Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy
Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise m...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Vol. 77; no. 5; pp. 1108 - 1118 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Association for Cancer Research, Inc
01-03-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44
ICOS
intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8
T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8
T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments.
. |
---|---|
AbstractList | These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg depletion and costimulatory signaling in this therapeutic approach to engage antitumor T-cell attack.Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non–Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108–18. ©2016 AACR. Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. ©2016 AACR. These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg depletion and costimulatory signaling in this therapeutic approach to engage antitumor T-cell attack. Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. [copy2016 AACR. Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44 ICOS intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8 T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8 T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. . |
Author | Mauze, Smita Bowman, Edward P Cua, Daniel J Joyce-Shaikh, Barbara Jain, Renu Xia, Jane Mahne, Ashley E Beebe, Amy M |
Author_xml | – sequence: 1 givenname: Ashley E surname: Mahne fullname: Mahne, Ashley E organization: Merck Research Laboratories, Palo Alto, California – sequence: 2 givenname: Smita surname: Mauze fullname: Mauze, Smita organization: Merck Research Laboratories, Palo Alto, California – sequence: 3 givenname: Barbara surname: Joyce-Shaikh fullname: Joyce-Shaikh, Barbara organization: Merck Research Laboratories, Palo Alto, California – sequence: 4 givenname: Jane surname: Xia fullname: Xia, Jane organization: Merck Research Laboratories, Palo Alto, California – sequence: 5 givenname: Edward P surname: Bowman fullname: Bowman, Edward P organization: Merck Research Laboratories, Palo Alto, California – sequence: 6 givenname: Amy M surname: Beebe fullname: Beebe, Amy M organization: Merck Research Laboratories, Palo Alto, California – sequence: 7 givenname: Daniel J surname: Cua fullname: Cua, Daniel J organization: Merck Research Laboratories, Palo Alto, California – sequence: 8 givenname: Renu surname: Jain fullname: Jain, Renu email: renujain429@gmail.com organization: Merck Research Laboratories, Palo Alto, California. renujain429@gmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28122327$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv3CAUhVGUKpk8fkIqpG6ycQoYDF6OJq-RolSaOmuE8R3XkQ1TsBeTXx-sPBZZZQNC5zvnintO0KHzDhC6oOSKUqF-E0JUJrhkV6vlY0aLjMhSHqAFFbnKJOfiEC0-mWN0EuNzegpKxBE6ZooyljO5QC_Xk-nxxvcQ8dYHvIF26s3owx5XmYW-x9ew62HsvMPGNXjl49gNH8jfrnWm71yLO4eXrXddUi2-W1cbXJnQJl_S5txqGtK5HobJ-fEfBLPbn6EfW9NHOH-_T9HT7U21us8e_tytV8uHzHIqx6zkhBglWW5FU1NpLRM12NwUtQBrLOUMGlaygth6C4znTV0WvCyZBZCkqXl-ii7fcnfB_58gjnro4vw148BPUVOlqBSlovk30IIxJWipEvrrC_rsp5C2kagks7R1Oc8Wb5QNPsYAW70L3WDCXlOi5x713JGeO9KpR00LPfeYfD_f06d6gObT9VFc_grWmpsq |
CitedBy_id | crossref_primary_10_1200_JCO_2017_75_1610 crossref_primary_10_1158_1078_0432_CCR_19_0289 crossref_primary_10_1080_2162402X_2017_1371896 crossref_primary_10_3390_cells11010179 crossref_primary_10_1002_adfm_202008061 crossref_primary_10_1038_s41467_017_00449_z crossref_primary_10_3233_HAB_160308 crossref_primary_10_1038_s41401_020_0424_4 crossref_primary_10_3389_fonc_2019_00279 crossref_primary_10_1016_j_jri_2022_103492 crossref_primary_10_1073_pnas_2200757119 crossref_primary_10_1080_2162402X_2019_1596005 crossref_primary_10_1158_0008_5472_CAN_16_1439 crossref_primary_10_3389_fimmu_2018_00610 crossref_primary_10_1016_j_jacc_2021_11_048 crossref_primary_10_1016_j_intimp_2021_108469 crossref_primary_10_1158_2326_6066_CIR_17_0632 crossref_primary_10_1016_j_intimp_2020_107097 crossref_primary_10_1134_S0026893317060097 crossref_primary_10_1158_1541_7786_MCR_20_0622 crossref_primary_10_1186_s13578_023_00961_4 crossref_primary_10_3389_fimmu_2020_629722 crossref_primary_10_1158_1078_0432_CCR_22_0339 crossref_primary_10_1007_s11886_023_01908_4 crossref_primary_10_1186_s13046_024_02973_5 crossref_primary_10_3390_cancers16051021 crossref_primary_10_1007_s11864_022_01007_6 crossref_primary_10_2217_imt_2017_0024 crossref_primary_10_1093_noajnl_vdz009 crossref_primary_10_1242_dmm_040386 crossref_primary_10_1186_s40425_018_0407_x crossref_primary_10_1146_annurev_cancerbio_030419_033428 crossref_primary_10_18632_oncotarget_28461 crossref_primary_10_2139_ssrn_3981894 crossref_primary_10_1038_s41598_022_07153_z crossref_primary_10_1016_j_esmoop_2023_100784 crossref_primary_10_1080_14728222_2018_1512588 crossref_primary_10_1186_s40425_019_0786_7 crossref_primary_10_3389_fimmu_2021_597761 crossref_primary_10_1016_j_vph_2021_106884 crossref_primary_10_1002_eji_202048992 crossref_primary_10_15252_emmm_201708662 crossref_primary_10_1002_jcp_26604 crossref_primary_10_3390_ijms221910800 crossref_primary_10_1016_j_cytogfr_2017_04_001 crossref_primary_10_1186_s13045_022_01282_8 crossref_primary_10_3390_ijms21114071 crossref_primary_10_1126_scitranslmed_abg8693 crossref_primary_10_4049_jimmunol_1901413 crossref_primary_10_1007_s12032_023_02289_y crossref_primary_10_3389_fimmu_2021_643544 crossref_primary_10_1038_s41467_021_21099_2 crossref_primary_10_1186_s12943_020_01234_1 crossref_primary_10_1016_j_jaccao_2022_11_011 crossref_primary_10_1038_s41467_021_21563_z crossref_primary_10_1016_j_smim_2021_101476 crossref_primary_10_1158_2326_6066_CIR_19_0748 crossref_primary_10_1016_j_cell_2021_05_027 crossref_primary_10_4103_0366_6999_204113 crossref_primary_10_1080_2162402X_2017_1315487 crossref_primary_10_1093_bbb_zbaa057 crossref_primary_10_3389_fimmu_2018_01048 crossref_primary_10_1016_j_xcrm_2022_100660 crossref_primary_10_1016_j_intimp_2020_106663 crossref_primary_10_1038_nrd_2018_75 crossref_primary_10_3389_fimmu_2021_695056 crossref_primary_10_1016_j_ccell_2023_02_014 crossref_primary_10_1158_0008_5472_CAN_23_2455 crossref_primary_10_3390_jcm8101667 crossref_primary_10_1136_jitc_2020_001584 crossref_primary_10_1016_j_jri_2020_103208 crossref_primary_10_3389_fimmu_2021_736269 crossref_primary_10_1016_j_it_2018_07_001 crossref_primary_10_1016_j_radonc_2023_109981 crossref_primary_10_1002_ijc_32181 crossref_primary_10_1007_s12032_024_02300_0 crossref_primary_10_1016_j_jcyt_2018_05_002 crossref_primary_10_1038_s41591_019_0420_8 crossref_primary_10_3389_fimmu_2019_00008 crossref_primary_10_1126_sciimmunol_aat7061 crossref_primary_10_1016_j_jcmgh_2022_09_007 crossref_primary_10_3390_v14010135 crossref_primary_10_1016_j_cellimm_2017_12_004 |
Cites_doi | 10.4049/jimmunol.0902420 10.1158/2326-6066.CIR-13-0086 10.1038/ni759 10.1002/ijc.25429 10.1074/jbc.M009483200 10.4049/jimmunol.179.11.7365 10.1038/nri3311 10.1084/jem.20130579 10.1073/pnas.94.12.6216 10.1038/nm.3432 10.1016/S0960-9822(99)80093-1 10.1182/blood-2013-12-544742 10.1371/journal.pone.0030793 10.4049/jimmunol.1303204 10.1158/0008-5472.CAN-14-3510 10.1080/08820130802608238 10.1158/0008-5472.CAN-07-5839 10.1084/jem.20050940 10.1016/j.immuni.2013.10.016 10.1158/2326-6066.CIR-13-0013 10.1038/ni.1774 10.1074/jbc.274.10.6056 10.4049/jimmunol.176.11.6434 10.1371/journal.pone.0010436 10.1084/jem.20130573 10.1158/0008-5472.CAN-11-1620 10.1007/s00262-010-0866-5 10.4049/jimmunol.1403076 |
ContentType | Journal Article |
Copyright | 2016 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Mar 1, 2017 |
Copyright_xml | – notice: 2016 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Mar 1, 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
DOI | 10.1158/0008-5472.CAN-16-0797 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 1118 |
ExternalDocumentID | 10_1158_0008_5472_CAN_16_0797 28122327 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 476 53G 5GY 5RE 5VS 6J9 ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 EBS ECM EIF EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO NPM OK1 P0W P2P PQQKQ RCR RHF RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ AAYXX CITATION 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c417t-9400a8723c5db17cc25bec3a6b5ecac142ed29260cbfe243db964992cee70db43 |
ISSN | 0008-5472 |
IngestDate | Fri Oct 25 01:43:50 EDT 2024 Fri Oct 25 08:57:24 EDT 2024 Thu Oct 10 19:21:08 EDT 2024 Fri Nov 22 03:09:18 EST 2024 Sat Sep 28 08:46:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2016 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-9400a8723c5db17cc25bec3a6b5ecac142ed29260cbfe243db964992cee70db43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1158/0008-5472.22415922 |
PMID | 28122327 |
PQID | 1983247274 |
PQPubID | 105549 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1881759813 proquest_miscellaneous_1862285198 proquest_journals_1983247274 crossref_primary_10_1158_0008_5472_CAN_16_0797 pubmed_primary_28122327 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Bulliard (2022061706171102300_bib13) 2013; 210 Suffner (2022061706171102300_bib21) 2010; 184 Komatsu (2022061706171102300_bib12) 2014; 20 Cohen (2022061706171102300_bib8) 2010; 5 Selby (2022061706171102300_bib27) 2013; 1 Zhou (2022061706171102300_bib22) 2007; 179 Shields (2022061706171102300_bib18) 2001; 276 Woo (2022061706171102300_bib23) 2012; 72 Shultz (2022061706171102300_bib24) 2012; 12 Coe (2022061706171102300_bib6) 2010; 59 Nishikawa (2022061706171102300_bib7) 2010; 127 Kim (2022061706171102300_bib26) 2015; 195 Zhou (2022061706171102300_bib10) 2009; 10 Wang (2022061706171102300_bib17) 2012; 7 Gurney (2022061706171102300_bib3) 1999; 9 Ko (2022061706171102300_bib5) 2005; 202 White (2022061706171102300_bib20) 2014; 193 Schaer (2022061706171102300_bib9) 2013; 1 Chao (2022061706171102300_bib19) 2009; 38 Sanmamed (2022061706171102300_bib15) 2015; 75 Kwon (2022061706171102300_bib2) 1999; 274 Shimizu (2022061706171102300_bib4) 2002; 3 Ramirez-Montagut (2022061706171102300_bib25) 2006; 176 Nishikawa (2022061706171102300_bib14) 2008; 68 Bailey-Bucktrout (2022061706171102300_bib11) 2013; 39 Nocentini (2022061706171102300_bib1) 1997; 94 Simpson (2022061706171102300_bib28) 2013; 210 Murphy (2022061706171102300_bib16) 2014; 123 |
References_xml | – volume: 184 start-page: 1810 year: 2010 ident: 2022061706171102300_bib21 article-title: Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice publication-title: J Immunol doi: 10.4049/jimmunol.0902420 contributor: fullname: Suffner – volume: 1 start-page: 320 year: 2013 ident: 2022061706171102300_bib9 article-title: GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-13-0086 contributor: fullname: Schaer – volume: 3 start-page: 135 year: 2002 ident: 2022061706171102300_bib4 article-title: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance publication-title: Nat Immunol doi: 10.1038/ni759 contributor: fullname: Shimizu – volume: 127 start-page: 759 year: 2010 ident: 2022061706171102300_bib7 article-title: Regulatory T cells in tumor immunity publication-title: Int J Cancer doi: 10.1002/ijc.25429 contributor: fullname: Nishikawa – volume: 276 start-page: 6591 year: 2001 ident: 2022061706171102300_bib18 article-title: High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R publication-title: J Biol Chem doi: 10.1074/jbc.M009483200 contributor: fullname: Shields – volume: 179 start-page: 7365 year: 2007 ident: 2022061706171102300_bib22 article-title: Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors publication-title: J Immunol doi: 10.4049/jimmunol.179.11.7365 contributor: fullname: Zhou – volume: 12 start-page: 786 year: 2012 ident: 2022061706171102300_bib24 article-title: Humanized mice for immune system investigation: progress, promise and challenges publication-title: Nat Rev Immunol doi: 10.1038/nri3311 contributor: fullname: Shultz – volume: 210 start-page: 1695 year: 2013 ident: 2022061706171102300_bib28 article-title: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma publication-title: J Exp Med doi: 10.1084/jem.20130579 contributor: fullname: Simpson – volume: 94 start-page: 6216 year: 1997 ident: 2022061706171102300_bib1 article-title: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.12.6216 contributor: fullname: Nocentini – volume: 20 start-page: 62 year: 2014 ident: 2022061706171102300_bib12 article-title: Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis publication-title: Nat Med doi: 10.1038/nm.3432 contributor: fullname: Komatsu – volume: 9 start-page: 215 year: 1999 ident: 2022061706171102300_bib3 article-title: Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR publication-title: Curr Biol doi: 10.1016/S0960-9822(99)80093-1 contributor: fullname: Gurney – volume: 123 start-page: 2172 year: 2014 ident: 2022061706171102300_bib16 article-title: Anaphylaxis caused by repetitive doses of a GITR agonist monoclonal antibody in mice publication-title: Blood doi: 10.1182/blood-2013-12-544742 contributor: fullname: Murphy – volume: 7 start-page: e30793 year: 2012 ident: 2022061706171102300_bib17 article-title: Optimal population of FoxP3+ T cells in tumors requires an antigen priming-dependent trafficking receptor switch publication-title: PLoS One doi: 10.1371/journal.pone.0030793 contributor: fullname: Wang – volume: 193 start-page: 1828 year: 2014 ident: 2022061706171102300_bib20 article-title: Fcgamma receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization publication-title: J Immunol doi: 10.4049/jimmunol.1303204 contributor: fullname: White – volume: 75 start-page: 3466 year: 2015 ident: 2022061706171102300_bib15 article-title: Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2-/-IL2Rgammanull Immunodeficient Mice publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3510 contributor: fullname: Sanmamed – volume: 38 start-page: 76 year: 2009 ident: 2022061706171102300_bib19 article-title: Functional characterization of N297A, a murine surrogate for low-Fc binding anti-human CD3 antibodies publication-title: Immunol Invest doi: 10.1080/08820130802608238 contributor: fullname: Chao – volume: 68 start-page: 5948 year: 2008 ident: 2022061706171102300_bib14 article-title: Regulatory T cell-resistant CD8+ T cells induced by glucocorticoid-induced tumor necrosis factor receptor signaling publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-5839 contributor: fullname: Nishikawa – volume: 202 start-page: 885 year: 2005 ident: 2022061706171102300_bib5 article-title: Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells publication-title: J Exp Med doi: 10.1084/jem.20050940 contributor: fullname: Ko – volume: 39 start-page: 949 year: 2013 ident: 2022061706171102300_bib11 article-title: Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response publication-title: Immunity doi: 10.1016/j.immuni.2013.10.016 contributor: fullname: Bailey-Bucktrout – volume: 1 start-page: 32 year: 2013 ident: 2022061706171102300_bib27 article-title: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-13-0013 contributor: fullname: Selby – volume: 10 start-page: 1000 year: 2009 ident: 2022061706171102300_bib10 article-title: Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo publication-title: Nat Immunol doi: 10.1038/ni.1774 contributor: fullname: Zhou – volume: 274 start-page: 6056 year: 1999 ident: 2022061706171102300_bib2 article-title: Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand publication-title: J Biol Chem doi: 10.1074/jbc.274.10.6056 contributor: fullname: Kwon – volume: 176 start-page: 6434 year: 2006 ident: 2022061706171102300_bib25 article-title: Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity publication-title: J Immunol doi: 10.4049/jimmunol.176.11.6434 contributor: fullname: Ramirez-Montagut – volume: 5 start-page: e10436 year: 2010 ident: 2022061706171102300_bib8 article-title: Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation publication-title: PLoS One doi: 10.1371/journal.pone.0010436 contributor: fullname: Cohen – volume: 210 start-page: 1685 year: 2013 ident: 2022061706171102300_bib13 article-title: Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies publication-title: J Exp Med doi: 10.1084/jem.20130573 contributor: fullname: Bulliard – volume: 72 start-page: 917 year: 2012 ident: 2022061706171102300_bib23 article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-1620 contributor: fullname: Woo – volume: 59 start-page: 1367 year: 2010 ident: 2022061706171102300_bib6 article-title: Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-010-0866-5 contributor: fullname: Coe – volume: 195 start-page: 4721 year: 2015 ident: 2022061706171102300_bib26 article-title: Authentic GITR signaling fails to induce tumor regression unless Foxp3+ regulatory t cells are depleted publication-title: J Immunol doi: 10.4049/jimmunol.1403076 contributor: fullname: Kim |
SSID | ssj0005105 |
Score | 2.558787 |
Snippet | Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models.... These findings from this study help guide the clinical development of GITR antibodies for cancer immunotherapy by identifying important roles for Treg... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1108 |
SubjectTerms | Animal models Animals Antibodies, Monoclonal - immunology Antibodies, Monoclonal - pharmacology Cancer Cancer immunotherapy CD223 antigen CD8 antigen Cell fate Cell Line, Tumor Colonic Neoplasms - immunology Colonic Neoplasms - therapy Depletion Exhaustion Fate maps Foxp3 protein Genotype & phenotype Glucocorticoid-Induced TNFR-Related Protein - agonists Glucocorticoid-Induced TNFR-Related Protein - immunology Humans Immunotherapy Immunotherapy - methods Lymphocyte Depletion - methods Lymphocytes Lymphocytes T Melanoma - immunology Melanoma - therapy Mice Mice, Inbred C57BL Monoclonal antibodies PD-1 protein Signal Transduction T cell receptors T-Lymphocytes, Regulatory - immunology Tumors |
Title | Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28122327 https://www.proquest.com/docview/1983247274 https://search.proquest.com/docview/1862285198 https://search.proquest.com/docview/1881759813 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSIiEuiHcDBRmJW-SQ9XrX3mOUpDTQBqnZSrmt9uE0EW1SNc2B_npmbO8jolRw4LKKvJbteL4dz9jfjAn5VARRT-S6YHNeKCbysMdQzKyXap4Gka9DibHDx1M5manhSIxarfJW1rrsv0oaykDWGDn7D9KuGoUC-A0yhydIHZ5_JfehSZePaZoMg_DM3jWPJ-kxw1160DDXmHDbsZAHa_jGr8oq0-UFGuY2zKV_sV6ZNM6dL-P4rBMbznhJvIy3V_AcY3SJi-HaOR8eIJhuOi6V0MKcFVvSh1FKl5fdxhbEaboAU7e_WaCCGtWl2zvdwZ2fauX4uv6ZazZdpMsfi8ZhSfl6VhJ_HVXAbWbAAlmxuRrxA6DYGtg0f8qNumQj_sYTRVOGBcLeAtTVtS6XwmarLJW9uzNm2TxON5obwyEaVgAsAer-FSZQlpJp--sO-hPmhawnLc14N6P35HtydH5yksSjWbxHHnFQhni_w3D8raYhOZpt2aCLMoNuPt_bya799AenyBhH8TPy1Hk1tG_h-Jy09OoFeXzqeBsvyR2ikhpUUphoWqOSWlTSCpUUUEl3UEkrVNLlilaopIhKWqHStGtQSXdQ-YqcH43iwTFzt36wXHjylkWwqqRKcj8PisyTec4D0DN-GmaBztPcE1wXPAI3PM_mmgu_yKIQ3HYO1p7sFZnwX5P91XqlDwgVYTaX0EIY5looUaTZnCsp0YsHo8yft0m3nMvk2iZ3SYxTHCgkZagEJz-ByU-8MMHJb5PDcsYT981vEi-CVREqStEmH6vXoKVx-gDx6y3UgS45ODeReqiOAls-Up7fJm-sNKtRcbDDwfeRbx8ewDvypP6qDsn-7c1Wvyd7m2L7waDuFw-RwjQ |
link.rule.ids | 315,782,786,27934,27935 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Roles+for+Regulatory+T-cell+Depletion+and+Costimulatory+Signaling+in+Agonistic+GITR+Targeting+for+Tumor+Immunotherapy&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Mahne+Ashley+E&rft.au=Mauze+Smita&rft.au=Joyce-Shaikh%2C+Barbara&rft.au=Xia%2C+Jane&rft.date=2017-03-01&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=5&rft.spage=1108&rft.epage=1118&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-0797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |