MOSFET hot-carrier reliability improvement by forward-body bias

Active threshold voltage V/sub TH/ control via well-substrate biasing can be utilized to satisfy International Roadmap for Semiconductors performance and standby power requirements for CMOS technology beyond the hp65-nm node. In this letter, the impact of substrate bias V/sub SUB/ on hot-carrier rel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters Vol. 27; no. 7; pp. 605 - 608
Main Authors: Hokazono, A., Balasubramanian, S., Ishimaru, K., Ishiuchi, H., Chenming Hu, Tsu-Jae King Liu
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-07-2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active threshold voltage V/sub TH/ control via well-substrate biasing can be utilized to satisfy International Roadmap for Semiconductors performance and standby power requirements for CMOS technology beyond the hp65-nm node. In this letter, the impact of substrate bias V/sub SUB/ on hot-carrier reliability is presented. The impact varies with the gate length and body effect factor. These findings are explained, and the effects of future scaling are discussed using a quasi-two-dimensional model. Significant and important improvement in hot-carrier lifetime with forward-bias V/sub SUB/ can be expected for deeply scaled CMOS devices, making it an attractive method for extending the scalability of bulk-Si transistor technology.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2006.877306