Fisher information as a probe of spacetime structure: relativistic quantum metrology in (A)dS
A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space....
Saved in:
Published in: | The journal of high energy physics Vol. 2021; no. 5; pp. 1 - 22 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-05-2021
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A
bstract
Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation. |
---|---|
AbstractList | Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation. Abstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation. A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation. |
ArticleNumber | 112 |
Author | Du, Haoxing Mann, Robert B. |
Author_xml | – sequence: 1 givenname: Haoxing surname: Du fullname: Du, Haoxing email: haoxing_du@berkeley.edu organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo, Department of Physics, University of California, Berkeley – sequence: 2 givenname: Robert B. surname: Mann fullname: Mann, Robert B. organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo |
BookMark | eNp1kc1LxDAQxYMo6KpnrwEveljNZNOm9bYs6xeCgnqUkKaTtcu22U1Swf_eaEW9eJpheO83w7wR2e5ch4QcATsDxuT57fX8gWUnnHE4BeBbZA8YL8eFkOX2n36XjEJYMgYZlGyPvFw24RU9bTrrfKtj4zqqA9V07V2F1Fka1tpgbFqkIfrexN7jBfW4Stq3JsTG0E2vu9i3tMXo3cot3hONnkxP68cDsmP1KuDhd90nz5fzp9n1-O7-6mY2vRsbATKOucwtK3NT5VCArfOirqSYyLpgdaYrI6wxkhdcANgMrRAik7IseFaUlqMszWSf3Azc2umlWvum1f5dOd2or4HzC6V9OnWFilUg61yW1qAQ0uoKhZYTLaDQLJcoE-t4YKUPbHoMUS1d77t0vuIZz9MLgU-S6nxQGe9C8Gh_tgJTn3moIQ_1mYdKeSQHGxwhKbsF-l_uf5YP0gKN8w |
CitedBy_id | crossref_primary_10_1007_s11433_023_2196_9 crossref_primary_10_1140_epjc_s10052_022_10628_y crossref_primary_10_1007_JHEP06_2023_214 crossref_primary_10_1140_epjc_s10052_022_10633_1 crossref_primary_10_1007_s10714_022_02956_x crossref_primary_10_1103_PhysRevD_103_125025 crossref_primary_10_1103_PhysRevA_107_012208 crossref_primary_10_1103_PhysRevA_107_012207 |
Cites_doi | 10.1088/0264-9381/25/5/055012 10.1142/S0219749909004839 10.1007/978-1-4612-0919-5_16 10.1103/PhysRevD.88.064031 10.1103/PhysRevA.70.012112 10.1017/CBO9780511622632 10.1103/PhysRevD.89.024013 10.1103/PhysRevLett.105.151301 10.1103/PhysRevD.49.1929 10.1103/PhysRevD.98.105019 10.1016/j.nuclphysb.2015.01.021 10.1088/0264-9381/29/22/220301 10.1103/PhysRevD.18.3565 10.1103/PhysRevLett.96.010401 10.1007/JHEP01(2021)098 10.1103/PhysRevLett.69.1849 10.1063/1.5115323 10.1007/JHEP03(2020)008 10.1142/9789814338745_0015 10.1103/PhysRevD.93.044001 10.1103/PhysRevD.23.1693 10.1088/1361-6382/aae27e 10.1103/PhysRevLett.113.250801 10.1088/1367-2630/16/8/085003 10.1007/BF02345020 10.1038/nphoton.2011.35 10.1103/PhysRevD.14.870 10.1016/0003-4916(82)90285-8 10.1103/PhysRevD.95.025020 10.1038/srep04996 10.1103/PhysRevD.87.084062 10.1142/S0217732311036516 10.1103/PhysRevD.15.2738 10.1088/1475-7516/2019/07/032 10.1103/PhysRevD.90.124001 10.1142/S0217979296000611 10.1103/PhysRevD.100.085013 10.1016/j.aop.2016.04.021 10.1088/0264-9381/27/20/205005 10.1038/srep07946 10.1103/PhysRevD.89.065028 10.1088/1751-8113/46/16/165303 10.1007/JHEP02(2020)053 10.1103/PhysRevLett.110.181101 10.1016/j.aop.2018.08.021 10.1088/0264-9381/14/9/003 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP05(2021)112 |
DatabaseName | SpringerOpen (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_0b17d679fce447fabe4a73a418a067e7 10_1007_JHEP05_2021_112 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ACACY ACGFS ACHIP ACREN ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFNRJ AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1PV 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABEEZ ABTEG ACAFW ACBXY ACMRT ACULB ADKPE ADRFC AEFHF AEJGL AERVB AFLOW AGJBK AHSBF AHSEE AIYBF AKPSB AOAED BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 HAK IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c417t-276f096cb6181fd68db7437d80d5abc4fcc7282411f5ef444577982589f2e79c3 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Tue Oct 22 15:10:36 EDT 2024 Sat Oct 26 16:28:41 EDT 2024 Thu Nov 21 22:14:21 EST 2024 Sat Dec 16 12:09:06 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Quantum Dissipative Systems Effective Field Theories Models of Quantum Gravity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-276f096cb6181fd68db7437d80d5abc4fcc7282411f5ef444577982589f2e79c3 |
OpenAccessLink | http://link.springer.com/10.1007/JHEP05(2021)112 |
PQID | 2526479123 |
PQPubID | 2034718 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b17d679fce447fabe4a73a418a067e7 proquest_journals_2526479123 crossref_primary_10_1007_JHEP05_2021_112 springer_journals_10_1007_JHEP05_2021_112 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | JenningsDOn the response of a particle detector in Anti-de Sitter spacetimeClass. Quant. Grav.2010272050052010CQGra..27t5005J1202.8305510.1088/0264-9381/27/20/205005[arXiv:1008.2165] [INSPIRE] HendersonLJHennigarRAMannRBSmithARHZhangJHarvesting Entanglement from the Black Hole VacuumClass. Quant. Grav.20183538760291431.8309610.1088/1361-6382/aae27e[arXiv:1712.10018] [INSPIRE] Martín-MartínezESmithARHTernoDRSpacetime structure and vacuum entanglementPhys. Rev. D2016930440012016PhRvD..93d4001M349931510.1103/PhysRevD.93.044001[arXiv:1507.02688] [INSPIRE] ParisMGQuantum estimation for quantum technologyInt. J. Quant. Inf.200971251162.8135110.1142/S0219749909004839 LoukoJSatzATransition rate of the Unruh-DeWitt detector in curved spacetimeClass. Quant. Grav.2008250550122008CQGra..25e5012L23924461136.8301910.1088/0264-9381/25/5/055012[arXiv:0710.5671] [INSPIRE] M. P. G. Robbins, L. J. Henderson and R. B. Mann, Entanglement Amplification from Rotating Black Holes, arXiv:2010.14517 [INSPIRE]. AhmadiMBruschiDESabínCAdessoGFuentesIRelativistic quantum metrology: Exploiting relativity to improve quantum measurement technologiesSci. Rep.2014449962014NatSR...4E4996A10.1038/srep04996 AhmadiMBruschiDEFuentesIQuantum metrology for relativistic quantum fieldsPhys. Rev. D2014890650282014PhRvD..89f5028A10.1103/PhysRevD.89.065028[arXiv:1312.5707] [INSPIRE] MannRBRalphTCRelativistic quantum informationClass. Quant. Grav.2012292203012012CQGra..29v0301M299423310.1088/0264-9381/29/22/220301 D. Petz and C. Ghinea, Introduction to quantum fisher information, in Quantum probability and related topics, pp. 261–281, World Scientific (2011) [DOI]. G. Lifschytz and M. Ortiz, Scalar field quantization on the (2+1)-dimensional black hole background, Phys. Rev. D49 (1994) 1929 [gr-qc/9310008] [INSPIRE]. N. D. Birrell and P. Davies, Quantum fields in curved space, Cambridge University Press (1982) [DOI]. B. S. DeWitt, Quantum gravity: the new synthesis, in General relativity: An Einstein Centenary Survey, S. Hawking and W. Israel eds., pp. 680–745, Cambridge University Press (1979) [INSPIRE]. BrownEGMartin-MartinezEMenicucciNCMannRBDetectors for probing relativistic quantum physics beyond perturbation theoryPhys. Rev. D2013870840622013PhRvD..87h4062B10.1103/PhysRevD.87.084062[arXiv:1212.1973] [INSPIRE] BenattiFFloreaniniREntanglement generation in uniformly accelerating atoms: Reexamination of the unruh effectPhys. Rev. A2004700121122004PhRvA..70a2112B10.1103/PhysRevA.70.012112 RobbinsMPGAfshordiNMannRBBose-Einstein Condensates as Gravitational Wave DetectorsJCAP2019070322019JCAP...07..032R400040010.1088/1475-7516/2019/07/032[arXiv:1811.04468] [INSPIRE] DeserSLevinOAccelerated detectors and temperature in (anti)-de Sitter spacesClass. Quant. Grav.199714L1631997CQGra..14L.163D14777990884.5305910.1088/0264-9381/14/9/003[gr-qc/9706018] [INSPIRE] HuangXFengJZhangY-ZFanHQuantum estimation in an expanding spacetimeAnnals Phys.20183973362018AnPhy.397..336H10.1016/j.aop.2018.08.021[arXiv:1806.08922] [INSPIRE] SabínCBruschiDEAhmadiMFuentesIPhonon creation by gravitational wavesNew J. Phys.2014160850032014NJPh...16h5003S10.1088/1367-2630/16/8/085003[arXiv:1402.7009] [INSPIRE] H. Cramér, Mathematical methods of statistics, vol. 43, Princeton University Press (1999). GiovannettiVLloydSMacconeLAdvances in quantum metrologyNature Photon.201152222011NaPho...5..222G10.1038/nphoton.2011.35 AhmadzadeganALaleganiFKempfAMannRBSeeing in Complete Darkness, Using the Unruh EffectPhys. Rev. D20191000850132019PhRvD.100h5013A403201110.1103/PhysRevD.100.085013[arXiv:1902.06745] [INSPIRE] ManzanoDA short introduction to the lindblad master equationAIP Advances2020100251062020AIPA...10b5106M10.1063/1.5115323 GibbonsGWHawkingSWCosmological Event Horizons, Thermodynamics, and Particle CreationPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738[INSPIRE] WangJTianZJingJFanHParameter estimation for an expanding universeNucl. Phys. B20158923902015NuPhB.892..390W33109201328.8305210.1016/j.nuclphysb.2015.01.021[arXiv:1401.1932] [INSPIRE] CasadioRChiodiniSOrlandiAAcquavivaGDi CriscienzoRVanzoLOn the Unruh effect in de Sitter spaceMod. Phys. Lett. A20112621492011MPLA...26.2149C28366851274.8305810.1142/S0217732311036516[arXiv:1011.3336] [INSPIRE] GiovannettiVLloydSMacconeLQuantum metrologyPhys. Rev. Lett.2006960104012006PhRvL..96a0401G219645810.1103/PhysRevLett.96.010401 AspachsMAdessoGFuentesIOptimal quantum estimation of the Unruh-Hawking effectPhys. Rev. Lett.20101051513012010PhRvL.105o1301A10.1103/PhysRevLett.105.151301[arXiv:1007.0389] [INSPIRE] KaplanekGBurgessCPHot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable Late-time PredictionsJHEP2020030082020JHEP...03..008K40901291435.8305210.1007/JHEP03(2020)008[arXiv:1912.12951] [INSPIRE] UnruhWGNotes on black hole evaporationPhys. Rev. D1976148701976PhRvD..14..870U10.1103/PhysRevD.14.870[INSPIRE] BruschiDELeeARFuentesITime evolution techniques for detectors in relativistic quantum informationJ. Phys. A2013461653032013JPhA...46p5303B30438971267.8102610.1088/1751-8113/46/16/165303[arXiv:1212.2110] [INSPIRE] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. Demkowicz-DobrzańskiRMacconeLUsing entanglement against noise in quantum metrologyPhys. Rev. Lett.20141132508012014PhRvL.113y0801D10.1103/PhysRevLett.113.250801 D. Borim, L. C. Céleri and V. I. Kiosses, Precision in estimating Unruh temperature, arXiv:2001.09085 [INSPIRE]. SchützholdRInteraction of a Bose-Einstein condensate with a gravitational wavePhys. Rev. D2018981050192018PhRvD..98j5019S395473810.1103/PhysRevD.98.105019[arXiv:1807.07046] [INSPIRE] SewellGLQuantum fields on manifolds: PCT and gravitationally induced thermal statesAnnals Phys.19821412011982AnPhy.141..201S67398010.1016/0003-4916(82)90285-8[INSPIRE] KaplanekGBurgessCPQubits on the Horizon: Decoherence and Thermalization near Black HolesJHEP2021010982021JHEP...01..098K425820610.1007/JHEP01(2021)098[arXiv:2007.05984] [INSPIRE] GroteHDanzmannKDooleyKLSchnabelRSlutskyJVahlbruchHFirst Long-Term Application of Squeezed States of Light in a Gravitational-Wave ObservatoryPhys. Rev. Lett.20131101811012013PhRvL.110r1101G10.1103/PhysRevLett.110.181101[arXiv:1302.2188] [INSPIRE] C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in statistics, pp. 235–247, Springer (1992) [DOI]. BrennaWGBrownEGMannRBMartín-MartínezEUniversality and thermalization in the Unruh EffectPhys. Rev. D2013880640312013PhRvD..88f4031B10.1103/PhysRevD.88.064031[arXiv:1307.3335] [INSPIRE] MoustosDAnastopoulosCNon-Markovian time evolution of an accelerated qubitPhys. Rev. D2017950250202017PhRvD..95b5020M377468410.1103/PhysRevD.95.025020[arXiv:1611.02477] [INSPIRE] TianZWangJFanHJingJRelativistic quantum metrology in open system dynamicsSci. Rep.2015579462015NatSR...5E7946T10.1038/srep07946 CavesCMQuantum Mechanical Noise in an InterferometerPhys. Rev. D19812316931981PhRvD..23.1693C10.1103/PhysRevD.23.1693[INSPIRE] KaplanekGBurgessCPHot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing DownJHEP2020020532020JHEP...02..053K408931410.1007/JHEP02(2020)053[arXiv:1912.12955] [INSPIRE] HaoXWuYQuantum parameter estimation in the Unruh-DeWitt detector modelAnnals Phys.20163721102016AnPhy.372..110H35415871380.8108010.1016/j.aop.2016.04.021[arXiv:1510.06515] [INSPIRE] BañadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B11816630968.8351410.1103/PhysRevLett.69.1849[hep-th/9204099] [INSPIRE] NarnhoferHPeterIThirringWEHow hot is the de Sitter space?Int. J. Mod. Phys. B19961015071996IJMPB..10.1507N14051801229.8120510.1142/S0217979296000611[INSPIRE] AvisSJIshamCJStoreyDQuantum Field Theory in anti-de Sitter Space-TimePhys. Rev. D19781835651978PhRvD..18.3565A51525510.1103/PhysRevD.18.3565[INSPIRE] BruschiDEDattaAUrsinRRalphTCFuentesIQuantum estimation of the Schwarzschild spacetime parameters of the EarthPhys. Rev. D2014901240012014PhRvD..90l4001B10.1103/PhysRevD.90.124001[arXiv:1409.0234] [INSPIRE] AhmadzadeganAMartin-MartinezEMannRBCavities in curved spacetimes: the response of particle detectorsPhys. Rev. D2014890240132014PhRvD..89b4013A10.1103/PhysRevD.89.024013[arXiv:1310.5097] [INSPIRE] A Ahmadzadegan (15674_CR38) 2019; 100 15674_CR26 R Schützhold (15674_CR12) 2018; 98 SJ Avis (15674_CR19) 1978; 18 M Aspachs (15674_CR8) 2010; 105 V Giovannetti (15674_CR2) 2011; 5 X Hao (15674_CR32) 2016; 372 J Louko (15674_CR22) 2008; 25 V Giovannetti (15674_CR44) 2006; 96 J Wang (15674_CR10) 2015; 892 GL Sewell (15674_CR24) 1982; 141 G Kaplanek (15674_CR36) 2021; 01 D Jennings (15674_CR23) 2010; 27 H Narnhofer (15674_CR29) 1996; 10 CM Caves (15674_CR3) 1981; 23 EG Brown (15674_CR41) 2013; 87 WG Unruh (15674_CR20) 1976; 14 D Manzano (15674_CR37) 2020; 10 DE Bruschi (15674_CR42) 2013; 46 D Moustos (15674_CR33) 2017; 95 A Ahmadzadegan (15674_CR40) 2014; 89 E Martín-Martínez (15674_CR50) 2016; 93 C Sabín (15674_CR11) 2014; 16 S Deser (15674_CR27) 1997; 14 15674_CR43 RB Mann (15674_CR1) 2012; 29 X Huang (15674_CR17) 2018; 397 G Kaplanek (15674_CR34) 2020; 03 15674_CR49 15674_CR47 M Ahmadi (15674_CR7) 2014; 4 GW Gibbons (15674_CR25) 1977; 15 R Demkowicz-Dobrzański (15674_CR5) 2014; 113 15674_CR18 15674_CR16 15674_CR15 Z Tian (15674_CR31) 2015; 5 MG Paris (15674_CR45) 2009; 7 DE Bruschi (15674_CR14) 2014; 90 G Kaplanek (15674_CR35) 2020; 02 H Grote (15674_CR4) 2013; 110 R Casadio (15674_CR28) 2011; 26 MPG Robbins (15674_CR13) 2019; 07 F Benatti (15674_CR30) 2004; 70 15674_CR9 M Ahmadi (15674_CR6) 2014; 89 LJ Henderson (15674_CR48) 2018; 35 WG Brenna (15674_CR39) 2013; 88 15674_CR21 M Bañados (15674_CR46) 1992; 69 |
References_xml | – volume: 25 start-page: 055012 year: 2008 ident: 15674_CR22 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/25/5/055012 contributor: fullname: J Louko – volume: 7 start-page: 125 year: 2009 ident: 15674_CR45 publication-title: Int. J. Quant. Inf. doi: 10.1142/S0219749909004839 contributor: fullname: MG Paris – ident: 15674_CR16 doi: 10.1007/978-1-4612-0919-5_16 – volume: 88 start-page: 064031 year: 2013 ident: 15674_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.064031 contributor: fullname: WG Brenna – volume: 70 start-page: 012112 year: 2004 ident: 15674_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.012112 contributor: fullname: F Benatti – ident: 15674_CR18 doi: 10.1017/CBO9780511622632 – volume: 89 start-page: 024013 year: 2014 ident: 15674_CR40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.024013 contributor: fullname: A Ahmadzadegan – volume: 105 start-page: 151301 year: 2010 ident: 15674_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.151301 contributor: fullname: M Aspachs – ident: 15674_CR47 doi: 10.1103/PhysRevD.49.1929 – volume: 98 start-page: 105019 year: 2018 ident: 15674_CR12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.105019 contributor: fullname: R Schützhold – volume: 892 start-page: 390 year: 2015 ident: 15674_CR10 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.01.021 contributor: fullname: J Wang – volume: 29 start-page: 220301 year: 2012 ident: 15674_CR1 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/22/220301 contributor: fullname: RB Mann – volume: 18 start-page: 3565 year: 1978 ident: 15674_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.18.3565 contributor: fullname: SJ Avis – volume: 96 start-page: 010401 year: 2006 ident: 15674_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.010401 contributor: fullname: V Giovannetti – volume: 01 start-page: 098 year: 2021 ident: 15674_CR36 publication-title: JHEP doi: 10.1007/JHEP01(2021)098 contributor: fullname: G Kaplanek – volume: 69 start-page: 1849 year: 1992 ident: 15674_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1849 contributor: fullname: M Bañados – volume: 10 start-page: 025106 year: 2020 ident: 15674_CR37 publication-title: AIP Advances doi: 10.1063/1.5115323 contributor: fullname: D Manzano – volume: 03 start-page: 008 year: 2020 ident: 15674_CR34 publication-title: JHEP doi: 10.1007/JHEP03(2020)008 contributor: fullname: G Kaplanek – ident: 15674_CR43 doi: 10.1142/9789814338745_0015 – ident: 15674_CR49 – volume: 93 start-page: 044001 year: 2016 ident: 15674_CR50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.044001 contributor: fullname: E Martín-Martínez – volume: 23 start-page: 1693 year: 1981 ident: 15674_CR3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.1693 contributor: fullname: CM Caves – volume: 35 year: 2018 ident: 15674_CR48 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aae27e contributor: fullname: LJ Henderson – volume: 113 start-page: 250801 year: 2014 ident: 15674_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.250801 contributor: fullname: R Demkowicz-Dobrzański – volume: 16 start-page: 085003 year: 2014 ident: 15674_CR11 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/8/085003 contributor: fullname: C Sabín – ident: 15674_CR26 doi: 10.1007/BF02345020 – volume: 5 start-page: 222 year: 2011 ident: 15674_CR2 publication-title: Nature Photon. doi: 10.1038/nphoton.2011.35 contributor: fullname: V Giovannetti – volume: 14 start-page: 870 year: 1976 ident: 15674_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.14.870 contributor: fullname: WG Unruh – volume: 141 start-page: 201 year: 1982 ident: 15674_CR24 publication-title: Annals Phys. doi: 10.1016/0003-4916(82)90285-8 contributor: fullname: GL Sewell – volume: 95 start-page: 025020 year: 2017 ident: 15674_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.025020 contributor: fullname: D Moustos – volume: 4 start-page: 4996 year: 2014 ident: 15674_CR7 publication-title: Sci. Rep. doi: 10.1038/srep04996 contributor: fullname: M Ahmadi – volume: 87 start-page: 084062 year: 2013 ident: 15674_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.084062 contributor: fullname: EG Brown – volume: 26 start-page: 2149 year: 2011 ident: 15674_CR28 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732311036516 contributor: fullname: R Casadio – volume: 15 start-page: 2738 year: 1977 ident: 15674_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2738 contributor: fullname: GW Gibbons – ident: 15674_CR15 – volume: 07 start-page: 032 year: 2019 ident: 15674_CR13 publication-title: JCAP doi: 10.1088/1475-7516/2019/07/032 contributor: fullname: MPG Robbins – volume: 90 start-page: 124001 year: 2014 ident: 15674_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.124001 contributor: fullname: DE Bruschi – volume: 10 start-page: 1507 year: 1996 ident: 15674_CR29 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979296000611 contributor: fullname: H Narnhofer – volume: 100 start-page: 085013 year: 2019 ident: 15674_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.085013 contributor: fullname: A Ahmadzadegan – volume: 372 start-page: 110 year: 2016 ident: 15674_CR32 publication-title: Annals Phys. doi: 10.1016/j.aop.2016.04.021 contributor: fullname: X Hao – ident: 15674_CR21 – volume: 27 start-page: 205005 year: 2010 ident: 15674_CR23 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/20/205005 contributor: fullname: D Jennings – volume: 5 start-page: 7946 year: 2015 ident: 15674_CR31 publication-title: Sci. Rep. doi: 10.1038/srep07946 contributor: fullname: Z Tian – volume: 89 start-page: 065028 year: 2014 ident: 15674_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.065028 contributor: fullname: M Ahmadi – ident: 15674_CR9 – volume: 46 start-page: 165303 year: 2013 ident: 15674_CR42 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/16/165303 contributor: fullname: DE Bruschi – volume: 02 start-page: 053 year: 2020 ident: 15674_CR35 publication-title: JHEP doi: 10.1007/JHEP02(2020)053 contributor: fullname: G Kaplanek – volume: 110 start-page: 181101 year: 2013 ident: 15674_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.181101 contributor: fullname: H Grote – volume: 397 start-page: 336 year: 2018 ident: 15674_CR17 publication-title: Annals Phys. doi: 10.1016/j.aop.2018.08.021 contributor: fullname: X Huang – volume: 14 start-page: L163 year: 1997 ident: 15674_CR27 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/14/9/003 contributor: fullname: S Deser |
SSID | ssj0015190 |
Score | 2.4902976 |
Snippet | A
bstract
Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects... Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken... Abstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Boundary conditions Classical and Quantum Gravitation Effective Field Theories Elementary Particles Energy gap Estimation Expected values Fisher information Gravitational waves High energy physics Investigations Metrology Models of Quantum Gravity Parameter estimation Phenomenology Physics Physics and Astronomy Quantum Dissipative Systems Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativistic effects Relativity Theory Scalars Sensors Spacetime String Theory Temperature dependence Theory of relativity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IHgRP7FaZQ8e2kPobrLJJN6qthQPIlTBi4T99NRWrRX8985mE6WCePGahGF4b7Mzw86-IeSMpTrJwUHElIwjwXMWFbEUkdRJwp3SIEU1xHYCNw_51dDL5HyN-vI9YUEeOADXZ4qDyaBw2goBTiorJCQSrUrcaG24R86gKabq8wPMS1gj5MOgfz0e3rK0i4U-73Eer8SgSqp_Jb_8cSRaRZrRNtmqU0Q6CK7tkDU72yUbVaumXuyRxzCtnNaSpx5YKhdUUj8bxtK5o7hJaOuHxtOgDrt8tec0XFp5r3SZ6csSAV1O6dT6PvX50wdao91Bz0z2yf1oeHc5juohCZEWHN6iGDKHZYhWGcZqZ7LcKEwKwOTMpFJp4bQGLKsE5y61TgiRAhRYFuaFiy0UOjkgrdl8Zg8JNS4zNk6sLCQTCqwyTmhhAH3OjdVFm3Qb2MrnoIVRNqrHAeHSI4xFRdwmFx7Wr8-8iHX1AKkta2rLv6htk05DSln_WYsyTjGFgwIDbpv0GqK-X__iz9F_-HNMNr290O7YIS2k0J6Q9YVZnlar7xM8st4i priority: 102 providerName: Directory of Open Access Journals |
Title | Fisher information as a probe of spacetime structure: relativistic quantum metrology in (A)dS |
URI | https://link.springer.com/article/10.1007/JHEP05(2021)112 https://www.proquest.com/docview/2526479123 https://doaj.org/article/0b17d679fce447fabe4a73a418a067e7 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELz4FtcXOXjYPVTSNu203nzsIh5EUMGLlDw9yLa6dQX_vZO0VVQ87K20aQkzSeabzsw3hByxRMUZWAiYFFHAw4wFeSR4IFQch1YqENw3sb2F64fsYuhoctjXr4vy-biLSPqDuqt1u7oc3rCkj756OAhdW-FFRA7ch2ddfUMbN0A8wjoCn78v_bA9nqL_B678FQr1Fma0Ovvc1shKiybpaaP-dTJnyg2y5LM6Vb1JHpvG5rRlR3U6oKKmgro2MoZWluJ5oozrL08bItnpxJzQpr7l3VM409cpyn46pmPjUtqrpw_8Gu2fDvTtFrkfDe_OL4O2n0KgeAhvQQSpRY9FyRTNutVppiXiB9AZ04mQilulAD0wHoY2MZZzngDk6EFmuY0M5CreJgtlVZodQrVNtYliI3LBuAQjteWKa8A5Z9qovEf6naSLl4Y2o-gIkhtpFU5a6H9EPXLmNPE1zPFd-xvV5Klot0_BZAg6hdwqwzlYIQ0XEAtcWwLNrYEe2e_0WLSbsC6iBNEe5Gibe2TQKe778T_z2Z1h7B5ZdpdNAuQ-WUBNmQMyX-vpoV-Xh97F_wSGKt82 |
link.rule.ids | 315,782,786,866,2107,27934,27935,41129,42198,52243 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RINRegFJQA4HuoYfkYMlrrz02t5AGpW2KKkGlXiprnzklaZOmEv-e2bUNolUPcF3vWqN57MxoZ74BeB9nOi3QYRQrmUSCF3FUJlJEUqcpd0qjFGGI7TVefS8-jD1MDm97YUK1e_skGW7qttnt02T8Nc76lKzzAfdzhbcFWZuv4hr5Bofm4YACkrhF8Pn30CPnEzD6HwWWf72FBhdzufcM4vZht4kn2bBWgNewZRcHsBPqOvX6DfyoR5uzBh_VS4HJNZPMD5KxbOkY3Sja-gnzrIaS3azsOas7XP4EEGf2a0Pc38zZ3Pqi9uXslv7G-sOBuT6Eb5fjm9EkaiYqRFpw_B0lmDvKWbTKybE7kxdGUQSBpohNJpUWTmukHExw7jLrhBAZYkk5ZFG6xGKp0yPoLJYL-xaYcbmxSWplKWOh0CrjhBYGiebCWF12od-yuvpZA2dULURyza3Kc4sykKQLF14U99s84nVYWK5mVWNAVaw4mhxLp60Q6KSyQmIqSbskOVyLXei1gqwaM1xXSUbxHpbknbswaAX38Pk_9Bw_Ye87eDm5-TKtph-vPp_AK79cl0P2oENSs6fwYm02Z0FJ7wCHb-Ib |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8RQDA4uKF7cxXF9Bw8zh2KX16YVPLjM4IYIKniR8tY5OaOzCP5787ooKh7E6-treSR5zReSfAHY82MVpWjR86UIPR6kvpeFgntCRVFgpULBiyG2t3j9kJ62HU3OYd0LU1S71ynJsqfBsTT1RvvP2tZZ_f2Ls_aNHzcpcA9agZsxPM0dbnC5WtfsUCURCJz4NZvPz5e-OKKCr_8LyPyWFy3cTWfhnwddhPkKZ7Kj0jCWYML0lmGmqPdUwxV4LEees4o31WmHiSETzA2YMaxvGf1plHGT51lJMTsemANWdr68FuTO7GVMWhk_sSfjit373Tf6GmsetfTtKtx32ncnZ141acFTPMCRF2JiKZZRMiGHb3WSaknIAnXq61hIxa1SSLEZCdnGxnLOY8SMYss0s6HBTEVrMNXr98w6MG0TbcLIiEz4XKKR2nLFNdKZU21U1oBmLfb8uSTUyGvq5FJauZMWRSZhA46dWj62OSbsYqE_6ObVxcp9GaBOMLPKcI5WSMMFRoKsTpAjNtiArVqpeXU9h3kYEw7EjLx2A1q1Ej8f_3KejT_s3YXZm9NOfnV-fbkJc261rJLcgilSmtmGyaEe7xT2-g7A0ur2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fisher+information+as+a+probe+of+spacetime+structure%3A+relativistic+quantum+metrology+in+%28A%29dS&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Du%2C+Haoxing&rft.au=Mann%2C+Robert+B.&rft.date=2021-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=5&rft_id=info:doi/10.1007%2FJHEP05%282021%29112&rft.externalDocID=10_1007_JHEP05_2021_112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |