Microfluidic device for rapid digestion of tissues into cellular suspensions

The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue engineering and regenerative medicine. Tissues are typically broken down using proteolytic digestion and various mechanical treatments, but s...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip Vol. 17; no. 19; p. 3300
Main Authors: Qiu, Xiaolong, Westerhof, Trisha M, Karunaratne, Amrith A, Werner, Erik M, Pourfard, Pedram P, Nelson, Edward L, Hui, Elliot E, Haun, Jered B
Format: Journal Article
Language:English
Published: England 26-09-2017
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue engineering and regenerative medicine. Tissues are typically broken down using proteolytic digestion and various mechanical treatments, but success has been limited due to long processing times, low yield, and high manual labor burden. Here, we present a novel microfluidic device that utilizes precision fluid flows to improve the speed and efficiency of tissue digestion. The microfluidic channels were designed to apply hydrodynamic shear forces at discrete locations on tissue specimens up to 1 cm in length and 1 mm in diameter, thereby accelerating digestion through hydrodynamic shear forces and improved enzyme-tissue contact. We show using animal organs that our digestion device with hydro-mincing capabilities was superior to conventional scalpel mincing and digestion based on recovery of DNA and viable single cells. Thus, our microfluidic digestion device can eliminate or reduce the need to mince tissue samples with a scalpel, while reducing sample processing time and preserving cell viability. Another advantage is that downstream microfluidic operations could be integrated to enable advanced cell processing and analysis capabilities. We envision our novel device being used in research and clinical settings to promote single cell-based analysis technologies, as well as to isolate primary, progenitor, and stem cells for use in the fields of tissue engineering and regenerative medicine.
AbstractList The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue engineering and regenerative medicine. Tissues are typically broken down using proteolytic digestion and various mechanical treatments, but success has been limited due to long processing times, low yield, and high manual labor burden. Here, we present a novel microfluidic device that utilizes precision fluid flows to improve the speed and efficiency of tissue digestion. The microfluidic channels were designed to apply hydrodynamic shear forces at discrete locations on tissue specimens up to 1 cm in length and 1 mm in diameter, thereby accelerating digestion through hydrodynamic shear forces and improved enzyme-tissue contact. We show using animal organs that our digestion device with hydro-mincing capabilities was superior to conventional scalpel mincing and digestion based on recovery of DNA and viable single cells. Thus, our microfluidic digestion device can eliminate or reduce the need to mince tissue samples with a scalpel, while reducing sample processing time and preserving cell viability. Another advantage is that downstream microfluidic operations could be integrated to enable advanced cell processing and analysis capabilities. We envision our novel device being used in research and clinical settings to promote single cell-based analysis technologies, as well as to isolate primary, progenitor, and stem cells for use in the fields of tissue engineering and regenerative medicine.
Author Pourfard, Pedram P
Hui, Elliot E
Haun, Jered B
Werner, Erik M
Qiu, Xiaolong
Karunaratne, Amrith A
Nelson, Edward L
Westerhof, Trisha M
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Qiu
  fullname: Qiu, Xiaolong
  email: jered.haun@uci.edu
  organization: Department of Biomedical Engineering, University of California Irvine, 3107 Natural Sciences II, Irvine, CA 92697, USA. jered.haun@uci.edu
– sequence: 2
  givenname: Trisha M
  surname: Westerhof
  fullname: Westerhof, Trisha M
– sequence: 3
  givenname: Amrith A
  surname: Karunaratne
  fullname: Karunaratne, Amrith A
– sequence: 4
  givenname: Erik M
  surname: Werner
  fullname: Werner, Erik M
– sequence: 5
  givenname: Pedram P
  surname: Pourfard
  fullname: Pourfard, Pedram P
– sequence: 6
  givenname: Edward L
  surname: Nelson
  fullname: Nelson, Edward L
– sequence: 7
  givenname: Elliot E
  surname: Hui
  fullname: Hui, Elliot E
– sequence: 8
  givenname: Jered B
  surname: Haun
  fullname: Haun, Jered B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28850139$$D View this record in MEDLINE/PubMed
BookMark eNo1j81KxDAUhYMozo9ufADJC1ST5qZNljLoKFTc6HpIb24kQ6YtTSv49hbU1TmLj8N3Nuy86zti7EaKOymUvcc6oRC61scztpZQq0JIY1dsk_NRCKmhMpdsVRqjhVR2zZrXiGMf0hx9RO7pKyLx0I98dEP03MdPylPsO94HPsWcZ8o8dlPPkVKakxt5nvNAXV6YfMUugkuZrv9yyz6eHt93z0Xztn_ZPTQFgtRTIS20VGpAcsrA4goIoFSLylZkhfPorA0gA1kfoG2VgFAvVbsKDYItt-z2d3eY2xP5wzDGkxu_D_-3yh9RE1AZ
CitedBy_id crossref_primary_10_1021_acsnano_2c05494
crossref_primary_10_1038_s41598_022_13068_6
crossref_primary_10_1039_C8LC00507A
crossref_primary_10_1007_s10544_021_00544_5
crossref_primary_10_1063_5_0026857
crossref_primary_10_1038_s41467_021_23238_1
crossref_primary_10_1097_PRS_0000000000009798
crossref_primary_10_2174_1389201024666230330134044
crossref_primary_10_3389_fbioe_2022_841046
crossref_primary_10_1038_s41598_018_20931_y
crossref_primary_10_1002_chem_201800305
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1039/c7lc00575j
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1473-0189
ExternalDocumentID 28850139
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA062203
– fundername: NCATS NIH HHS
  grantid: UL1 TR001414
GroupedDBID ---
-JG
0-7
0R~
29L
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CGR
CS3
CUY
CVF
DU5
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L-8
M4U
N9A
NPM
O9-
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
ID FETCH-LOGICAL-c415t-194be254cea3845754c4433bc396e90adca99f41fe9df4bb304f79df5a6c8c492
IngestDate Wed Oct 16 00:58:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-194be254cea3845754c4433bc396e90adca99f41fe9df4bb304f79df5a6c8c492
OpenAccessLink https://europepmc.org/articles/pmc5614870?pdf=render
PMID 28850139
ParticipantIDs pubmed_primary_28850139
PublicationCentury 2000
PublicationDate 20170926
PublicationDateYYYYMMDD 2017-09-26
PublicationDate_xml – month: 9
  year: 2017
  text: 20170926
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Lab on a chip
PublicationTitleAlternate Lab Chip
PublicationYear 2017
References 23799132 - PLoS One. 2013 Jun 14;8(6):e66750
21346169 - Sci Transl Med. 2011 Feb 23;3(71):71ra16
27586424 - Adv Exp Med Biol. 2016;938:89-122
28360267 - Science. 2017 Mar 31;355(6332)
20846053 - Tissue Eng Part C Methods. 2011 Mar;17(3):261-73
27029948 - Stem Cell Res Ther. 2016 Mar 30;7:47
26806412 - Nat Rev Genet. 2016 Mar;17(3):175-88
27492177 - Methods Mol Biol. 2016;1460:241-53
22610576 - Methods Mol Biol. 2012;879:465-70
21850297 - Lab Chip. 2011 Oct 7;11(19):3241-8
16871208 - Nature. 2006 Jul 27;442(7101):403-11
23490085 - Liver Int. 2013 May;33(5):666-76
25377468 - Lab Chip. 2015 Jan 7;15(1):339-350
16491074 - Nat Rev Cancer. 2006 Feb;6(2):146-55
22781693 - Nat Biotechnol. 2012 Jul 10;30(7):639-47
24048068 - Nature. 2013 Sep 19;501(7467):355-64
27516776 - Int J Cell Biol. 2016;2016:6940283
27124452 - Science. 2016 Apr 8;352(6282):189-96
24925914 - Science. 2014 Jun 20;344(6190):1396-401
24228937 - Anal Chem. 2013 Dec 17;85(24):11920-8
26430160 - Genome Res. 2015 Oct;25(10):1499-507
26924058 - Kidney Int. 2016 Apr;89(4):767-78
22610581 - Methods Mol Biol. 2012;879:513-29
21072867 - Small. 2011 Jan 3;7(1):12-48
18941683 - Lab Chip. 2008 Nov;8(11):1842-6
26416748 - Nature. 2015 Oct 1;526(7571):131-5
22610569 - Methods Mol Biol. 2012;879:339-49
References_xml
SSID ssj0015468
Score 2.3473043
Snippet The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue...
SourceID pubmed
SourceType Index Database
StartPage 3300
SubjectTerms Animals
Cell Survival
Cells, Cultured
Equipment Design
Kidney - cytology
Lab-On-A-Chip Devices
Liver - cytology
Mice
Microfluidic Analytical Techniques - instrumentation
Tissue Engineering - instrumentation
Title Microfluidic device for rapid digestion of tissues into cellular suspensions
URI https://www.ncbi.nlm.nih.gov/pubmed/28850139
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdaEGIcEBQY3_KBG4po65faPk5d0SQYF4q022Q7tghsbZQuB47857znOGm0CQEHLlFkN1Hq98vL-_yZsTdCoVeRa59J8k3AFjbTxoVsJp0tlHXOxq60k8_y05k6XsFqNPrZef392H-VNI6hrKlz9h-k3d8UB_AcZY5HlDoe_0rup1RhFy6asigdtUShIoilhLWpyuJtEfNJyUi8iotOBVlogFIEP5ak7ppdRVXtXRyvb5a2lFgw1P5d9eHSsiEZnZUGdWj6BsY0D9EvfN1Gwsc17WFv9lHXD6ZuNqavLD66rCkUvA8X-LrrwanL7-myFJbATx1lahKpdatKQVKlVrtBUK9r5RBTeqA5hYiMpTdV-lQQI6qTF44aZ_Nvwx_h0leXUZBzpXKyZv88e41eu5saszEaS2RPL0_7NFQOC9Vx2gr9bv8QxCGdLrzmj0S7ZP2A3U8OBT9qkfCQjfxmwu60W4z-mLC7y25Hvwm7NyCffMQ-DpHCW6RwRAqPSOE9Uvg28IQUTkjhHVL4ACmP2Zf3q_XyJEt7a2QOTbarbKbB-nkOzhuhAP8SOAAhrBN64fXUFM5oHWAWvC4CWCumECSe5mbhlAM9f8JubbYb_5Tx3IFxMpchSAPBLTTaRJAD4E2mCt_7Z-ywXaDzqiVQOe-W7vlvZ16wgz2oXrLbAd9O_4qNd0XzOoroF2RmXjQ
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+device+for+rapid+digestion+of+tissues+into+cellular+suspensions&rft.jtitle=Lab+on+a+chip&rft.au=Qiu%2C+Xiaolong&rft.au=Westerhof%2C+Trisha+M&rft.au=Karunaratne%2C+Amrith+A&rft.au=Werner%2C+Erik+M&rft.date=2017-09-26&rft.eissn=1473-0189&rft.volume=17&rft.issue=19&rft.spage=3300&rft_id=info:doi/10.1039%2Fc7lc00575j&rft_id=info%3Apmid%2F28850139&rft_id=info%3Apmid%2F28850139&rft.externalDocID=28850139