Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode
Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its par...
Saved in:
Published in: | Journal of Chromatography A Vol. 1217; no. 48; pp. 7564 - 7572 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
26-11-2010
Amsterdam; New York: Elsevier Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of
p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC–ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400
mV vs. hydrogen reference electrode (Pd/H
2). Both methods were linear across the range of 15–300
μM, and the electrochemical method was linear across a wider range of 7.4–15,000
μM. The limit of detection for hydrogen peroxide was 6
μM by HPLC/FD, and 0.6
μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. |
---|---|
AbstractList | Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400mV vs. hydrogen reference electrode (Pd/H₂). Both methods were linear across the range of 15-300μM, and the electrochemical method was linear across a wider range of 7.4-15,000μM. The limit of detection for hydrogen peroxide was 6μM by HPLC/FD, and 0.6μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC–FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC–ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H 2). Both methods were linear across the range of 15–300 μM, and the electrochemical method was linear across a wider range of 7.4–15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. |
Author | Sherlach, Katy Mount, Kelly Miller, Mark L. McCord, Bruce Tarvin, Megan |
Author_xml | – sequence: 1 givenname: Megan surname: Tarvin fullname: Tarvin, Megan organization: CFSRU, Visiting Scientist Program, Federal Bureau of Investigation Laboratory, Quantico, VA, USA – sequence: 2 givenname: Bruce surname: McCord fullname: McCord, Bruce organization: Department of Chemistry, Florida International University, Miami, FL, USA – sequence: 3 givenname: Kelly surname: Mount fullname: Mount, Kelly organization: EU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA – sequence: 4 givenname: Katy surname: Sherlach fullname: Sherlach, Katy organization: CFSRU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA – sequence: 5 givenname: Mark L. surname: Miller fullname: Miller, Mark L. email: Mark.L.Miller@IC.FBI.GOV organization: CFSRU, Federal Bureau of Investigation Laboratory, Quantico, VA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23403885$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21030031$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkctu1DAUhi3Uik4Lb4DAmy4z9a1JzAIJVYUiVeoCuo4c-3jiURIH29MyfeA-B05TLiskVtY5_v5z-4_RwehHQOgNJWtKaHm2Xesu-EGtGXlKrQljL9CK1hUveFXVB2hFCKOFLCt-hI5j3BJCK1Kxl-iIUcIJ4XSFHm-m5Ab3oJLzI_YWp3uPB0idNxFbH3DqAKtR9fvo4vzf7U3wGxjxBMH_cAbe4yu36eYw44MaNeDefd85g5f5kt8ENXV7fO9Sh22_8wGihpkzkEA_NVajwd1_lIE-C4PXHQxOq_6vSm7ExoUcYL0LAcaEB2_gFTq0qo_w-vk9QbefLr9dXBXXN5-_XHy8LrSg56ngwJkmba1ZWUsmpACjVSUFY6bijItWSiGtVKZk1LY11WWrqBRZIapSl5afILHU1cHHGMA2U3CDCvuGkma2rdk2yz7NbNuczbZl2dtFNu3aAcxv0S-fMnD6DKiY97UhH8jFPxwXhNf1eebeLZxVvlGbkJnbr7kTJ1SSPKjIxIeFgHyGOwehidrNbixXa4x3_571J8VLyoM |
CODEN | JOCRAM |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2020_114553 crossref_primary_10_1080_22297928_2017_1400399 crossref_primary_10_1002_slct_202301922 crossref_primary_10_1016_j_jlumin_2021_117998 crossref_primary_10_2116_analsci_17P536 crossref_primary_10_1016_j_apsusc_2015_10_026 crossref_primary_10_1016_j_talanta_2021_123118 crossref_primary_10_1002_celc_202100341 crossref_primary_10_1002_elan_201100453 crossref_primary_10_1016_j_chroma_2022_463090 crossref_primary_10_1002_elan_201400318 crossref_primary_10_1002_elan_201600457 crossref_primary_10_1016_j_snb_2014_01_052 crossref_primary_10_1016_j_saa_2022_121218 crossref_primary_10_1021_acs_analchem_7b02831 crossref_primary_10_1021_acs_jafc_7b02248 crossref_primary_10_1016_j_jelechem_2019_113653 crossref_primary_10_1039_D2NJ03064K crossref_primary_10_56294_sctconf2024850 crossref_primary_10_1016_j_apsusc_2020_148256 crossref_primary_10_1016_j_bioelechem_2011_08_003 crossref_primary_10_1039_D1NA00617G crossref_primary_10_1016_j_electacta_2012_05_160 crossref_primary_10_1016_j_electacta_2014_04_046 crossref_primary_10_1016_j_forc_2024_100585 crossref_primary_10_1016_j_saa_2020_119266 crossref_primary_10_1016_j_apsusc_2015_04_184 crossref_primary_10_1002_elan_201400629 crossref_primary_10_1016_j_foodchem_2019_01_051 crossref_primary_10_1007_s42452_019_0651_9 crossref_primary_10_1016_j_talanta_2020_121000 crossref_primary_10_1039_D2NJ02495K crossref_primary_10_1016_j_microc_2022_107997 crossref_primary_10_1021_acs_analchem_0c05364 crossref_primary_10_1149_2_0521906jes crossref_primary_10_1002_elan_201300288 crossref_primary_10_1039_C8CP06050A crossref_primary_10_1016_j_talanta_2016_06_033 crossref_primary_10_1016_j_scitotenv_2018_10_372 crossref_primary_10_1016_j_forsciint_2011_01_024 crossref_primary_10_1039_D0NJ03281F crossref_primary_10_1021_acssuschemeng_3c03663 crossref_primary_10_1016_j_jelechem_2020_114953 crossref_primary_10_1021_acssuschemeng_8b06182 crossref_primary_10_1002_slct_202200631 crossref_primary_10_1007_s10008_020_04649_4 crossref_primary_10_1016_j_ssi_2017_10_015 crossref_primary_10_1021_acsami_8b22389 crossref_primary_10_1039_C7NJ00851A crossref_primary_10_1002_bkcs_10655 crossref_primary_10_1007_s10068_022_01165_1 crossref_primary_10_1016_j_microc_2021_106972 crossref_primary_10_1016_j_talanta_2015_03_017 crossref_primary_10_1080_00032719_2020_1745223 crossref_primary_10_1016_j_electacta_2017_09_115 crossref_primary_10_1039_D2CS00172A crossref_primary_10_1016_j_electacta_2022_141641 crossref_primary_10_1051_matecconf_20166706078 crossref_primary_10_1016_j_electacta_2017_07_154 crossref_primary_10_3390_chemosensors12020023 crossref_primary_10_1039_C7AY01249G crossref_primary_10_1016_j_jfca_2023_105237 crossref_primary_10_1021_acs_jchemed_5b00096 crossref_primary_10_1016_j_jlumin_2015_11_001 crossref_primary_10_1155_2016_8174913 crossref_primary_10_1002_jccs_201300262 crossref_primary_10_1016_j_bios_2013_03_028 crossref_primary_10_1016_j_jpba_2015_01_018 crossref_primary_10_1038_s41598_017_11965_9 crossref_primary_10_1016_j_bios_2018_02_008 crossref_primary_10_1016_j_snb_2017_12_179 crossref_primary_10_1021_jacs_0c00771 crossref_primary_10_1016_j_cclet_2016_05_019 crossref_primary_10_1021_acsami_8b18510 crossref_primary_10_1007_s12039_020_01778_1 crossref_primary_10_1016_j_jelechem_2015_01_005 crossref_primary_10_1039_C5AY01414J crossref_primary_10_2116_analsci_21P003 crossref_primary_10_3390_bios12100778 crossref_primary_10_1016_j_bioorg_2022_105798 crossref_primary_10_1016_j_foodchem_2021_130613 crossref_primary_10_1002_smll_201703970 |
Cites_doi | 10.3390/s8031400 10.1039/b206673b 10.1007/BF02492084 10.1016/j.atmosres.2004.04.002 10.1002/anie.200500525 10.1002/elan.1140070603 10.1081/AL-100104150 10.1021/ac00298a055 10.1175/1520-0426(1995)012<0282:HDOAOH>2.0.CO;2 10.1021/ac020392n 10.1016/S0378-4347(97)00608-7 10.1038/337631a0 |
ContentType | Journal Article |
Copyright | 2010 2015 INIST-CNRS Published by Elsevier B.V. |
Copyright_xml | – notice: 2010 – notice: 2015 INIST-CNRS – notice: Published by Elsevier B.V. |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1016/j.chroma.2010.10.022 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3778 |
EndPage | 7572 |
ExternalDocumentID | 10_1016_j_chroma_2010_10_022 21030031 23403885 US201301909404 S0021967310013701 |
Genre | Evaluation Studies Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO AAYJJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FLBIZ FNPLU FYGXN G-Q G8K GBLVA HMU HVGLF HZ~ H~9 IH2 IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K UQL VH1 WH7 WUQ XFK XPP YK3 ZGI ZKB ZMT ZXP ~02 ~G- ~KM ABPIF ABPTK FBQ 08R AAUGY IQODW CGR CUY CVF ECM EIF NPM AAHBH AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c415t-3e32c0b8c26892494edca79422d73234b9949f9ad621fb81c6ba1940b8476c6f3 |
ISSN | 0021-9673 |
IngestDate | Thu Nov 21 21:25:08 EST 2024 Sat Sep 18 05:13:45 EDT 2021 Sun Oct 22 16:07:16 EDT 2023 Wed Dec 27 19:16:18 EST 2023 Fri Feb 23 02:22:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Keywords | Hydrogen peroxide Electrochemical detection HPLC Fluorescence detection Trace analysis Fluorescence detector Chemical analysis HPLC chromatography Explosions Derivatization Optimization Postcolumn Electrochemical detector Reversed phase chromatography Hemin Residue Metalloporphyrin Quantitative analysis |
Language | English |
License | CC BY 4.0 Published by Elsevier B.V. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-3e32c0b8c26892494edca79422d73234b9949f9ad621fb81c6ba1940b8476c6f3 |
Notes | http://dx.doi.org/10.1016/j.chroma.2010.10.022 |
PMID | 21030031 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_chroma_2010_10_022 pubmed_primary_21030031 pascalfrancis_primary_23403885 fao_agris_US201301909404 elsevier_sciencedirect_doi_10_1016_j_chroma_2010_10_022 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-26 |
PublicationDateYYYYMMDD | 2010-11-26 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Journal of Chromatography A |
PublicationTitleAlternate | J Chromatogr A |
PublicationYear | 2010 |
Publisher | Elsevier B.V Amsterdam; New York: Elsevier Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Amsterdam; New York: Elsevier – name: Elsevier |
References | Kok, McLaren, Staffelbach (bib0025) 1994; 12 Schulte-Ladbeck, Kolla, Karst (bib0040) 2003; 75 Eul, Moeller, Steiner (bib0010) 2001 Hellpointner, Gaeb (bib0020) 1989; 337 Hage, Lienke (bib0005) 2005; 45 Miller, Miller (bib0085) 1993 Dionex, Application Update #152, Sunnyvale, CA, 2006. Francois, Sowka, Monod, Temime-Roussel, Laugier, Wortham (bib0015) 2005; 74 Grieshaber, MacKenzie, Voros, Reimhult (bib0045) 2008; 8 Dionex, Technical Note #20, Sunnyvale, CA, 2000. Schulte-Ladbeck, Kolla, Karst (bib0035) 2002; 127 Installation and Operations Manual for Model LC4B/17 Amperometric Controller and Transducer Package, Bioanalytical Systems Inc., West Lafayette, IN, 1984. Qi, Zhu, Hu, Zhang, Tang (bib0030) 2001; 34 Osborne, Yamomoto (bib0050) 1998; 707 Hwang, Dasgupta (bib0080) 1986; 58 Schulte-Ladbeck, Karst (bib0055) 2003; 57 Johnston, Cardosi, Vaughan (bib0060) 1995; 7 Miller (10.1016/j.chroma.2010.10.022_bib0085) 1993 Grieshaber (10.1016/j.chroma.2010.10.022_bib0045) 2008; 8 10.1016/j.chroma.2010.10.022_bib0065 Qi (10.1016/j.chroma.2010.10.022_bib0030) 2001; 34 10.1016/j.chroma.2010.10.022_bib0075 Hage (10.1016/j.chroma.2010.10.022_bib0005) 2005; 45 Kok (10.1016/j.chroma.2010.10.022_bib0025) 1994; 12 Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0040) 2003; 75 Francois (10.1016/j.chroma.2010.10.022_bib0015) 2005; 74 Eul (10.1016/j.chroma.2010.10.022_bib0010) 2001 Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0035) 2002; 127 Osborne (10.1016/j.chroma.2010.10.022_bib0050) 1998; 707 Hwang (10.1016/j.chroma.2010.10.022_bib0080) 1986; 58 Johnston (10.1016/j.chroma.2010.10.022_bib0060) 1995; 7 Hellpointner (10.1016/j.chroma.2010.10.022_bib0020) 1989; 337 10.1016/j.chroma.2010.10.022_bib0070 Schulte-Ladbeck (10.1016/j.chroma.2010.10.022_bib0055) 2003; 57 |
References_xml | – volume: 58 start-page: 1521 year: 1986 ident: bib0080 publication-title: Anal. Chem. contributor: fullname: Dasgupta – volume: 337 start-page: 631 year: 1989 ident: bib0020 publication-title: Nature contributor: fullname: Gaeb – volume: 57 start-page: S61 year: 2003 ident: bib0055 publication-title: Chromatographia contributor: fullname: Karst – volume: 45 start-page: 206 year: 2005 ident: bib0005 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Lienke – volume: 75 start-page: 731 year: 2003 ident: bib0040 publication-title: Anal. Chem. contributor: fullname: Karst – volume: 707 start-page: 3 year: 1998 ident: bib0050 publication-title: J. Chromatogr. B contributor: fullname: Yamomoto – volume: 74 start-page: 525 year: 2005 ident: bib0015 publication-title: Atmos. Res. contributor: fullname: Wortham – volume: 34 start-page: 1247 year: 2001 ident: bib0030 publication-title: Anal. Lett. contributor: fullname: Tang – volume: 7 start-page: 520 year: 1995 ident: bib0060 publication-title: Electroanalysis contributor: fullname: Vaughan – volume: 12 start-page: 282 year: 1994 ident: bib0025 publication-title: J. Atmos. Ocean. Technol. contributor: fullname: Staffelbach – volume: 127 start-page: 1152 year: 2002 ident: bib0035 publication-title: Analyst contributor: fullname: Karst – year: 1993 ident: bib0085 article-title: Statistics for Analytical Chemistry contributor: fullname: Miller – volume: 8 start-page: 1400 year: 2008 ident: bib0045 publication-title: Sensors contributor: fullname: Reimhult – year: 2001 ident: bib0010 article-title: Hydrogen peroxide. Kirk-Othmer Encyclopedia of Chemical Technology contributor: fullname: Steiner – volume: 8 start-page: 1400 year: 2008 ident: 10.1016/j.chroma.2010.10.022_bib0045 publication-title: Sensors doi: 10.3390/s8031400 contributor: fullname: Grieshaber – ident: 10.1016/j.chroma.2010.10.022_bib0075 – volume: 127 start-page: 1152 year: 2002 ident: 10.1016/j.chroma.2010.10.022_bib0035 publication-title: Analyst doi: 10.1039/b206673b contributor: fullname: Schulte-Ladbeck – volume: 57 start-page: S61 year: 2003 ident: 10.1016/j.chroma.2010.10.022_bib0055 publication-title: Chromatographia doi: 10.1007/BF02492084 contributor: fullname: Schulte-Ladbeck – volume: 74 start-page: 525 year: 2005 ident: 10.1016/j.chroma.2010.10.022_bib0015 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2004.04.002 contributor: fullname: Francois – year: 1993 ident: 10.1016/j.chroma.2010.10.022_bib0085 contributor: fullname: Miller – volume: 45 start-page: 206 year: 2005 ident: 10.1016/j.chroma.2010.10.022_bib0005 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200500525 contributor: fullname: Hage – ident: 10.1016/j.chroma.2010.10.022_bib0070 – volume: 7 start-page: 520 year: 1995 ident: 10.1016/j.chroma.2010.10.022_bib0060 publication-title: Electroanalysis doi: 10.1002/elan.1140070603 contributor: fullname: Johnston – year: 2001 ident: 10.1016/j.chroma.2010.10.022_bib0010 contributor: fullname: Eul – volume: 34 start-page: 1247 year: 2001 ident: 10.1016/j.chroma.2010.10.022_bib0030 publication-title: Anal. Lett. doi: 10.1081/AL-100104150 contributor: fullname: Qi – ident: 10.1016/j.chroma.2010.10.022_bib0065 – volume: 58 start-page: 1521 year: 1986 ident: 10.1016/j.chroma.2010.10.022_bib0080 publication-title: Anal. Chem. doi: 10.1021/ac00298a055 contributor: fullname: Hwang – volume: 12 start-page: 282 year: 1994 ident: 10.1016/j.chroma.2010.10.022_bib0025 publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1995)012<0282:HDOAOH>2.0.CO;2 contributor: fullname: Kok – volume: 75 start-page: 731 year: 2003 ident: 10.1016/j.chroma.2010.10.022_bib0040 publication-title: Anal. Chem. doi: 10.1021/ac020392n contributor: fullname: Schulte-Ladbeck – volume: 707 start-page: 3 year: 1998 ident: 10.1016/j.chroma.2010.10.022_bib0050 publication-title: J. Chromatogr. B doi: 10.1016/S0378-4347(97)00608-7 contributor: fullname: Osborne – volume: 337 start-page: 631 year: 1989 ident: 10.1016/j.chroma.2010.10.022_bib0020 publication-title: Nature doi: 10.1038/337631a0 contributor: fullname: Hellpointner |
SSID | ssj0017072 ssj0029838 |
Score | 2.3698177 |
Snippet | Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase... |
SourceID | crossref pubmed pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7564 |
SubjectTerms | Analytical chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography, High Pressure Liquid - instrumentation Chromatography, High Pressure Liquid - methods Electrochemical detection Electrochemistry Exact sciences and technology Fluorescence Fluorescence detection HPLC Hydrogen peroxide Hydrogen Peroxide - analysis Other chromatographic methods |
Title | Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode |
URI | https://dx.doi.org/10.1016/j.chroma.2010.10.022 https://www.ncbi.nlm.nih.gov/pubmed/21030031 |
Volume | 1217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6uwe4IN5bHpUP3Kqgxsk6CbdVKVpYFQ7tSnuLHNtpu-om0IeAP8zvYCa2kz60giJxiSpHmTidL_bY-b4ZQt7AlBSdZTn3OEQjXqgk94RArisPsl4sdMAV6p0vRtHn6_j9IBy0Wi7LYtP2Xz0NbeBrVM4e4O3aKDTAb_A5HMHrcPwrv3-BMeDWiisrAsD30paJXtaUQrGRiWT6Uy3KCTK19KL8MVOVVh3ZH9hQawrms2_rmerK6aKEENemuTabuPl8XS6qpFASNVgrbYuPF6o7PcCMrccjXQKDxhLydauBuSttMiks33NHVN3fNl3jcyxgTDS8ZT1p3oih7Fty_xbIh6XNx3Cp5w3fdVRJo03trEth8qe4HRNkn_iekeWbbbw9KY-VNfhewk1dlb15xWxx3Lw1_49hBCIp0GiqdzJ24wdwH035VdZWVBeeMBgHYRg-Of84uP5Uf-aKelGd7IwlcWDiBtsRJ_Ss2Ij7N74rkDrKRYkMX7EEZ-WmOsvOmqmKncYPyQPrHnpu0PqItHTxmNzru1qDT8ivTdTSMqeAWmpRSwE9FFBLHWrxvEMtdah9RxGzdANs1ICNboONItjoJmZpjTS4g6LTA8zsYHbD0qygBrPUYpYiZp-Sqw-Dcf_CsxVIPAmB7coLdMBkL4sl4zFuVIRaSQEzGGMqClgQZkkSJnkiFGd-nsW-5JnwkxCuCCMueR48I8dFWehTQjU4WErFeOAHsAjgIoa5NRGREnkexj3WJp5zZ_rVJJpJHQPzJjXPmKL7sRXc3yaR83lqg2XzXClg9g9XngJEUjGBKCK9GjHkLsCyALodtklnCzd1T-BZMW3UWZs8N0BqzmCdQogMXvxzf16S-81b-oocrxZr_ZocLdW6Y9-XDqxy-8Pf0WoM4Q |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+two+methods+for+the+analysis+of+hydrogen+peroxide%3A+High+performance+liquid+chromatography+with+fluorescence+detection+and+high+performance+liquid+chromatography+with+electrochemical+detection+in+direct+current+mode&rft.jtitle=Journal+of+Chromatography+A&rft.au=Tarvin%2C+Megan&rft.au=McCord%2C+Bruce&rft.au=Mount%2C+Kelly&rft.au=Sherlach%2C+Katy&rft.date=2010-11-26&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft_id=info:doi/10.1016%2Fj.chroma.2010.10.022&rft.externalDocID=S0021967310013701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon |