Lactoferrin modified by hypohalous acids: Partial loss in activation of human neutrophils
Previously we have shown that lactoferrin (LTF), a protein of secondary neutrophilic granules, can be efficiently modified by hypohalous acids (HOCl and HOBr), which are produced at high concentrations during inflammation and oxidative/halogenative stress by myeloperoxidase, an enzyme of azurophilic...
Saved in:
Published in: | International journal of biological macromolecules Vol. 195; pp. 30 - 40 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
15-01-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previously we have shown that lactoferrin (LTF), a protein of secondary neutrophilic granules, can be efficiently modified by hypohalous acids (HOCl and HOBr), which are produced at high concentrations during inflammation and oxidative/halogenative stress by myeloperoxidase, an enzyme of azurophilic neutrophilic granules. Here we compared the effects of recombinant human lactoferrin (rhLTF) and its halogenated derivatives (rhLTF-Cl and rhLTF-Br) on functional responses of neutrophils. Our results demonstrated that after halogenative modification, rhLTF lost its ability to induce mobilization of intracellular calcium, actin cytoskeleton reorganization, and morphological changes in human neutrophils. Moreover, both forms of the halogenated rhLTF prevented binding of N-acetylglucosamine-specific plant lectin Triticum vulgaris agglutinin (WGA) to neutrophils and, in contrast to native rhLTF, inhibited respiratory burst of neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine and by two plant lectins (WGA and PHA-L). However, we observed no differences between the effects of rhLTF, rhLTF-Cl, and rhLTF-Br on respiratory burst of neutrophils induced by phorbol 12-myristate 13-acetate (PMA), digitonin, and number of plant lectins with different glycan-binding specificity. Furthermore, all rhLTF forms interfered with PMA- and ionomycin-induced formation of neutrophil extracellular traps. Thus, halogenative modification of LTF is one of the mechanisms involved in modulating a variety of signaling pathways in neutrophils to control their pro-inflammatory activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.11.165 |