Nullifying ACF grating lobes in stepped-frequency train of LFM pulses
An effective way to increase the bandwidth of a coherent pulse-train is to add a frequency step /spl Delta/f between consecutive pulses. A large /spl Delta/f implies a large total bandwidth, hence improved range resolution. However, when the product of the frequency step times the pulse-duration t/s...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems Vol. 39; no. 2; pp. 694 - 703 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-04-2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An effective way to increase the bandwidth of a coherent pulse-train is to add a frequency step /spl Delta/f between consecutive pulses. A large /spl Delta/f implies a large total bandwidth, hence improved range resolution. However, when the product of the frequency step times the pulse-duration t/sub p/, is larger than one (t/sub p/ /spl Delta/f > 1), the autocorrelation function (ACF) of the stepped-frequency pulse-train suffers from ambiguous peaks, known as "grating lobes." It is well known that replacing the fixed-frequency pulses with linear FM (LFM) pulses of bandwidth B can reduce those grating lobes. We present a simple analytic expression for the ambiguity function (AF) and ACF of such a signal and derive from it very simple relationships between /spl Delta/f, B, and t/sub p/ that will place nulls exactly where the grating lobes are located, and thus remove them completely. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2003.1207275 |