-07-5839
10.1084/jem.20050940
10.1016/j.immuni.2013.10.016
10.1158/2326-6066.CIR-13-0013
10.1038/ni.1774
10.1074/jbc.274.10.6056
10.4049/jimmunol.176.11.6434
10.1371/journal.pone.0010436
10.1084/jem.20130573
10.1158/0008-5472.CAN-11-1620
10.1007/s00262-010-0866-5
10.4049/jimmunol.1403076
ContentType Journal Article
Copyright 2016 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. Mar 1, 2017
Copyright_xml – notice: 2016 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. Mar 1, 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1158/0008-5472.CAN-16-0797
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 1118
ExternalDocumentID 10_1158_0008_5472_CAN_16_0797
28122327
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
476
53G
5GY
5RE
5VS
6J9
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
NPM
OK1
P0W
P2P
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
AAYXX
CITATION
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
ID FETCH-LOGICAL-c417t-9400a8723c5db17cc25bec3a6b5ecac142ed29260cbfe243db964992cee70db43
ISSN 0008-5472
IngestDate Fri Oct 25 01:43:50 EDT 2024
Fri Oct 25 08:57:24 EDT 2024
Thu Oct 10 19:21:08 EDT 2024
Fri Nov 22 03:09:18 EST 2024
Sat Sep 28 08:46:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2016 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-9400a8723c5db17cc25bec3a6b5ecac142ed29260cbfe243db964992cee70db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1158/0008-5472.22415922
PMID 28122327
PQID 1983247274
PQPubID 105549
PageCount 11
ParticipantIDs proquest_miscellaneous_1881759813
proquest_miscellaneous_1862285198
proquest_journals_1983247274
crossref_primary_10_1158_0008_5472_CAN_16_0797
pubmed_primary_28122327
PublicationCentury 2000
PublicationDate 2017-03-01
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References Bulliard (2022061706171102300_bib13) 2013; 210
Suffner (2022061706171102300_bib21) 2010; 184
Komatsu (2022061706171102300_bib12) 2014; 20
Cohen (2022061706171102300_bib8) 2010; 5
Selby (2022061706171102300_bib27) 2013; 1
Zhou (2022061706171102300_bib22) 2007; 179
Shields (2022061706171102300_bib18) 2001; 276
Woo (2022061706171102300_bib23) 2012; 72
Shultz (2022061706171102300_bib24) 2012; 12
Coe (2022061706171102300_bib6) 2010; 59
Nishikawa (2022061706171102300_bib7) 2010; 127
Kim (2022061706171102300_bib26) 2015; 195
Zhou (2022061706171102300_bib10) 2009; 10
Wang (2022061706171102300_bib17) 2012; 7
Gurney (2022061706171102300_bib3) 1999; 9
Ko (2022061706171102300_bib5) 2005; 202
White (2022061706171102300_bib20) 2014; 193
Schaer (2022061706171102300_bib9) 2013; 1
Chao (2022061706171102300_bib19) 2009; 38
Sanmamed (2022061706171102300_bib15) 2015; 75
Kwon (2022061706171102300_bib2) 1999; 274
Shimizu (2022061706171102300_bib4) 2002; 3
Ramirez-Montagut (2022061706171102300_bib25) 2006; 176
Nishikawa (2022061706171102300_bib14) 2008; 68
Bailey-Bucktrout (2022061706171102300_bib11) 2013; 39
Nocentini (2022061706171102300_bib1) 1997; 94
Simpson (2022061706171102300_bib28) 2013; 210
Murphy (2022061706171102300_bib16) 2014; 123
References_xml – volume: 184
  start-page: 1810
  year: 2010
  ident: 2022061706171102300_bib21
  article-title: Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902420
  contributor:
    fullname: Suffner
– volume: 1
  start-page: 320
  year: 2013
  ident: 2022061706171102300_bib9
  article-title: GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-13-0086
  contributor:
    fullname: Schaer
– volume: 3
  start-page: 135
  year: 2002
  ident: 2022061706171102300_bib4
  article-title: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance
  publication-title: Nat Immunol
  doi: 10.1038/ni759
  contributor:
    fullname: Shimizu
– volume: 127
  start-page: 759
  year: 2010
  ident: 2022061706171102300_bib7
  article-title: Regulatory T cells in tumor immunity
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25429
  contributor:
    fullname: Nishikawa
– volume: 276
  start-page: 6591
  year: 2001
  ident: 2022061706171102300_bib18
  article-title: High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M009483200
  contributor:
    fullname: Shields
– volume: 179
  start-page: 7365
  year: 2007
  ident: 2022061706171102300_bib22
  article-title: Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.11.7365
  contributor:
    fullname: Zhou
– volume: 12
  start-page: 786
  year: 2012
  ident: 2022061706171102300_bib24
  article-title: Humanized mice for immune system investigation: progress, promise and challenges
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3311
  contributor:
    fullname: Shultz
– volume: 210
  start-page: 1695
  year: 2013
  ident: 2022061706171102300_bib28
  article-title: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma
  publication-title: J Exp Med
  doi: 10.1084/jem.20130579
  contributor:
    fullname: Simpson
– volume: 94
  start-page: 6216
  year: 1997
  ident: 2022061706171102300_bib1
  article-title: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.12.6216
  contributor:
    fullname: Nocentini
– volume: 20
  start-page: 62
  year: 2014
  ident: 2022061706171102300_bib12
  article-title: Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis
  publication-title: Nat Med
  doi: 10.1038/nm.3432
  contributor:
    fullname: Komatsu
– volume: 9
  start-page: 215
  year: 1999
  ident: 2022061706171102300_bib3
  article-title: Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(99)80093-1
  contributor:
    fullname: Gurney
– volume: 123
  start-page: 2172
  year: 2014
  ident: 2022061706171102300_bib16
  article-title: Anaphylaxis caused by repetitive doses of a GITR agonist monoclonal antibody in mice
  publication-title: Blood
  doi: 10.1182/blood-2013-12-544742
  contributor:
    fullname: Murphy
– volume: 7
  start-page: e30793
  year: 2012
  ident: 2022061706171102300_bib17
  article-title: Optimal population of FoxP3+ T cells in tumors requires an antigen priming-dependent trafficking receptor switch
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030793
  contributor:
    fullname: Wang
– volume: 193
  start-page: 1828
  year: 2014
  ident: 2022061706171102300_bib20
  article-title: Fcgamma receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1303204
  contributor:
    fullname: White
– volume: 75
  start-page: 3466
  year: 2015
  ident: 2022061706171102300_bib15
  article-title: Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2-/-IL2Rgammanull Immunodeficient Mice
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3510
  contributor:
    fullname: Sanmamed
– volume: 38
  start-page: 76
  year: 2009
  ident: 2022061706171102300_bib19
  article-title: Functional characterization of N297A, a murine surrogate for low-Fc binding anti-human CD3 antibodies
  publication-title: Immunol Invest
  doi: 10.1080/08820130802608238
  contributor:
    fullname: Chao
– volume: 68
  start-page: 5948
  year: 2008
  ident: 2022061706171102300_bib14
  article-title: Regulatory T cell-resistant CD8+ T cells induced by glucocorticoid-induced tumor necrosis factor receptor signaling
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5839
  contributor:
    fullname: Nishikawa
– volume: 202
  start-page: 885
  year: 2005
  ident: 2022061706171102300_bib5
  article-title: Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20050940
  contributor:
    fullname: Ko
– volume: 39
  start-page: 949
  year: 2013
  ident: 2022061706171102300_bib11
  article-title: Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.016
  contributor:
    fullname: Bailey-Bucktrout
– volume: 1
  start-page: 32
  year: 2013
  ident: 2022061706171102300_bib27
  article-title: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-13-0013
  contributor:
    fullname: Selby
– volume: 10
  start-page: 1000
  year: 2009
  ident: 2022061706171102300_bib10
  article-title: Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo
  publication-title: Nat Immunol
  doi: 10.1038/ni.1774
  contributor:
    fullname: Zhou
– volume: 274
  start-page: 6056
  year: 1999
  ident: 2022061706171102300_bib2
  article-title: Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.10.6056
  contributor:
    fullname: Kwon
– volume: 176
  start-page: 6434
  year: 2006
  ident: 2022061706171102300_bib25
  article-title: Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.11.6434
  contributor:
    fullname: Ramirez-Montagut
– volume: 5
  start-page: e10436
  year: 2010
  ident: 2022061706171102300_bib8
  article-title: Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010436
  contributor:
    fullname: Cohen
– volume: 210
  start-page: 1685
  year: 2013
  ident: 2022061706171102300_bib13
  article-title: Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies
  publication-title: J Exp Med
  doi: 10.1084/jem.20130573
  contributor:
    fullname: Bulliard
– volume: 72
  start-page: 917
  year: 2012
  ident: 2022061706171102300_bib23
  article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-1620
  contributor:
    fullname: Woo
– volume: 59
  start-page: 1367
  year: 2010
  ident: 2022061706171102300_bib6
  article-title: Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-010-0866-5
  contributor:
    fullname: Coe
– volume: 195
  start-page: 4721
  year: 2015
  ident: 2022061706171102300_bib26
  article-title: Authentic GITR signaling fails to induce tumor regression unless Foxp3+ regulatory t cells are depleted
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1403076
  contributor:
    fullname: Kim
SSID ssj0005105
Score 2.558787
Snippet Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models....
These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1108
SubjectTerms Animal models
Animals
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - pharmacology
Cancer
Cancer immunotherapy
CD223 antigen
CD8 antigen
Cell fate
Cell Line, Tumor
Colonic Neoplasms - immunology
Colonic Neoplasms - therapy
Depletion
Exhaustion
Fate maps
Foxp3 protein
Genotype & phenotype
Glucocorticoid-Induced TNFR-Related Protein - agonists
Glucocorticoid-Induced TNFR-Related Protein - immunology
Humans
Immunotherapy
Immunotherapy - methods
Lymphocyte Depletion - methods
Lymphocytes
Lymphocytes T
Melanoma - immunology
Melanoma - therapy
Mice
Mice, Inbred C57BL
Monoclonal antibodies
PD-1 protein
Signal Transduction
T cell receptors
T-Lymphocytes, Regulatory - immunology
Tumors
Title Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/28122327
https://www.proquest.com/docview/1983247274
https://search.proquest.com/docview/1862285198
https://search.proquest.com/docview/1881759813
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSIiEuiHcDBRmJW-SQ9XrX3mOUpDTQBqnZSrmt9uE0EW1SNc2B_npmbO8jolRw4LKKvJbteL4dz9jfjAn5VARRT-S6YHNeKCbysMdQzKyXap4Gka9DibHDx1M5manhSIxarfJW1rrsv0oaykDWGDn7D9KuGoUC-A0yhydIHZ5_JfehSZePaZoMg_DM3jWPJ-kxw1160DDXmHDbsZAHa_jGr8oq0-UFGuY2zKV_sV6ZNM6dL-P4rBMbznhJvIy3V_AcY3SJi-HaOR8eIJhuOi6V0MKcFVvSh1FKl5fdxhbEaboAU7e_WaCCGtWl2zvdwZ2fauX4uv6ZazZdpMsfi8ZhSfl6VhJ_HVXAbWbAAlmxuRrxA6DYGtg0f8qNumQj_sYTRVOGBcLeAtTVtS6XwmarLJW9uzNm2TxON5obwyEaVgAsAer-FSZQlpJp--sO-hPmhawnLc14N6P35HtydH5yksSjWbxHHnFQhni_w3D8raYhOZpt2aCLMoNuPt_bya799AenyBhH8TPy1Hk1tG_h-Jy09OoFeXzqeBsvyR2ikhpUUphoWqOSWlTSCpUUUEl3UEkrVNLlilaopIhKWqHStGtQSXdQ-YqcH43iwTFzt36wXHjylkWwqqRKcj8PisyTec4D0DN-GmaBztPcE1wXPAI3PM_mmgu_yKIQ3HYO1p7sFZnwX5P91XqlDwgVYTaX0EIY5looUaTZnCsp0YsHo8yft0m3nMvk2iZ3SYxTHCgkZagEJz-ByU-8MMHJb5PDcsYT981vEi-CVREqStEmH6vXoKVx-gDx6y3UgS45ODeReqiOAls-Up7fJm-sNKtRcbDDwfeRbx8ewDvypP6qDsn-7c1Wvyd7m2L7waDuFw-RwjQ
link.rule.ids 315,782,786,27934,27935
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Roles+for+Regulatory+T-cell+Depletion+and+Costimulatory+Signaling+in+Agonistic+GITR+Targeting+for+Tumor+Immunotherapy&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Mahne+Ashley+E&rft.au=Mauze+Smita&rft.au=Joyce-Shaikh%2C+Barbara&rft.au=Xia%2C+Jane&rft.date=2017-03-01&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=5&rft.spage=1108&rft.epage=1118&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-0797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon