Fisher information as a probe of spacetime structure: relativistic quantum metrology in (A)dS

A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space....

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2021; no. 5; pp. 1 - 22
Main Authors: Du, Haoxing, Mann, Robert B.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2021
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation.
AbstractList Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation.
Abstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation.
A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation.
ArticleNumber 112
Author Du, Haoxing
Mann, Robert B.
Author_xml – sequence: 1
  givenname: Haoxing
  surname: Du
  fullname: Du, Haoxing
  email: haoxing_du@berkeley.edu
  organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo, Department of Physics, University of California, Berkeley
– sequence: 2
  givenname: Robert B.
  surname: Mann
  fullname: Mann, Robert B.
  organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo
BookMark eNp1kc1LxDAQxYMo6KpnrwEveljNZNOm9bYs6xeCgnqUkKaTtcu22U1Swf_eaEW9eJpheO83w7wR2e5ch4QcATsDxuT57fX8gWUnnHE4BeBbZA8YL8eFkOX2n36XjEJYMgYZlGyPvFw24RU9bTrrfKtj4zqqA9V07V2F1Fka1tpgbFqkIfrexN7jBfW4Stq3JsTG0E2vu9i3tMXo3cot3hONnkxP68cDsmP1KuDhd90nz5fzp9n1-O7-6mY2vRsbATKOucwtK3NT5VCArfOirqSYyLpgdaYrI6wxkhdcANgMrRAik7IseFaUlqMszWSf3Azc2umlWvum1f5dOd2or4HzC6V9OnWFilUg61yW1qAQ0uoKhZYTLaDQLJcoE-t4YKUPbHoMUS1d77t0vuIZz9MLgU-S6nxQGe9C8Gh_tgJTn3moIQ_1mYdKeSQHGxwhKbsF-l_uf5YP0gKN8w
CitedBy_id crossref_primary_10_1007_s11433_023_2196_9
crossref_primary_10_1140_epjc_s10052_022_10628_y
crossref_primary_10_1007_JHEP06_2023_214
crossref_primary_10_1140_epjc_s10052_022_10633_1
crossref_primary_10_1007_s10714_022_02956_x
crossref_primary_10_1103_PhysRevD_103_125025
crossref_primary_10_1103_PhysRevA_107_012208
crossref_primary_10_1103_PhysRevA_107_012207
Cites_doi 10.1088/0264-9381/25/5/055012
10.1142/S0219749909004839
10.1007/978-1-4612-0919-5_16
10.1103/PhysRevD.88.064031
10.1103/PhysRevA.70.012112
10.1017/CBO9780511622632
10.1103/PhysRevD.89.024013
10.1103/PhysRevLett.105.151301
10.1103/PhysRevD.49.1929
10.1103/PhysRevD.98.105019
10.1016/j.nuclphysb.2015.01.021
10.1088/0264-9381/29/22/220301
10.1103/PhysRevD.18.3565
10.1103/PhysRevLett.96.010401
10.1007/JHEP01(2021)098
10.1103/PhysRevLett.69.1849
10.1063/1.5115323
10.1007/JHEP03(2020)008
10.1142/9789814338745_0015
10.1103/PhysRevD.93.044001
10.1103/PhysRevD.23.1693
10.1088/1361-6382/aae27e
10.1103/PhysRevLett.113.250801
10.1088/1367-2630/16/8/085003
10.1007/BF02345020
10.1038/nphoton.2011.35
10.1103/PhysRevD.14.870
10.1016/0003-4916(82)90285-8
10.1103/PhysRevD.95.025020
10.1038/srep04996
10.1103/PhysRevD.87.084062
10.1142/S0217732311036516
10.1103/PhysRevD.15.2738
10.1088/1475-7516/2019/07/032
10.1103/PhysRevD.90.124001
10.1142/S0217979296000611
10.1103/PhysRevD.100.085013
10.1016/j.aop.2016.04.021
10.1088/0264-9381/27/20/205005
10.1038/srep07946
10.1103/PhysRevD.89.065028
10.1088/1751-8113/46/16/165303
10.1007/JHEP02(2020)053
10.1103/PhysRevLett.110.181101
10.1016/j.aop.2018.08.021
10.1088/0264-9381/14/9/003
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP05(2021)112
DatabaseName SpringerOpen (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 22
ExternalDocumentID oai_doaj_org_article_0b17d679fce447fabe4a73a418a067e7
10_1007_JHEP05_2021_112
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-276f096cb6181fd68db7437d80d5abc4fcc7282411f5ef444577982589f2e79c3
IEDL.DBID C24
ISSN 1029-8479
IngestDate Tue Oct 22 15:10:36 EDT 2024
Sat Oct 26 16:28:41 EDT 2024
Thu Nov 21 22:14:21 EST 2024
Sat Dec 16 12:09:06 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Quantum Dissipative Systems
Effective Field Theories
Models of Quantum Gravity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-276f096cb6181fd68db7437d80d5abc4fcc7282411f5ef444577982589f2e79c3
OpenAccessLink http://link.springer.com/10.1007/JHEP05(2021)112
PQID 2526479123
PQPubID 2034718
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_0b17d679fce447fabe4a73a418a067e7
proquest_journals_2526479123
crossref_primary_10_1007_JHEP05_2021_112
springer_journals_10_1007_JHEP05_2021_112
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References JenningsDOn the response of a particle detector in Anti-de Sitter spacetimeClass. Quant. Grav.2010272050052010CQGra..27t5005J1202.8305510.1088/0264-9381/27/20/205005[arXiv:1008.2165] [INSPIRE]
HendersonLJHennigarRAMannRBSmithARHZhangJHarvesting Entanglement from the Black Hole VacuumClass. Quant. Grav.20183538760291431.8309610.1088/1361-6382/aae27e[arXiv:1712.10018] [INSPIRE]
Martín-MartínezESmithARHTernoDRSpacetime structure and vacuum entanglementPhys. Rev. D2016930440012016PhRvD..93d4001M349931510.1103/PhysRevD.93.044001[arXiv:1507.02688] [INSPIRE]
ParisMGQuantum estimation for quantum technologyInt. J. Quant. Inf.200971251162.8135110.1142/S0219749909004839
LoukoJSatzATransition rate of the Unruh-DeWitt detector in curved spacetimeClass. Quant. Grav.2008250550122008CQGra..25e5012L23924461136.8301910.1088/0264-9381/25/5/055012[arXiv:0710.5671] [INSPIRE]
M. P. G. Robbins, L. J. Henderson and R. B. Mann, Entanglement Amplification from Rotating Black Holes, arXiv:2010.14517 [INSPIRE].
AhmadiMBruschiDESabínCAdessoGFuentesIRelativistic quantum metrology: Exploiting relativity to improve quantum measurement technologiesSci. Rep.2014449962014NatSR...4E4996A10.1038/srep04996
AhmadiMBruschiDEFuentesIQuantum metrology for relativistic quantum fieldsPhys. Rev. D2014890650282014PhRvD..89f5028A10.1103/PhysRevD.89.065028[arXiv:1312.5707] [INSPIRE]
MannRBRalphTCRelativistic quantum informationClass. Quant. Grav.2012292203012012CQGra..29v0301M299423310.1088/0264-9381/29/22/220301
D. Petz and C. Ghinea, Introduction to quantum fisher information, in Quantum probability and related topics, pp. 261–281, World Scientific (2011) [DOI].
G. Lifschytz and M. Ortiz, Scalar field quantization on the (2+1)-dimensional black hole background, Phys. Rev. D49 (1994) 1929 [gr-qc/9310008] [INSPIRE].
N. D. Birrell and P. Davies, Quantum fields in curved space, Cambridge University Press (1982) [DOI].
B. S. DeWitt, Quantum gravity: the new synthesis, in General relativity: An Einstein Centenary Survey, S. Hawking and W. Israel eds., pp. 680–745, Cambridge University Press (1979) [INSPIRE].
BrownEGMartin-MartinezEMenicucciNCMannRBDetectors for probing relativistic quantum physics beyond perturbation theoryPhys. Rev. D2013870840622013PhRvD..87h4062B10.1103/PhysRevD.87.084062[arXiv:1212.1973] [INSPIRE]
BenattiFFloreaniniREntanglement generation in uniformly accelerating atoms: Reexamination of the unruh effectPhys. Rev. A2004700121122004PhRvA..70a2112B10.1103/PhysRevA.70.012112
RobbinsMPGAfshordiNMannRBBose-Einstein Condensates as Gravitational Wave DetectorsJCAP2019070322019JCAP...07..032R400040010.1088/1475-7516/2019/07/032[arXiv:1811.04468] [INSPIRE]
DeserSLevinOAccelerated detectors and temperature in (anti)-de Sitter spacesClass. Quant. Grav.199714L1631997CQGra..14L.163D14777990884.5305910.1088/0264-9381/14/9/003[gr-qc/9706018] [INSPIRE]
HuangXFengJZhangY-ZFanHQuantum estimation in an expanding spacetimeAnnals Phys.20183973362018AnPhy.397..336H10.1016/j.aop.2018.08.021[arXiv:1806.08922] [INSPIRE]
SabínCBruschiDEAhmadiMFuentesIPhonon creation by gravitational wavesNew J. Phys.2014160850032014NJPh...16h5003S10.1088/1367-2630/16/8/085003[arXiv:1402.7009] [INSPIRE]
H. Cramér, Mathematical methods of statistics, vol. 43, Princeton University Press (1999).
GiovannettiVLloydSMacconeLAdvances in quantum metrologyNature Photon.201152222011NaPho...5..222G10.1038/nphoton.2011.35
AhmadzadeganALaleganiFKempfAMannRBSeeing in Complete Darkness, Using the Unruh EffectPhys. Rev. D20191000850132019PhRvD.100h5013A403201110.1103/PhysRevD.100.085013[arXiv:1902.06745] [INSPIRE]
ManzanoDA short introduction to the lindblad master equationAIP Advances2020100251062020AIPA...10b5106M10.1063/1.5115323
GibbonsGWHawkingSWCosmological Event Horizons, Thermodynamics, and Particle CreationPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738[INSPIRE]
WangJTianZJingJFanHParameter estimation for an expanding universeNucl. Phys. B20158923902015NuPhB.892..390W33109201328.8305210.1016/j.nuclphysb.2015.01.021[arXiv:1401.1932] [INSPIRE]
CasadioRChiodiniSOrlandiAAcquavivaGDi CriscienzoRVanzoLOn the Unruh effect in de Sitter spaceMod. Phys. Lett. A20112621492011MPLA...26.2149C28366851274.8305810.1142/S0217732311036516[arXiv:1011.3336] [INSPIRE]
GiovannettiVLloydSMacconeLQuantum metrologyPhys. Rev. Lett.2006960104012006PhRvL..96a0401G219645810.1103/PhysRevLett.96.010401
AspachsMAdessoGFuentesIOptimal quantum estimation of the Unruh-Hawking effectPhys. Rev. Lett.20101051513012010PhRvL.105o1301A10.1103/PhysRevLett.105.151301[arXiv:1007.0389] [INSPIRE]
KaplanekGBurgessCPHot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable Late-time PredictionsJHEP2020030082020JHEP...03..008K40901291435.8305210.1007/JHEP03(2020)008[arXiv:1912.12951] [INSPIRE]
UnruhWGNotes on black hole evaporationPhys. Rev. D1976148701976PhRvD..14..870U10.1103/PhysRevD.14.870[INSPIRE]
BruschiDELeeARFuentesITime evolution techniques for detectors in relativistic quantum informationJ. Phys. A2013461653032013JPhA...46p5303B30438971267.8102610.1088/1751-8113/46/16/165303[arXiv:1212.2110] [INSPIRE]
S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
Demkowicz-DobrzańskiRMacconeLUsing entanglement against noise in quantum metrologyPhys. Rev. Lett.20141132508012014PhRvL.113y0801D10.1103/PhysRevLett.113.250801
D. Borim, L. C. Céleri and V. I. Kiosses, Precision in estimating Unruh temperature, arXiv:2001.09085 [INSPIRE].
SchützholdRInteraction of a Bose-Einstein condensate with a gravitational wavePhys. Rev. D2018981050192018PhRvD..98j5019S395473810.1103/PhysRevD.98.105019[arXiv:1807.07046] [INSPIRE]
SewellGLQuantum fields on manifolds: PCT and gravitationally induced thermal statesAnnals Phys.19821412011982AnPhy.141..201S67398010.1016/0003-4916(82)90285-8[INSPIRE]
KaplanekGBurgessCPQubits on the Horizon: Decoherence and Thermalization near Black HolesJHEP2021010982021JHEP...01..098K425820610.1007/JHEP01(2021)098[arXiv:2007.05984] [INSPIRE]
GroteHDanzmannKDooleyKLSchnabelRSlutskyJVahlbruchHFirst Long-Term Application of Squeezed States of Light in a Gravitational-Wave ObservatoryPhys. Rev. Lett.20131101811012013PhRvL.110r1101G10.1103/PhysRevLett.110.181101[arXiv:1302.2188] [INSPIRE]
C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in statistics, pp. 235–247, Springer (1992) [DOI].
BrennaWGBrownEGMannRBMartín-MartínezEUniversality and thermalization in the Unruh EffectPhys. Rev. D2013880640312013PhRvD..88f4031B10.1103/PhysRevD.88.064031[arXiv:1307.3335] [INSPIRE]
MoustosDAnastopoulosCNon-Markovian time evolution of an accelerated qubitPhys. Rev. D2017950250202017PhRvD..95b5020M377468410.1103/PhysRevD.95.025020[arXiv:1611.02477] [INSPIRE]
TianZWangJFanHJingJRelativistic quantum metrology in open system dynamicsSci. Rep.2015579462015NatSR...5E7946T10.1038/srep07946
CavesCMQuantum Mechanical Noise in an InterferometerPhys. Rev. D19812316931981PhRvD..23.1693C10.1103/PhysRevD.23.1693[INSPIRE]
KaplanekGBurgessCPHot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing DownJHEP2020020532020JHEP...02..053K408931410.1007/JHEP02(2020)053[arXiv:1912.12955] [INSPIRE]
HaoXWuYQuantum parameter estimation in the Unruh-DeWitt detector modelAnnals Phys.20163721102016AnPhy.372..110H35415871380.8108010.1016/j.aop.2016.04.021[arXiv:1510.06515] [INSPIRE]
BañadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B11816630968.8351410.1103/PhysRevLett.69.1849[hep-th/9204099] [INSPIRE]
NarnhoferHPeterIThirringWEHow hot is the de Sitter space?Int. J. Mod. Phys. B19961015071996IJMPB..10.1507N14051801229.8120510.1142/S0217979296000611[INSPIRE]
AvisSJIshamCJStoreyDQuantum Field Theory in anti-de Sitter Space-TimePhys. Rev. D19781835651978PhRvD..18.3565A51525510.1103/PhysRevD.18.3565[INSPIRE]
BruschiDEDattaAUrsinRRalphTCFuentesIQuantum estimation of the Schwarzschild spacetime parameters of the EarthPhys. Rev. D2014901240012014PhRvD..90l4001B10.1103/PhysRevD.90.124001[arXiv:1409.0234] [INSPIRE]
AhmadzadeganAMartin-MartinezEMannRBCavities in curved spacetimes: the response of particle detectorsPhys. Rev. D2014890240132014PhRvD..89b4013A10.1103/PhysRevD.89.024013[arXiv:1310.5097] [INSPIRE]
A Ahmadzadegan (15674_CR38) 2019; 100
15674_CR26
R Schützhold (15674_CR12) 2018; 98
SJ Avis (15674_CR19) 1978; 18
M Aspachs (15674_CR8) 2010; 105
V Giovannetti (15674_CR2) 2011; 5
X Hao (15674_CR32) 2016; 372
J Louko (15674_CR22) 2008; 25
V Giovannetti (15674_CR44) 2006; 96
J Wang (15674_CR10) 2015; 892
GL Sewell (15674_CR24) 1982; 141
G Kaplanek (15674_CR36) 2021; 01
D Jennings (15674_CR23) 2010; 27
H Narnhofer (15674_CR29) 1996; 10
CM Caves (15674_CR3) 1981; 23
EG Brown (15674_CR41) 2013; 87
WG Unruh (15674_CR20) 1976; 14
D Manzano (15674_CR37) 2020; 10
DE Bruschi (15674_CR42) 2013; 46
D Moustos (15674_CR33) 2017; 95
A Ahmadzadegan (15674_CR40) 2014; 89
E Martín-Martínez (15674_CR50) 2016; 93
C Sabín (15674_CR11) 2014; 16
S Deser (15674_CR27) 1997; 14
15674_CR43
RB Mann (15674_CR1) 2012; 29
X Huang (15674_CR17) 2018; 397
G Kaplanek (15674_CR34) 2020; 03
15674_CR49
15674_CR47
M Ahmadi (15674_CR7) 2014; 4
GW Gibbons (15674_CR25) 1977; 15
R Demkowicz-Dobrzański (15674_CR5) 2014; 113
15674_CR18
15674_CR16
15674_CR15
Z Tian (15674_CR31) 2015; 5
MG Paris (15674_CR45) 2009; 7
DE Bruschi (15674_CR14) 2014; 90
G Kaplanek (15674_CR35) 2020; 02
H Grote (15674_CR4) 2013; 110
R Casadio (15674_CR28) 2011; 26
MPG Robbins (15674_CR13) 2019; 07
F Benatti (15674_CR30) 2004; 70
15674_CR9
M Ahmadi (15674_CR6) 2014; 89
LJ Henderson (15674_CR48) 2018; 35
WG Brenna (15674_CR39) 2013; 88
15674_CR21
M Bañados (15674_CR46) 1992; 69
References_xml – volume: 25
  start-page: 055012
  year: 2008
  ident: 15674_CR22
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/25/5/055012
  contributor:
    fullname: J Louko
– volume: 7
  start-page: 125
  year: 2009
  ident: 15674_CR45
  publication-title: Int. J. Quant. Inf.
  doi: 10.1142/S0219749909004839
  contributor:
    fullname: MG Paris
– ident: 15674_CR16
  doi: 10.1007/978-1-4612-0919-5_16
– volume: 88
  start-page: 064031
  year: 2013
  ident: 15674_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064031
  contributor:
    fullname: WG Brenna
– volume: 70
  start-page: 012112
  year: 2004
  ident: 15674_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.012112
  contributor:
    fullname: F Benatti
– ident: 15674_CR18
  doi: 10.1017/CBO9780511622632
– volume: 89
  start-page: 024013
  year: 2014
  ident: 15674_CR40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.024013
  contributor:
    fullname: A Ahmadzadegan
– volume: 105
  start-page: 151301
  year: 2010
  ident: 15674_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.151301
  contributor:
    fullname: M Aspachs
– ident: 15674_CR47
  doi: 10.1103/PhysRevD.49.1929
– volume: 98
  start-page: 105019
  year: 2018
  ident: 15674_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.105019
  contributor:
    fullname: R Schützhold
– volume: 892
  start-page: 390
  year: 2015
  ident: 15674_CR10
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.01.021
  contributor:
    fullname: J Wang
– volume: 29
  start-page: 220301
  year: 2012
  ident: 15674_CR1
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/22/220301
  contributor:
    fullname: RB Mann
– volume: 18
  start-page: 3565
  year: 1978
  ident: 15674_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.18.3565
  contributor:
    fullname: SJ Avis
– volume: 96
  start-page: 010401
  year: 2006
  ident: 15674_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.010401
  contributor:
    fullname: V Giovannetti
– volume: 01
  start-page: 098
  year: 2021
  ident: 15674_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)098
  contributor:
    fullname: G Kaplanek
– volume: 69
  start-page: 1849
  year: 1992
  ident: 15674_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1849
  contributor:
    fullname: M Bañados
– volume: 10
  start-page: 025106
  year: 2020
  ident: 15674_CR37
  publication-title: AIP Advances
  doi: 10.1063/1.5115323
  contributor:
    fullname: D Manzano
– volume: 03
  start-page: 008
  year: 2020
  ident: 15674_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)008
  contributor:
    fullname: G Kaplanek
– ident: 15674_CR43
  doi: 10.1142/9789814338745_0015
– ident: 15674_CR49
– volume: 93
  start-page: 044001
  year: 2016
  ident: 15674_CR50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044001
  contributor:
    fullname: E Martín-Martínez
– volume: 23
  start-page: 1693
  year: 1981
  ident: 15674_CR3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.23.1693
  contributor:
    fullname: CM Caves
– volume: 35
  year: 2018
  ident: 15674_CR48
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aae27e
  contributor:
    fullname: LJ Henderson
– volume: 113
  start-page: 250801
  year: 2014
  ident: 15674_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.250801
  contributor:
    fullname: R Demkowicz-Dobrzański
– volume: 16
  start-page: 085003
  year: 2014
  ident: 15674_CR11
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/8/085003
  contributor:
    fullname: C Sabín
– ident: 15674_CR26
  doi: 10.1007/BF02345020
– volume: 5
  start-page: 222
  year: 2011
  ident: 15674_CR2
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2011.35
  contributor:
    fullname: V Giovannetti
– volume: 14
  start-page: 870
  year: 1976
  ident: 15674_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.14.870
  contributor:
    fullname: WG Unruh
– volume: 141
  start-page: 201
  year: 1982
  ident: 15674_CR24
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(82)90285-8
  contributor:
    fullname: GL Sewell
– volume: 95
  start-page: 025020
  year: 2017
  ident: 15674_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.025020
  contributor:
    fullname: D Moustos
– volume: 4
  start-page: 4996
  year: 2014
  ident: 15674_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/srep04996
  contributor:
    fullname: M Ahmadi
– volume: 87
  start-page: 084062
  year: 2013
  ident: 15674_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.084062
  contributor:
    fullname: EG Brown
– volume: 26
  start-page: 2149
  year: 2011
  ident: 15674_CR28
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732311036516
  contributor:
    fullname: R Casadio
– volume: 15
  start-page: 2738
  year: 1977
  ident: 15674_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2738
  contributor:
    fullname: GW Gibbons
– ident: 15674_CR15
– volume: 07
  start-page: 032
  year: 2019
  ident: 15674_CR13
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/07/032
  contributor:
    fullname: MPG Robbins
– volume: 90
  start-page: 124001
  year: 2014
  ident: 15674_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.124001
  contributor:
    fullname: DE Bruschi
– volume: 10
  start-page: 1507
  year: 1996
  ident: 15674_CR29
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979296000611
  contributor:
    fullname: H Narnhofer
– volume: 100
  start-page: 085013
  year: 2019
  ident: 15674_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.085013
  contributor:
    fullname: A Ahmadzadegan
– volume: 372
  start-page: 110
  year: 2016
  ident: 15674_CR32
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2016.04.021
  contributor:
    fullname: X Hao
– ident: 15674_CR21
– volume: 27
  start-page: 205005
  year: 2010
  ident: 15674_CR23
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/20/205005
  contributor:
    fullname: D Jennings
– volume: 5
  start-page: 7946
  year: 2015
  ident: 15674_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep07946
  contributor:
    fullname: Z Tian
– volume: 89
  start-page: 065028
  year: 2014
  ident: 15674_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.065028
  contributor:
    fullname: M Ahmadi
– ident: 15674_CR9
– volume: 46
  start-page: 165303
  year: 2013
  ident: 15674_CR42
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/16/165303
  contributor:
    fullname: DE Bruschi
– volume: 02
  start-page: 053
  year: 2020
  ident: 15674_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)053
  contributor:
    fullname: G Kaplanek
– volume: 110
  start-page: 181101
  year: 2013
  ident: 15674_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.181101
  contributor:
    fullname: H Grote
– volume: 397
  start-page: 336
  year: 2018
  ident: 15674_CR17
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2018.08.021
  contributor:
    fullname: X Huang
– volume: 14
  start-page: L163
  year: 1997
  ident: 15674_CR27
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/14/9/003
  contributor:
    fullname: S Deser
SSID ssj0015190
Score 2.4902976
Snippet A bstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects...
Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken...
Abstract Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Boundary conditions
Classical and Quantum Gravitation
Effective Field Theories
Elementary Particles
Energy gap
Estimation
Expected values
Fisher information
Gravitational waves
High energy physics
Investigations
Metrology
Models of Quantum Gravity
Parameter estimation
Phenomenology
Physics
Physics and Astronomy
Quantum Dissipative Systems
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Relativistic effects
Relativity Theory
Scalars
Sensors
Spacetime
String Theory
Temperature dependence
Theory of relativity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IHgRP7FaZQ8e2kPobrLJJN6qthQPIlTBi4T99NRWrRX8985mE6WCePGahGF4b7Mzw86-IeSMpTrJwUHElIwjwXMWFbEUkdRJwp3SIEU1xHYCNw_51dDL5HyN-vI9YUEeOADXZ4qDyaBw2goBTiorJCQSrUrcaG24R86gKabq8wPMS1gj5MOgfz0e3rK0i4U-73Eer8SgSqp_Jb_8cSRaRZrRNtmqU0Q6CK7tkDU72yUbVaumXuyRxzCtnNaSpx5YKhdUUj8bxtK5o7hJaOuHxtOgDrt8tec0XFp5r3SZ6csSAV1O6dT6PvX50wdao91Bz0z2yf1oeHc5juohCZEWHN6iGDKHZYhWGcZqZ7LcKEwKwOTMpFJp4bQGLKsE5y61TgiRAhRYFuaFiy0UOjkgrdl8Zg8JNS4zNk6sLCQTCqwyTmhhAH3OjdVFm3Qb2MrnoIVRNqrHAeHSI4xFRdwmFx7Wr8-8iHX1AKkta2rLv6htk05DSln_WYsyTjGFgwIDbpv0GqK-X__iz9F_-HNMNr290O7YIS2k0J6Q9YVZnlar7xM8st4i
  priority: 102
  providerName: Directory of Open Access Journals
Title Fisher information as a probe of spacetime structure: relativistic quantum metrology in (A)dS
URI https://link.springer.com/article/10.1007/JHEP05(2021)112
https://www.proquest.com/docview/2526479123
https://doaj.org/article/0b17d679fce447fabe4a73a418a067e7
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELz4FtcXOXjYPVTSNu203nzsIh5EUMGLlDw9yLa6dQX_vZO0VVQ87K20aQkzSeabzsw3hByxRMUZWAiYFFHAw4wFeSR4IFQch1YqENw3sb2F64fsYuhoctjXr4vy-biLSPqDuqt1u7oc3rCkj756OAhdW-FFRA7ch2ddfUMbN0A8wjoCn78v_bA9nqL_B678FQr1Fma0Ovvc1shKiybpaaP-dTJnyg2y5LM6Vb1JHpvG5rRlR3U6oKKmgro2MoZWluJ5oozrL08bItnpxJzQpr7l3VM409cpyn46pmPjUtqrpw_8Gu2fDvTtFrkfDe_OL4O2n0KgeAhvQQSpRY9FyRTNutVppiXiB9AZ04mQilulAD0wHoY2MZZzngDk6EFmuY0M5CreJgtlVZodQrVNtYliI3LBuAQjteWKa8A5Z9qovEf6naSLl4Y2o-gIkhtpFU5a6H9EPXLmNPE1zPFd-xvV5Klot0_BZAg6hdwqwzlYIQ0XEAtcWwLNrYEe2e_0WLSbsC6iBNEe5Gibe2TQKe778T_z2Z1h7B5ZdpdNAuQ-WUBNmQMyX-vpoV-Xh97F_wSGKt82
link.rule.ids 315,782,786,866,2107,27934,27935,41129,42198,52243
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RINRegFJQA4HuoYfkYMlrrz02t5AGpW2KKkGlXiprnzklaZOmEv-e2bUNolUPcF3vWqN57MxoZ74BeB9nOi3QYRQrmUSCF3FUJlJEUqcpd0qjFGGI7TVefS8-jD1MDm97YUK1e_skGW7qttnt02T8Nc76lKzzAfdzhbcFWZuv4hr5Bofm4YACkrhF8Pn30CPnEzD6HwWWf72FBhdzufcM4vZht4kn2bBWgNewZRcHsBPqOvX6DfyoR5uzBh_VS4HJNZPMD5KxbOkY3Sja-gnzrIaS3azsOas7XP4EEGf2a0Pc38zZ3Pqi9uXslv7G-sOBuT6Eb5fjm9EkaiYqRFpw_B0lmDvKWbTKybE7kxdGUQSBpohNJpUWTmukHExw7jLrhBAZYkk5ZFG6xGKp0yPoLJYL-xaYcbmxSWplKWOh0CrjhBYGiebCWF12od-yuvpZA2dULURyza3Kc4sykKQLF14U99s84nVYWK5mVWNAVaw4mhxLp60Q6KSyQmIqSbskOVyLXei1gqwaM1xXSUbxHpbknbswaAX38Pk_9Bw_Ye87eDm5-TKtph-vPp_AK79cl0P2oENSs6fwYm02Z0FJ7wCHb-Ib
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8RQDA4uKF7cxXF9Bw8zh2KX16YVPLjM4IYIKniR8tY5OaOzCP5787ooKh7E6-treSR5zReSfAHY82MVpWjR86UIPR6kvpeFgntCRVFgpULBiyG2t3j9kJ62HU3OYd0LU1S71ynJsqfBsTT1RvvP2tZZ_f2Ls_aNHzcpcA9agZsxPM0dbnC5WtfsUCURCJz4NZvPz5e-OKKCr_8LyPyWFy3cTWfhnwddhPkKZ7Kj0jCWYML0lmGmqPdUwxV4LEees4o31WmHiSETzA2YMaxvGf1plHGT51lJMTsemANWdr68FuTO7GVMWhk_sSfjit373Tf6GmsetfTtKtx32ncnZ141acFTPMCRF2JiKZZRMiGHb3WSaknIAnXq61hIxa1SSLEZCdnGxnLOY8SMYss0s6HBTEVrMNXr98w6MG0TbcLIiEz4XKKR2nLFNdKZU21U1oBmLfb8uSTUyGvq5FJauZMWRSZhA46dWj62OSbsYqE_6ObVxcp9GaBOMLPKcI5WSMMFRoKsTpAjNtiArVqpeXU9h3kYEw7EjLx2A1q1Ej8f_3KejT_s3YXZm9NOfnV-fbkJc261rJLcgilSmtmGyaEe7xT2-g7A0ur2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fisher+information+as+a+probe+of+spacetime+structure%3A+relativistic+quantum+metrology+in+%28A%29dS&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Du%2C+Haoxing&rft.au=Mann%2C+Robert+B.&rft.date=2021-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=5&rft_id=info:doi/10.1007%2FJHEP05%282021%29112&rft.externalDocID=10_1007_JHEP05_2021_112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon