Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode

Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its par...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A Vol. 1217; no. 48; pp. 7564 - 7572
Main Authors: Tarvin, Megan, McCord, Bruce, Mount, Kelly, Sherlach, Katy, Miller, Mark L.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 26-11-2010
Amsterdam; New York: Elsevier
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC–ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H 2). Both methods were linear across the range of 15–300 μM, and the electrochemical method was linear across a wider range of 7.4–15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.
AbstractList Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400mV vs. hydrogen reference electrode (Pd/H₂). Both methods were linear across the range of 15-300μM, and the electrochemical method was linear across a wider range of 7.4-15,000μM. The limit of detection for hydrogen peroxide was 6μM by HPLC/FD, and 0.6μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.
Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.
Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC–ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H 2). Both methods were linear across the range of 15–300 μM, and the electrochemical method was linear across a wider range of 7.4–15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.
Author Sherlach, Katy
Mount, Kelly
Miller, Mark L.
McCord, Bruce
Tarvin, Megan
Author_xml – sequence: 1
  givenname: Megan
  surname: Tarvin
  fullname: Tarvin, Megan
  organization: CFSRU, Visiting Scientist Program, Federal Bureau of Investigation Laboratory, Quantico, VA, USA
– sequence: 2
  givenname: Bruce
  surname: McCord
  fullname: McCord, Bruce
  organization: Department of Chemistry, Florida International University, Miami, FL, USA
– sequence: 3
  givenname: Kelly
  surname: Mount
  fullname: Mount, Kelly
  organization: EU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA
– sequence: 4
  givenname: Katy
  surname: Sherlach
  fullname: Sherlach, Katy
  organization: CFSRU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA
– sequence: 5
  givenname: Mark L.
  surname: Miller
  fullname: Miller, Mark L.
  email: Mark.L.Miller@IC.FBI.GOV
  organization: CFSRU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23403885$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21030031$$D View this record in MEDLINE/PubMed
BookMark eNqVkctu1DAUhi3Uik4Lb4DAmy4z9a1JzAIJVYUiVeoCuo4c-3jiURIH29MyfeA-B05TLiskVtY5_v5z-4_RwehHQOgNJWtKaHm2Xesu-EGtGXlKrQljL9CK1hUveFXVB2hFCKOFLCt-hI5j3BJCK1Kxl-iIUcIJ4XSFHm-m5Ab3oJLzI_YWp3uPB0idNxFbH3DqAKtR9fvo4vzf7U3wGxjxBMH_cAbe4yu36eYw44MaNeDefd85g5f5kt8ENXV7fO9Sh22_8wGihpkzkEA_NVajwd1_lIE-C4PXHQxOq_6vSm7ExoUcYL0LAcaEB2_gFTq0qo_w-vk9QbefLr9dXBXXN5-_XHy8LrSg56ngwJkmba1ZWUsmpACjVSUFY6bijItWSiGtVKZk1LY11WWrqBRZIapSl5afILHU1cHHGMA2U3CDCvuGkma2rdk2yz7NbNuczbZl2dtFNu3aAcxv0S-fMnD6DKiY97UhH8jFPxwXhNf1eebeLZxVvlGbkJnbr7kTJ1SSPKjIxIeFgHyGOwehidrNbixXa4x3_571J8VLyoM
CODEN JOCRAM
CitedBy_id crossref_primary_10_1016_j_jelechem_2020_114553
crossref_primary_10_1080_22297928_2017_1400399
crossref_primary_10_1002_slct_202301922
crossref_primary_10_1016_j_jlumin_2021_117998
crossref_primary_10_2116_analsci_17P536
crossref_primary_10_1016_j_apsusc_2015_10_026
crossref_primary_10_1016_j_talanta_2021_123118
crossref_primary_10_1002_celc_202100341
crossref_primary_10_1002_elan_201100453
crossref_primary_10_1016_j_chroma_2022_463090
crossref_primary_10_1002_elan_201400318
crossref_primary_10_1002_elan_201600457
crossref_primary_10_1016_j_snb_2014_01_052
crossref_primary_10_1016_j_saa_2022_121218
crossref_primary_10_1021_acs_analchem_7b02831
crossref_primary_10_1021_acs_jafc_7b02248
crossref_primary_10_1016_j_jelechem_2019_113653
crossref_primary_10_1039_D2NJ03064K
crossref_primary_10_56294_sctconf2024850
crossref_primary_10_1016_j_apsusc_2020_148256
crossref_primary_10_1016_j_bioelechem_2011_08_003
crossref_primary_10_1039_D1NA00617G
crossref_primary_10_1016_j_electacta_2012_05_160
crossref_primary_10_1016_j_electacta_2014_04_046
crossref_primary_10_1016_j_forc_2024_100585
crossref_primary_10_1016_j_saa_2020_119266
crossref_primary_10_1016_j_apsusc_2015_04_184
crossref_primary_10_1002_elan_201400629
crossref_primary_10_1016_j_foodchem_2019_01_051
crossref_primary_10_1007_s42452_019_0651_9
crossref_primary_10_1016_j_talanta_2020_121000
crossref_primary_10_1039_D2NJ02495K
crossref_primary_10_1016_j_microc_2022_107997
crossref_primary_10_1021_acs_analchem_0c05364
crossref_primary_10_1149_2_0521906jes
crossref_primary_10_1002_elan_201300288
crossref_primary_10_1039_C8CP06050A
crossref_primary_10_1016_j_talanta_2016_06_033
crossref_primary_10_1016_j_scitotenv_2018_10_372
crossref_primary_10_1016_j_forsciint_2011_01_024
crossref_primary_10_1039_D0NJ03281F
crossref_primary_10_1021_acssuschemeng_3c03663
crossref_primary_10_1016_j_jelechem_2020_114953
crossref_primary_10_1021_acssuschemeng_8b06182
crossref_primary_10_1002_slct_202200631
crossref_primary_10_1007_s10008_020_04649_4
crossref_primary_10_1016_j_ssi_2017_10_015
crossref_primary_10_1021_acsami_8b22389
crossref_primary_10_1039_C7NJ00851A
crossref_primary_10_1002_bkcs_10655
crossref_primary_10_1007_s10068_022_01165_1
crossref_primary_10_1016_j_microc_2021_106972
crossref_primary_10_1016_j_talanta_2015_03_017
crossref_primary_10_1080_00032719_2020_1745223
crossref_primary_10_1016_j_electacta_2017_09_115
crossref_primary_10_1039_D2CS00172A
crossref_primary_10_1016_j_electacta_2022_141641
crossref_primary_10_1051_matecconf_20166706078
crossref_primary_10_1016_j_electacta_2017_07_154
crossref_primary_10_3390_chemosensors12020023
crossref_primary_10_1039_C7AY01249G
crossref_primary_10_1016_j_jfca_2023_105237
crossref_primary_10_1021_acs_jchemed_5b00096
crossref_primary_10_1016_j_jlumin_2015_11_001
crossref_primary_10_1155_2016_8174913
crossref_primary_10_1002_jccs_201300262
crossref_primary_10_1016_j_bios_2013_03_028
crossref_primary_10_1016_j_jpba_2015_01_018
crossref_primary_10_1038_s41598_017_11965_9
crossref_primary_10_1016_j_bios_2018_02_008
crossref_primary_10_1016_j_snb_2017_12_179
crossref_primary_10_1021_jacs_0c00771
crossref_primary_10_1016_j_cclet_2016_05_019
crossref_primary_10_1021_acsami_8b18510
crossref_primary_10_1007_s12039_020_01778_1
crossref_primary_10_1016_j_jelechem_2015_01_005
crossref_primary_10_1039_C5AY01414J
crossref_primary_10_2116_analsci_21P003
crossref_primary_10_3390_bios12100778
crossref_primary_10_1016_j_bioorg_2022_105798
crossref_primary_10_1016_j_foodchem_2021_130613
crossref_primary_10_1002_smll_201703970
Cites_doi 10.3390/s8031400
10.1039/b206673b
10.1007/BF02492084
10.1016/j.atmosres.2004.04.002
10.1002/anie.200500525
10.1002/elan.1140070603
10.1081/AL-100104150
10.1021/ac00298a055
10.1175/1520-0426(1995)012<0282:HDOAOH>2.0.CO;2
10.1021/ac020392n
10.1016/S0378-4347(97)00608-7
10.1038/337631a0
ContentType Journal Article
Copyright 2010
2015 INIST-CNRS
Published by Elsevier B.V.
Copyright_xml – notice: 2010
– notice: 2015 INIST-CNRS
– notice: Published by Elsevier B.V.
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.chroma.2010.10.022
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
EndPage 7572
ExternalDocumentID 10_1016_j_chroma_2010_10_022
21030031
23403885
US201301909404
S0021967310013701
Genre Evaluation Studies
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYJJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMU
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
UQL
VH1
WH7
WUQ
XFK
XPP
YK3
ZGI
ZKB
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
08R
AAUGY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAHBH
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c415t-3e32c0b8c26892494edca79422d73234b9949f9ad621fb81c6ba1940b8476c6f3
ISSN 0021-9673
IngestDate Thu Nov 21 21:25:08 EST 2024
Sat Sep 18 05:13:45 EDT 2021
Sun Oct 22 16:07:16 EDT 2023
Wed Dec 27 19:16:18 EST 2023
Fri Feb 23 02:22:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords Hydrogen peroxide
Electrochemical detection
HPLC
Fluorescence detection
Trace analysis
Fluorescence detector
Chemical analysis
HPLC chromatography
Explosions
Derivatization
Optimization
Postcolumn
Electrochemical detector
Reversed phase chromatography
Hemin
Residue
Metalloporphyrin
Quantitative analysis
Language English
License CC BY 4.0
Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-3e32c0b8c26892494edca79422d73234b9949f9ad621fb81c6ba1940b8476c6f3
Notes http://dx.doi.org/10.1016/j.chroma.2010.10.022
PMID 21030031
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_chroma_2010_10_022
pubmed_primary_21030031
pascalfrancis_primary_23403885
fao_agris_US201301909404
elsevier_sciencedirect_doi_10_1016_j_chroma_2010_10_022
PublicationCentury 2000
PublicationDate 2010-11-26
PublicationDateYYYYMMDD 2010-11-26
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-26
  day: 26
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2010
Publisher Elsevier B.V
Amsterdam; New York: Elsevier
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Amsterdam; New York: Elsevier
– name: Elsevier
References Kok, McLaren, Staffelbach (bib0025) 1994; 12
Schulte-Ladbeck, Kolla, Karst (bib0040) 2003; 75
Eul, Moeller, Steiner (bib0010) 2001
Hellpointner, Gaeb (bib0020) 1989; 337
Hage, Lienke (bib0005) 2005; 45
Miller, Miller (bib0085) 1993
Dionex, Application Update #152, Sunnyvale, CA, 2006.
Francois, Sowka, Monod, Temime-Roussel, Laugier, Wortham (bib0015) 2005; 74
Grieshaber, MacKenzie, Voros, Reimhult (bib0045) 2008; 8
Dionex, Technical Note #20, Sunnyvale, CA, 2000.
Schulte-Ladbeck, Kolla, Karst (bib0035) 2002; 127
Installation and Operations Manual for Model LC4B/17 Amperometric Controller and Transducer Package, Bioanalytical Systems Inc., West Lafayette, IN, 1984.
Qi, Zhu, Hu, Zhang, Tang (bib0030) 2001; 34
Osborne, Yamomoto (bib0050) 1998; 707
Hwang, Dasgupta (bib0080) 1986; 58
Schulte-Ladbeck, Karst (bib0055) 2003; 57
Johnston, Cardosi, Vaughan (bib0060) 1995; 7
Miller (10.1016/j.chroma.2010.10.022_bib0085) 1993
Grieshaber (10.1016/j.chroma.2010.10.022_bib0045) 2008; 8
10.1016/j.chroma.2010.10.022_bib0065
Qi (10.1016/j.chroma.2010.10.022_bib0030) 2001; 34
10.1016/j.chroma.2010.10.022_bib0075
Hage (10.1016/j.chroma.2010.10.022_bib0005) 2005; 45
Kok (10.1016/j.chroma.2010.10.022_bib0025) 1994; 12
Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0040) 2003; 75
Francois (10.1016/j.chroma.2010.10.022_bib0015) 2005; 74
Eul (10.1016/j.chroma.2010.10.022_bib0010) 2001
Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0035) 2002; 127
Osborne (10.1016/j.chroma.2010.10.022_bib0050) 1998; 707
Hwang (10.1016/j.chroma.2010.10.022_bib0080) 1986; 58
Johnston (10.1016/j.chroma.2010.10.022_bib0060) 1995; 7
Hellpointner (10.1016/j.chroma.2010.10.022_bib0020) 1989; 337
10.1016/j.chroma.2010.10.022_bib0070
Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0055) 2003; 57
References_xml – volume: 58
  start-page: 1521
  year: 1986
  ident: bib0080
  publication-title: Anal. Chem.
  contributor:
    fullname: Dasgupta
– volume: 337
  start-page: 631
  year: 1989
  ident: bib0020
  publication-title: Nature
  contributor:
    fullname: Gaeb
– volume: 57
  start-page: S61
  year: 2003
  ident: bib0055
  publication-title: Chromatographia
  contributor:
    fullname: Karst
– volume: 45
  start-page: 206
  year: 2005
  ident: bib0005
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Lienke
– volume: 75
  start-page: 731
  year: 2003
  ident: bib0040
  publication-title: Anal. Chem.
  contributor:
    fullname: Karst
– volume: 707
  start-page: 3
  year: 1998
  ident: bib0050
  publication-title: J. Chromatogr. B
  contributor:
    fullname: Yamomoto
– volume: 74
  start-page: 525
  year: 2005
  ident: bib0015
  publication-title: Atmos. Res.
  contributor:
    fullname: Wortham
– volume: 34
  start-page: 1247
  year: 2001
  ident: bib0030
  publication-title: Anal. Lett.
  contributor:
    fullname: Tang
– volume: 7
  start-page: 520
  year: 1995
  ident: bib0060
  publication-title: Electroanalysis
  contributor:
    fullname: Vaughan
– volume: 12
  start-page: 282
  year: 1994
  ident: bib0025
  publication-title: J. Atmos. Ocean. Technol.
  contributor:
    fullname: Staffelbach
– volume: 127
  start-page: 1152
  year: 2002
  ident: bib0035
  publication-title: Analyst
  contributor:
    fullname: Karst
– year: 1993
  ident: bib0085
  article-title: Statistics for Analytical Chemistry
  contributor:
    fullname: Miller
– volume: 8
  start-page: 1400
  year: 2008
  ident: bib0045
  publication-title: Sensors
  contributor:
    fullname: Reimhult
– year: 2001
  ident: bib0010
  article-title: Hydrogen peroxide. Kirk-Othmer Encyclopedia of Chemical Technology
  contributor:
    fullname: Steiner
– volume: 8
  start-page: 1400
  year: 2008
  ident: 10.1016/j.chroma.2010.10.022_bib0045
  publication-title: Sensors
  doi: 10.3390/s8031400
  contributor:
    fullname: Grieshaber
– ident: 10.1016/j.chroma.2010.10.022_bib0075
– volume: 127
  start-page: 1152
  year: 2002
  ident: 10.1016/j.chroma.2010.10.022_bib0035
  publication-title: Analyst
  doi: 10.1039/b206673b
  contributor:
    fullname: Schulte-Ladbeck
– volume: 57
  start-page: S61
  year: 2003
  ident: 10.1016/j.chroma.2010.10.022_bib0055
  publication-title: Chromatographia
  doi: 10.1007/BF02492084
  contributor:
    fullname: Schulte-Ladbeck
– volume: 74
  start-page: 525
  year: 2005
  ident: 10.1016/j.chroma.2010.10.022_bib0015
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2004.04.002
  contributor:
    fullname: Francois
– year: 1993
  ident: 10.1016/j.chroma.2010.10.022_bib0085
  contributor:
    fullname: Miller
– volume: 45
  start-page: 206
  year: 2005
  ident: 10.1016/j.chroma.2010.10.022_bib0005
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500525
  contributor:
    fullname: Hage
– ident: 10.1016/j.chroma.2010.10.022_bib0070
– volume: 7
  start-page: 520
  year: 1995
  ident: 10.1016/j.chroma.2010.10.022_bib0060
  publication-title: Electroanalysis
  doi: 10.1002/elan.1140070603
  contributor:
    fullname: Johnston
– year: 2001
  ident: 10.1016/j.chroma.2010.10.022_bib0010
  contributor:
    fullname: Eul
– volume: 34
  start-page: 1247
  year: 2001
  ident: 10.1016/j.chroma.2010.10.022_bib0030
  publication-title: Anal. Lett.
  doi: 10.1081/AL-100104150
  contributor:
    fullname: Qi
– ident: 10.1016/j.chroma.2010.10.022_bib0065
– volume: 58
  start-page: 1521
  year: 1986
  ident: 10.1016/j.chroma.2010.10.022_bib0080
  publication-title: Anal. Chem.
  doi: 10.1021/ac00298a055
  contributor:
    fullname: Hwang
– volume: 12
  start-page: 282
  year: 1994
  ident: 10.1016/j.chroma.2010.10.022_bib0025
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1995)012<0282:HDOAOH>2.0.CO;2
  contributor:
    fullname: Kok
– volume: 75
  start-page: 731
  year: 2003
  ident: 10.1016/j.chroma.2010.10.022_bib0040
  publication-title: Anal. Chem.
  doi: 10.1021/ac020392n
  contributor:
    fullname: Schulte-Ladbeck
– volume: 707
  start-page: 3
  year: 1998
  ident: 10.1016/j.chroma.2010.10.022_bib0050
  publication-title: J. Chromatogr. B
  doi: 10.1016/S0378-4347(97)00608-7
  contributor:
    fullname: Osborne
– volume: 337
  start-page: 631
  year: 1989
  ident: 10.1016/j.chroma.2010.10.022_bib0020
  publication-title: Nature
  doi: 10.1038/337631a0
  contributor:
    fullname: Hellpointner
SSID ssj0017072
ssj0029838
Score 2.3698177
Snippet Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase...
SourceID crossref
pubmed
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 7564
SubjectTerms Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography, High Pressure Liquid - instrumentation
Chromatography, High Pressure Liquid - methods
Electrochemical detection
Electrochemistry
Exact sciences and technology
Fluorescence
Fluorescence detection
HPLC
Hydrogen peroxide
Hydrogen Peroxide - analysis
Other chromatographic methods
Title Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode
URI https://dx.doi.org/10.1016/j.chroma.2010.10.022
https://www.ncbi.nlm.nih.gov/pubmed/21030031
Volume 1217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6uwe4IN5bHpUP3Kqgxsk6CbdVKVpYFQ7tSnuLHNtpu-om0IeAP8zvYCa2kz60giJxiSpHmTidL_bY-b4ZQt7AlBSdZTn3OEQjXqgk94RArisPsl4sdMAV6p0vRtHn6_j9IBy0Wi7LYtP2Xz0NbeBrVM4e4O3aKDTAb_A5HMHrcPwrv3-BMeDWiisrAsD30paJXtaUQrGRiWT6Uy3KCTK19KL8MVOVVh3ZH9hQawrms2_rmerK6aKEENemuTabuPl8XS6qpFASNVgrbYuPF6o7PcCMrccjXQKDxhLydauBuSttMiks33NHVN3fNl3jcyxgTDS8ZT1p3oih7Fty_xbIh6XNx3Cp5w3fdVRJo03trEth8qe4HRNkn_iekeWbbbw9KY-VNfhewk1dlb15xWxx3Lw1_49hBCIp0GiqdzJ24wdwH035VdZWVBeeMBgHYRg-Of84uP5Uf-aKelGd7IwlcWDiBtsRJ_Ss2Ij7N74rkDrKRYkMX7EEZ-WmOsvOmqmKncYPyQPrHnpu0PqItHTxmNzru1qDT8ivTdTSMqeAWmpRSwE9FFBLHWrxvEMtdah9RxGzdANs1ICNboONItjoJmZpjTS4g6LTA8zsYHbD0qygBrPUYpYiZp-Sqw-Dcf_CsxVIPAmB7coLdMBkL4sl4zFuVIRaSQEzGGMqClgQZkkSJnkiFGd-nsW-5JnwkxCuCCMueR48I8dFWehTQjU4WErFeOAHsAjgIoa5NRGREnkexj3WJp5zZ_rVJJpJHQPzJjXPmKL7sRXc3yaR83lqg2XzXClg9g9XngJEUjGBKCK9GjHkLsCyALodtklnCzd1T-BZMW3UWZs8N0BqzmCdQogMXvxzf16S-81b-oocrxZr_ZocLdW6Y9-XDqxy-8Pf0WoM4Q
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+two+methods+for+the+analysis+of+hydrogen+peroxide%3A+High+performance+liquid+chromatography+with+fluorescence+detection+and+high+performance+liquid+chromatography+with+electrochemical+detection+in+direct+current+mode&rft.jtitle=Journal+of+Chromatography+A&rft.au=Tarvin%2C+Megan&rft.au=McCord%2C+Bruce&rft.au=Mount%2C+Kelly&rft.au=Sherlach%2C+Katy&rft.date=2010-11-26&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft_id=info:doi/10.1016%2Fj.chroma.2010.10.022&rft.externalDocID=S0021967310013701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon