EFTs meet Higgs nonlinearity, compositeness and (neutral) naturalness

A bstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators canno...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2019; no. 9; pp. 1 - 40
Main Authors: Li, Hao-Lin, Xu, Ling-Xiao, Yu, Jiang-Hao, Zhu, Shou-hua
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-09-2019
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators cannot fully retain the information of Higgs nonlinearity due to its PNGB nature, we systematically construct low energy Lagrangian in which the information of compositeness and Higgs nonlinearity are encoded in the form factors, the two-point functions in the top sector. We classify naturalness conditions in various scenarios, and first present these form factors in composite neutral naturalness models. After extracting out Higgs effective couplings from these form factors and performing the global fit, we find the value of Higgs top coupling could still be larger than the standard model one if the top quark is embedded in the higher dimensional representations. Also we find the impact of Higgs nonlinearity is enhanced by the large mass splitting between composite states. In this case, pattern of the correlation between the t t ¯ h and t t ¯ hh couplings is quite different for the linear and nonlinear Higgs descriptions.
AbstractList Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators cannot fully retain the information of Higgs nonlinearity due to its PNGB nature, we systematically construct low energy Lagrangian in which the information of compositeness and Higgs nonlinearity are encoded in the form factors, the two-point functions in the top sector. We classify naturalness conditions in various scenarios, and first present these form factors in composite neutral naturalness models. After extracting out Higgs effective couplings from these form factors and performing the global fit, we find the value of Higgs top coupling could still be larger than the standard model one if the top quark is embedded in the higher dimensional representations. Also we find the impact of Higgs nonlinearity is enhanced by the large mass splitting between composite states. In this case, pattern of the correlation between the tt¯\[ \overline{t} \]h and tt¯\[ \overline{t} \]hh couplings is quite different for the linear and nonlinear Higgs descriptions.
Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators cannot fully retain the information of Higgs nonlinearity due to its PNGB nature, we systematically construct low energy Lagrangian in which the information of compositeness and Higgs nonlinearity are encoded in the form factors, the two-point functions in the top sector. We classify naturalness conditions in various scenarios, and first present these form factors in composite neutral naturalness models. After extracting out Higgs effective couplings from these form factors and performing the global fit, we find the value of Higgs top coupling could still be larger than the standard model one if the top quark is embedded in the higher dimensional representations. Also we find the impact of Higgs nonlinearity is enhanced by the large mass splitting between composite states. In this case, pattern of the correlation between the t $$ \overline{t} $$ t ¯ h and t $$ \overline{t} $$ t ¯ hh couplings is quite different for the linear and nonlinear Higgs descriptions.
A bstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators cannot fully retain the information of Higgs nonlinearity due to its PNGB nature, we systematically construct low energy Lagrangian in which the information of compositeness and Higgs nonlinearity are encoded in the form factors, the two-point functions in the top sector. We classify naturalness conditions in various scenarios, and first present these form factors in composite neutral naturalness models. After extracting out Higgs effective couplings from these form factors and performing the global fit, we find the value of Higgs top coupling could still be larger than the standard model one if the top quark is embedded in the higher dimensional representations. Also we find the impact of Higgs nonlinearity is enhanced by the large mass splitting between composite states. In this case, pattern of the correlation between the t t ¯ h and t t ¯ hh couplings is quite different for the linear and nonlinear Higgs descriptions.
Abstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem is addressed by composite top partners. Since the standard model effective field theory (SMEFT) with dimension-six operators cannot fully retain the information of Higgs nonlinearity due to its PNGB nature, we systematically construct low energy Lagrangian in which the information of compositeness and Higgs nonlinearity are encoded in the form factors, the two-point functions in the top sector. We classify naturalness conditions in various scenarios, and first present these form factors in composite neutral naturalness models. After extracting out Higgs effective couplings from these form factors and performing the global fit, we find the value of Higgs top coupling could still be larger than the standard model one if the top quark is embedded in the higher dimensional representations. Also we find the impact of Higgs nonlinearity is enhanced by the large mass splitting between composite states. In this case, pattern of the correlation between the t t ¯ $$ \overline{t} $$ h and t t ¯ $$ \overline{t} $$ hh couplings is quite different for the linear and nonlinear Higgs descriptions.
ArticleNumber 10
Author Yu, Jiang-Hao
Li, Hao-Lin
Zhu, Shou-hua
Xu, Ling-Xiao
Author_xml – sequence: 1
  givenname: Hao-Lin
  orcidid: 0000-0002-4310-1915
  surname: Li
  fullname: Li, Hao-Lin
  email: lihaolin@itp.ac.cn
  organization: CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Ling-Xiao
  surname: Xu
  fullname: Xu, Ling-Xiao
  organization: Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University
– sequence: 3
  givenname: Jiang-Hao
  surname: Yu
  fullname: Yu, Jiang-Hao
  organization: CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Shou-hua
  surname: Zhu
  fullname: Zhu, Shou-hua
  organization: Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Collaborative Innovation Center of Quantum Matter, Center for High Energy Physics, Peking University
BookMark eNp1kL1PwzAQxS1UJMrHzBqJhUqUnuMmsUeECgVVgqHM1sU5V6lau9jpwH-PSxCwMPnJfu9353fKBs47YuySwy0HqCbP89krqOscuBoBhyM25JCrsZxWavBHn7DTGNcAvOAKhmw2e1jGbEvUZfN2tYpZom5aRxja7uMmM36787HtyFGMGbomu3a07wJuRpnDbp_E4eWcHVvcRLr4Ps_Y28NseT8fL14en-7vFmMz5VU3FsJQDqVqhCA0vOIFoS0KSYQyN3WNU6IGG2FKTjL9KVdGSiN4UWBZ2qISZ-yp5zYe13oX2i2GD-2x1V8XPqw0hq41G9Il1DWXtbW2ttPKiLpoCGyDClUO2FBiXfWsXfDve4qdXvt9cGl9neeykmUplEquSe8ywccYyP5M5aAPveu-d33oXafeUwL6RExOt6Lwy_0v8gkProcw
CitedBy_id crossref_primary_10_1007_JHEP02_2021_234
crossref_primary_10_1007_JHEP05_2021_198
crossref_primary_10_1007_JHEP03_2021_049
crossref_primary_10_1103_PhysRevD_101_076012
crossref_primary_10_1103_PhysRevD_101_075023
crossref_primary_10_1103_PhysRevD_103_113006
crossref_primary_10_1103_PhysRevD_102_075021
crossref_primary_10_1088_1674_1137_aca8f6
crossref_primary_10_1103_PhysRevD_103_055001
crossref_primary_10_1103_PhysRevD_105_053003
crossref_primary_10_1155_2022_8970837
crossref_primary_10_1007_JHEP12_2020_047
crossref_primary_10_1007_JHEP04_2020_040
Cites_doi 10.1103/PhysRevLett.114.191801
10.1016/0370-2693(84)91177-8
10.1103/PhysRevLett.86.4757
10.1016/0550-3213(85)90221-4
10.1016/S0550-3213(05)80021-5
10.1016/0550-3213(86)90262-2
10.1007/JHEP12(2014)034
10.1016/0370-2693(84)91178-X
10.1142/S0217751X93001946
10.1016/j.physletb.2016.03.032
10.1103/PhysRevD.85.055013
10.1103/PhysRevD.91.055007
10.1103/PhysRevD.75.055014
10.1007/s002880050007
10.1007/JHEP03(2018)062
10.1016/j.nuclphysb.2014.01.018
10.1007/JHEP08(2015)161
10.1103/PhysRevLett.121.231801
10.1007/JHEP10(2012)004
10.1103/PhysRevD.91.095012
10.1007/JHEP10(2011)081
10.1103/PhysRevD.97.035017
10.1016/j.nuclphysb.2015.03.024
10.1103/PhysRevLett.96.231802
10.1007/JHEP06(2014)159
10.1007/JHEP01(2016)023
10.1007/JHEP08(2012)135
10.1103/PhysRevD.50.3218
10.1007/JHEP05(2018)061
10.1016/j.physletb.2018.12.040
10.1088/1126-6708/2007/06/045
10.1007/JHEP07(2015)105
10.1103/PhysRevD.76.073002
10.1007/JHEP08(2012)013
10.1103/PhysRevD.76.115008
10.1103/PhysRevD.94.015028
10.1007/JHEP10(2013)160
10.1103/PhysRevD.96.095036
10.1088/1126-6708/2007/05/074
10.1007/JHEP05(2010)089
10.1103/PhysRevD.96.035013
10.1007/JHEP09(2016)146
10.1103/PhysRevD.91.115016
10.1140/epjc/s10052-015-3645-9
10.1140/epjc/s10052-014-3046-5
10.1007/JHEP05(2019)170
10.1016/j.nuclphysb.2005.04.035
10.1007/JHEP10(2010)085
10.1007/JHEP08(2016)101
10.1103/PhysRevD.88.095006
10.1016/0550-3213(76)90382-5
10.1016/j.physletb.2014.02.015
10.1016/S0370-2693(01)00741-9
10.1007/JHEP06(2010)026
10.1103/PhysRevLett.121.261802
10.1016/j.nuclphysb.2004.10.014
10.1007/JHEP07(2013)058
10.1103/PhysRev.177.2239
10.1007/JHEP09(2011)135
10.1016/j.physletb.2013.04.037
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP09(2019)010
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 40
ExternalDocumentID oai_doaj_org_article_60bb18bfffbf47c3b5de0fda9a920ade
10_1007_JHEP09_2019_010
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-33ce2069d33eac1715eaf558eea82cbba4eedad3c61e800729c88c3155a66f573
IEDL.DBID C24
ISSN 1029-8479
IngestDate Tue Oct 22 15:01:35 EDT 2024
Thu Oct 10 18:16:21 EDT 2024
Fri Nov 22 01:00:43 EST 2024
Sat Dec 16 12:06:39 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Effective Field Theories
Beyond Standard Model
Technicolor and Composite Models
Higgs Physics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-33ce2069d33eac1715eaf558eea82cbba4eedad3c61e800729c88c3155a66f573
ORCID 0000-0002-4310-1915
OpenAccessLink http://link.springer.com/10.1007/JHEP09(2019)010
PQID 2287866399
PQPubID 2034718
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_60bb18bfffbf47c3b5de0fda9a920ade
proquest_journals_2287866399
crossref_primary_10_1007_JHEP09_2019_010
springer_journals_10_1007_JHEP09_2019_010
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References CR39
CR38
CR36
CR35
CR79
CR34
CR78
CR33
CR77
CR32
CR76
CR75
CR30
CR74
CR73
CR72
CR70
Peskin, Takeuchi (CR71) 1992; D 46
Terazawa, Akama, Chikashige (CR16) 1977; D 15
CR4
CR6
Geller, Telem (CR37) 2015; 114
CR8
CR7
CR49
CR48
CR47
CR46
CR45
Arkani-Hamed, Cohen, Georgi (CR41) 2001; 86
CR44
Appelquist, Bernard (CR21) 1980; D 22
CR43
CR42
CR40
Dugan, Georgi, Kaplan (CR3) 1985; B 254
Kaplan, Georgi, Dimopoulos (CR2) 1984; B 136
Alonso, Brivio, Gavela, Merlo, Rigolin (CR13) 2014; 12
CR19
Kaplan (CR31) 1991; B 365
CR17
Callan, Coleman, Wess, Zumino (CR5) 1969; 177
CR15
CR14
CR58
CR57
CR12
CR56
CR11
CR55
CR10
CR54
CR53
CR52
CR51
CR50
Terazawa (CR18) 1980; D 22
Buchmüller, Wyler (CR9) 1986; B 268
Kaplan, Georgi (CR1) 1984; B 136
CR29
CR28
CR27
CR26
CR25
CR69
CR24
CR68
CR23
CR67
CR66
CR65
CR20
CR64
CR63
Longhitano (CR22) 1980; D 22
CR62
CR61
CR60
Shifman, Vainshtein, Voloshin, Zakharov (CR59) 1979; 30
11193_CR36
11193_CR34
11193_CR78
11193_CR35
11193_CR79
11193_CR32
11193_CR76
11193_CR33
11193_CR77
11193_CR30
11193_CR74
11193_CR75
R Alonso (11193_CR13) 2014; 12
H Terazawa (11193_CR18) 1980; D 22
11193_CR38
11193_CR39
11193_CR40
MJ Dugan (11193_CR3) 1985; B 254
DB Kaplan (11193_CR2) 1984; B 136
11193_CR25
11193_CR69
11193_CR26
DB Kaplan (11193_CR1) 1984; B 136
AC Longhitano (11193_CR22) 1980; D 22
11193_CR23
11193_CR67
11193_CR24
11193_CR68
11193_CR65
11193_CR66
11193_CR63
11193_CR20
11193_CR64
11193_CR29
11193_CR27
11193_CR28
11193_CR72
11193_CR73
11193_CR70
11193_CR14
11193_CR58
11193_CR15
11193_CR12
11193_CR56
11193_CR57
11193_CR10
11193_CR54
11193_CR11
11193_CR55
11193_CR52
11193_CR53
T Appelquist (11193_CR21) 1980; D 22
11193_CR19
11193_CR17
11193_CR6
M Geller (11193_CR37) 2015; 114
11193_CR4
ME Peskin (11193_CR71) 1992; D 46
11193_CR8
11193_CR7
W Buchmüller (11193_CR9) 1986; B 268
11193_CR61
11193_CR62
11193_CR60
H Terazawa (11193_CR16) 1977; D 15
DB Kaplan (11193_CR31) 1991; B 365
CG Callan Jr (11193_CR5) 1969; 177
11193_CR47
11193_CR48
11193_CR45
11193_CR46
N Arkani-Hamed (11193_CR41) 2001; 86
11193_CR43
11193_CR44
11193_CR42
11193_CR49
MA Shifman (11193_CR59) 1979; 30
11193_CR50
11193_CR51
References_xml – ident: CR45
– ident: CR70
– volume: 114
  start-page: 191801
  year: 2015
  ident: CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.191801
  contributor:
    fullname: Telem
– ident: CR49
– ident: CR68
– ident: CR74
– ident: CR4
– ident: CR39
– ident: CR51
– ident: CR12
– volume: 177
  start-page: 2247
  year: 1969
  ident: CR5
  publication-title: Structure of phenomenological Lagrangians. 2, Phys. Rev.
  contributor:
    fullname: Zumino
– volume: B 136
  start-page: 183
  year: 1984
  ident: CR1
  article-title: SU(2)U(1)
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(84)91177-8
  contributor:
    fullname: Georgi
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 86
  start-page: 4757
  year: 2001
  ident: CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4757
  contributor:
    fullname: Georgi
– ident: CR77
– ident: CR8
– ident: CR58
– volume: 30
  start-page: 711
  year: 1979
  ident: CR59
  publication-title: Sov. J. Nucl. Phys.
  contributor:
    fullname: Zakharov
– ident: CR25
– volume: B 254
  start-page: 299
  year: 1985
  ident: CR3
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(85)90221-4
  contributor:
    fullname: Kaplan
– volume: D 22
  start-page: 1166
  year: 1980
  ident: CR22
  publication-title: Phys. Rev.
  contributor:
    fullname: Longhitano
– ident: CR42
– ident: CR46
– ident: CR19
– volume: B 365
  start-page: 259
  year: 1991
  ident: CR31
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(05)80021-5
  contributor:
    fullname: Kaplan
– ident: CR67
– ident: CR75
– ident: CR15
– ident: CR50
– ident: CR11
– ident: CR57
– volume: B 268
  start-page: 621
  year: 1986
  ident: CR9
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(86)90262-2
  contributor:
    fullname: Wyler
– ident: CR32
– ident: CR60
– ident: CR36
– ident: CR78
– ident: CR64
– ident: CR26
– ident: CR43
– ident: CR66
– ident: CR47
– ident: CR72
– volume: 12
  start-page: 034
  year: 2014
  ident: CR13
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)034
  contributor:
    fullname: Rigolin
– ident: CR14
– ident: CR53
– volume: D 46
  start-page: 381
  year: 1992
  ident: CR71
  publication-title: Phys. Rev.
  contributor:
    fullname: Takeuchi
– ident: CR30
– ident: CR10
– volume: D 22
  start-page: 200
  year: 1980
  ident: CR21
  publication-title: Phys. Rev.
  contributor:
    fullname: Bernard
– ident: CR33
– ident: CR6
– ident: CR79
– ident: CR56
– ident: CR40
– ident: CR63
– ident: CR27
– ident: CR23
– ident: CR69
– ident: CR44
– ident: CR48
– ident: CR73
– volume: D 15
  start-page: 480
  year: 1977
  ident: CR16
  publication-title: Phys. Rev.
  contributor:
    fullname: Chikashige
– ident: CR65
– ident: CR38
– ident: CR52
– ident: CR17
– volume: B 136
  start-page: 187
  year: 1984
  ident: CR2
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(84)91178-X
  contributor:
    fullname: Dimopoulos
– volume: D 22
  start-page: 184
  year: 1980
  ident: CR18
  publication-title: Phys. Rev.
  contributor:
    fullname: Terazawa
– ident: CR34
– ident: CR55
– ident: CR7
– ident: CR76
– ident: CR28
– ident: CR62
– ident: CR24
– ident: CR20
– volume: B 136
  start-page: 183
  year: 1984
  ident: 11193_CR1
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(84)91177-8
  contributor:
    fullname: DB Kaplan
– ident: 11193_CR23
  doi: 10.1142/S0217751X93001946
– ident: 11193_CR6
  doi: 10.1016/j.physletb.2016.03.032
– ident: 11193_CR43
  doi: 10.1103/PhysRevD.85.055013
– ident: 11193_CR64
– ident: 11193_CR57
  doi: 10.1103/PhysRevD.91.055007
– volume: D 15
  start-page: 480
  year: 1977
  ident: 11193_CR16
  publication-title: Phys. Rev.
  contributor:
    fullname: H Terazawa
– ident: 11193_CR68
– ident: 11193_CR36
  doi: 10.1103/PhysRevD.75.055014
– ident: 11193_CR60
  doi: 10.1007/s002880050007
– ident: 11193_CR51
  doi: 10.1007/JHEP03(2018)062
– ident: 11193_CR28
  doi: 10.1016/j.nuclphysb.2014.01.018
– volume: B 254
  start-page: 299
  year: 1985
  ident: 11193_CR3
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(85)90221-4
  contributor:
    fullname: MJ Dugan
– ident: 11193_CR38
  doi: 10.1007/JHEP08(2015)161
– ident: 11193_CR56
  doi: 10.1103/PhysRevLett.121.231801
– ident: 11193_CR44
  doi: 10.1007/JHEP10(2012)004
– ident: 11193_CR39
  doi: 10.1103/PhysRevD.91.095012
– ident: 11193_CR63
– ident: 11193_CR12
  doi: 10.1007/JHEP10(2011)081
– ident: 11193_CR55
  doi: 10.1103/PhysRevD.97.035017
– volume: 86
  start-page: 4757
  year: 2001
  ident: 11193_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4757
  contributor:
    fullname: N Arkani-Hamed
– ident: 11193_CR30
  doi: 10.1016/j.nuclphysb.2015.03.024
– ident: 11193_CR19
  doi: 10.1103/PhysRevLett.96.231802
– ident: 11193_CR47
  doi: 10.1007/JHEP06(2014)159
– ident: 11193_CR67
– ident: 11193_CR8
  doi: 10.1007/JHEP01(2016)023
– ident: 11193_CR34
  doi: 10.1007/JHEP08(2012)135
– ident: 11193_CR24
  doi: 10.1103/PhysRevD.50.3218
– ident: 11193_CR79
  doi: 10.1007/JHEP05(2018)061
– volume: 114
  start-page: 191801
  year: 2015
  ident: 11193_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.191801
  contributor:
    fullname: M Geller
– ident: 11193_CR61
  doi: 10.1016/j.physletb.2018.12.040
– ident: 11193_CR11
  doi: 10.1088/1126-6708/2007/06/045
– volume: B 365
  start-page: 259
  year: 1991
  ident: 11193_CR31
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(05)80021-5
  contributor:
    fullname: DB Kaplan
– ident: 11193_CR20
  doi: 10.1007/JHEP07(2015)105
– ident: 11193_CR25
  doi: 10.1103/PhysRevD.76.073002
– ident: 11193_CR35
  doi: 10.1007/JHEP08(2012)013
– ident: 11193_CR73
  doi: 10.1103/PhysRevD.76.115008
– ident: 11193_CR49
  doi: 10.1103/PhysRevD.94.015028
– ident: 11193_CR72
  doi: 10.1007/JHEP10(2013)160
– ident: 11193_CR74
  doi: 10.1103/PhysRevD.96.095036
– ident: 11193_CR32
  doi: 10.1088/1126-6708/2007/05/074
– ident: 11193_CR26
  doi: 10.1007/JHEP05(2010)089
– ident: 11193_CR62
– ident: 11193_CR66
– ident: 11193_CR50
  doi: 10.1103/PhysRevD.96.035013
– ident: 11193_CR77
  doi: 10.1007/JHEP09(2016)146
– ident: 11193_CR76
– ident: 11193_CR48
  doi: 10.1103/PhysRevD.91.115016
– ident: 11193_CR69
  doi: 10.1140/epjc/s10052-015-3645-9
– ident: 11193_CR78
  doi: 10.1140/epjc/s10052-014-3046-5
– volume: B 136
  start-page: 187
  year: 1984
  ident: 11193_CR2
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(84)91178-X
  contributor:
    fullname: DB Kaplan
– ident: 11193_CR15
  doi: 10.1007/JHEP05(2019)170
– ident: 11193_CR17
  doi: 10.1016/j.nuclphysb.2005.04.035
– ident: 11193_CR10
  doi: 10.1007/JHEP10(2010)085
– ident: 11193_CR40
– ident: 11193_CR7
  doi: 10.1007/JHEP08(2016)101
– volume: D 22
  start-page: 1166
  year: 1980
  ident: 11193_CR22
  publication-title: Phys. Rev.
  contributor:
    fullname: AC Longhitano
– ident: 11193_CR45
  doi: 10.1103/PhysRevD.88.095006
– ident: 11193_CR58
  doi: 10.1016/0550-3213(76)90382-5
– ident: 11193_CR29
  doi: 10.1016/j.physletb.2014.02.015
– volume: 177
  start-page: 2247
  year: 1969
  ident: 11193_CR5
  publication-title: Structure of phenomenological Lagrangians. 2, Phys. Rev.
  contributor:
    fullname: CG Callan Jr
– ident: 11193_CR42
  doi: 10.1016/S0370-2693(01)00741-9
– ident: 11193_CR65
– ident: 11193_CR52
  doi: 10.1007/JHEP06(2010)026
– ident: 11193_CR33
– ident: 11193_CR14
  doi: 10.1103/PhysRevLett.121.261802
– volume: D 46
  start-page: 381
  year: 1992
  ident: 11193_CR71
  publication-title: Phys. Rev.
  contributor:
    fullname: ME Peskin
– volume: D 22
  start-page: 184
  year: 1980
  ident: 11193_CR18
  publication-title: Phys. Rev.
  contributor:
    fullname: H Terazawa
– volume: D 22
  start-page: 200
  year: 1980
  ident: 11193_CR21
  publication-title: Phys. Rev.
  contributor:
    fullname: T Appelquist
– ident: 11193_CR70
  doi: 10.1016/j.nuclphysb.2004.10.014
– volume: B 268
  start-page: 621
  year: 1986
  ident: 11193_CR9
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(86)90262-2
  contributor:
    fullname: W Buchmüller
– volume: 30
  start-page: 711
  year: 1979
  ident: 11193_CR59
  publication-title: Sov. J. Nucl. Phys.
  contributor:
    fullname: MA Shifman
– ident: 11193_CR46
  doi: 10.1007/JHEP07(2013)058
– volume: 12
  start-page: 034
  year: 2014
  ident: 11193_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)034
  contributor:
    fullname: R Alonso
– ident: 11193_CR4
  doi: 10.1103/PhysRev.177.2239
– ident: 11193_CR53
  doi: 10.1007/JHEP09(2011)135
– ident: 11193_CR54
– ident: 11193_CR27
  doi: 10.1016/j.physletb.2013.04.037
– ident: 11193_CR75
SSID ssj0015190
Score 2.4274979
Snippet A bstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and...
Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and naturalness problem...
Abstract Composite Higgs and neutral-naturalness models are popular scenarios in which the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), and...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Beyond Standard Model
Classical and Quantum Gravitation
Couplings
Effective Field Theories
Elementary Particles
Field theory
Form factors
Higgs bosons
Higgs Physics
High energy physics
Nonlinearity
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Technicolor and Composite Models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66IHgRn7i6Sg4edsGySZMm6dFHl8WDCK7gLeR50iJ29_-bpO36APHitVPK8E06j8zkCwAXWovYD2MZ9c5mVGCaaWrzUKVgbpm1IYjE08jzR37_LG6rSJOzvuorzoS19MAtcFOGtMZCe--1p9wQXViHvFWlKnOkrEveF7G-mOr6ByEvQT2RD-LTu3n1gMpxCHblBMXDsl9iUKLq_5Zf_miJpkgz2wU7XYoIr1rV9sCGq_fBVhrVNM0BqKrZooGvzi1h3C9uYN2yXah4Dd0ljDPicRAr-TCoagvHtVvF_YwJTCye6iVKDsHTrFrczLPuMoTMUMyXGSHG5YiVlpDgKzHHhVO-KIRzSuRGa0VDtFOWGIadSHzgRghDQrqgGPMFJ0dgEPRxxwAGCbOOUU0KTz3G2pfUc8JD-NalQnQIxj088q3lvJA9u3GLpIxIyoDkEFxH-NavRbLq9CCYUHYmlH-ZcAhGPfiy-4MamYdSTrCYPw3BpDfIp_gXfU7-Q59TsB2_106SjcBg-b5yZ2CzsavztMo-AGQR17E
  priority: 102
  providerName: Directory of Open Access Journals
Title EFTs meet Higgs nonlinearity, compositeness and (neutral) naturalness
URI https://link.springer.com/article/10.1007/JHEP09(2019)010
https://www.proquest.com/docview/2287866399
https://doaj.org/article/60bb18bfffbf47c3b5de0fda9a920ade
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Ebz4LU7nyMHDBlaSJk3To86O4UEEJ3gLSZN4UKus2_9vkraTKR52K30phPea_F7exy8AXCrFfT6MRdQaHVGOaaSojt0pBaeaae1AxHcjT57Shxd-l3uaHLQMXZRv121GMmzUba_b_SR_RNnA4VU2DD1VW85zoP7OgpHvb2jyBs4fQS2Bz9-PVrAnUPSv-JW_UqEBYcZ7689tH-w23iS8qc1_ADZMeQi2Q1VnUR2BPB9PK_hhzBz60HIFy5oYQ_ob666gLyf3NVthu4Oy1HBQmoUPfQxhIPyU715yDJ7H-XQ0iZp7E6KC4nQeEVKYGLFME-K2VZzixEibJNwYyeNCKUkdMEpNCoYND9ThBecFcZ6FZMwmKTkBHTcfcwqgkzBtGFUksdRirGxGbUpSh_Qqk4h2waDVqPiq6TFES4Rca0V4rQinlS649RpfDvO81uHF5-xVNMtEMKQU5spaqyxNC6ISbZDVMpNZjKQ2XdBr7SWaxVaJ2J36OPOuVhcMWwP9iP-Zz9kaY8_Bjn-sa8t6oDOfLcwF2Kz0oh_-v344yn8DnBTWtQ
link.rule.ids 315,782,786,866,2106,27933,27934,41128,42197,52242
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgEJ74iNGLb-P65OBhN7FJKZTSo49u1mdMXBNvBAp40dVsd_-_QFuNGg96ZSCZDDAPZuYD4Egp7vNhLKLW6IhyTCNFdeKiFJxpprUzIr4beXCf3T7y88LD5OC2FyZUu7cpyaCp22a3y0FxF-ddZ7DyXmiqmqfutvl468w3ODSJA-eQxC2Cz89FX4xPwOj_4lh-y4UGE9Nf-Qdzq7Dc-JPopD4AazBjRuuwEOo6y2oDiqI_rNCLMRPkH5crNKqhMaT_s-4Y-YJyX7UVFB6SI426IzP1jx89FCA_5bOnbMJDvxieDaLm54SopDibRISUJolZrglxihVnODXSpik3RvKkVEpSZxqlJiXDhgfw8JLzkjjfQjJm04xswZzjx2wDchSmDaOKpJZajJXNqc1I5my9ymVMO9BtRSreaoAM0UIh11IRXirCSaUDp17kH9M8snUYeB0_ieaiCBYrhbmy1ipLs5KoVJvYapnLPImlNh3YazdMNNetEomL-zjzzlYHeu0GfZJ_4WfnD3MPYXEwvLkW1xe3V7uw5IfrSrM9mJuMp2YfZis9PQiH8R1S-tma
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUKteyquILS8fetiVGhHHjuMcOPDIaqEVQiqVerPs2OYCAZHd_1-PkxRBxaHi6rGl0fgxnz0znwG-GiMxHiYS7p1NuKQ8Mdxm4ZZCCyusDU4Eq5FnP4vL3_KsQpqco6EWJma7DyHJrqYBWZqa-eGD9UNU__BiVl2l5Tg4r3ISC6xWeMANmNF1isUOfRAhgJN0YPP5d9AzRxT5-p-BzBdx0ehupqtvVHQNPvU4kxx3C2MdllyzAe9jvmfdbkJVTa9bcufcnOCjc0uajjJD41923wgmmmM2VzwIiW4sGTdugY8iExKpQPUtSj7Dr2l1fTpL-h8VkprTYp4wVrssFaVlLBy4tKC50z7PpXNaZrUxmgeXqS2rBXUykorXUtYsYA4thM8LtgXLQR-3DSRIhHWCG5Z77ik1vuS-YEXAAKbUKR_BeDCveuiIM9RAkdxZRaFVVLDKCE7Q_H-7IeN1bLh_vFH9BlIiNYZK4703nhc1M7l1qbe61GWWautGsDtMnuq3YauycB-UAkHYCCbDZD2JX9Hny3_0PYAPV2dT9eP88vsOfMTWLgFtF5bnjwu3B-9au9iP6_IPs7bidQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFTs+meet+Higgs+nonlinearity%2C+compositeness+and+%28neutral%29+naturalness&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Hao-Lin&rft.au=Xu%2C+Ling-Xiao&rft.au=Yu%2C+Jiang-Hao&rft.au=Zhu%2C+Shou-hua&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=9&rft_id=info:doi/10.1007%2FJHEP09%282019%29010&rft.externalDocID=10_1007_JHEP09_2019_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon