A Highly Efficient Aromatic Amine Ligand/Copper(I) Chloride Catalyst System for the Synthesis of Poly(2,6-dimethyl-1,4-phenylene ether)
Highly active catalyst systems for polymerizing 2,6-dimethylphenol were studied by using aromatic amine ligands and copper(I) chloride. The aromatic amine ligands employed were pyridine, 1-methylimidazole, 2-aminopyridine, 3-aminopyridine, and 4-aminopyridine. A mixture of chloroform and methanol (9...
Saved in:
Published in: | Polymers Vol. 10; no. 4; p. 350 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
22-03-2018
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Highly active catalyst systems for polymerizing 2,6-dimethylphenol were studied by using aromatic amine ligands and copper(I) chloride. The aromatic amine ligands employed were pyridine, 1-methylimidazole, 2-aminopyridine, 3-aminopyridine, and 4-aminopyridine. A mixture of chloroform and methanol (9:1,
/
) was used as a polymerization solvent. All experiments were performed with oxygen uptake measurement apparatus, while the reaction rate for each aromatic amine ligand-Cu catalyst system and the amount of by-product, 3,3',5,5'-Tetramethyl-4,4'diphenoquinone (DPQ), were measured to determine the efficiency of the catalyst systems. The 4-aminopyridine/Cu (I) catalyst system was found to be extremely efficient in poly(2,6-dimethyl-1,4-phenylene ether) (PPE) synthesis; it had the fastest reaction rate of 6.98 × 10
mol/L·s and the lowest DPQ production. The relatively high basicity of 4-aminopyridne and the less steric hindrance arising from a coordination of Cu and 4-aminopyridine in this catalyst are responsible for the fast polymerization rate. When 2-aminoprydine (an isomer of 4-aminopyridine) was used as a ligand, however, no polymerization occurred probably due to steric hindrance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym10040350 |