Organic preservation of vase‐shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA
Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary minerali...
Saved in:
Published in: | Geobiology Vol. 21; no. 3; pp. 290 - 309 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-05-2023
Wiley-Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light. |
---|---|
AbstractList | Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light. Abstract Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light. |
Author | Raven, Morgan R. Porter, Susannah M. Czaja, Andrew D. Webb, Samuel M. Tingle, Kelly E. Bloeser, Bonnie |
Author_xml | – sequence: 1 givenname: Kelly E. orcidid: 0000-0002-6121-9677 surname: Tingle fullname: Tingle, Kelly E. email: kelly.e.tingle@vanderbilt.edu organization: University of California – sequence: 2 givenname: Susannah M. orcidid: 0000-0002-4707-9428 surname: Porter fullname: Porter, Susannah M. organization: University of California – sequence: 3 givenname: Morgan R. surname: Raven fullname: Raven, Morgan R. organization: University of California – sequence: 4 givenname: Andrew D. surname: Czaja fullname: Czaja, Andrew D. organization: University of Cincinnati – sequence: 5 givenname: Samuel M. surname: Webb fullname: Webb, Samuel M. organization: Stanford University – sequence: 6 givenname: Bonnie surname: Bloeser fullname: Bloeser, Bonnie organization: San Diego State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36651474$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1909727$$D View this record in Osti.gov |
BookMark | eNp1kc9uFSEUh4mpsX904QsYYjc2ubcFhhnK8nqj1yZNurBdEwYOvTQzMMJMzXXlI_iMPom0U7swkc0h4Tu_E853iPZCDIDQW0pOaTlnt60_pazm_AU6oFywJW8aufd8F2IfHeZ8RwjjdUVfof2qaeryyA9QvEq3OniDhwQZ0r0efQw4OnyvM_z--Stv9QAW996k6GLOvsvYpdjjcQu40yPg6xi8Dni9nXTCmxSnYVGKDhavddjFsMCr5H_EoBf45uvqNXrpdJfhzVM9QjefP12vvywvrzYX69Xl0nBa86WjIKQm2jpTOWEZB3vOqKxlC5SKltDWMdYKW1smtC0tICtjGllT0uq2Oa-O0Ps5N-bRq2z8CGZrYghgRkUlkYKJAn2YoSHFbxPkUfU-G-g6HSBOWTHRNIKRitUFPf4HvYtTCuULhZKyWBD8YerJTJVt5ZzAqSH5XqedokQ9qFJFlXpUVdh3T4lT24N9Jv-6KcDZDHz3Hez-n6Q2Hy_myD_5xp7E |
CitedBy_id | crossref_primary_10_1016_j_gca_2023_02_020 crossref_primary_10_1016_j_precamres_2023_107207 crossref_primary_10_1016_j_precamres_2023_107156 |
Cites_doi | 10.1016/j.orggeochem.2004.04.002 10.1130/G35736.1 10.1130/B31532.1 10.1002/bies.201400010 10.1016/j.precamres.2020.105899 10.1130/GSAB‐10‐199 10.1038/ncomms6754 10.2475/ajs.268.1.1 10.34194/bullggu.v134.6676 10.1016/S0146‐6380(98)00171‐5 10.7717/peerj.1234 10.1130/G39941.1 10.1016/j.precamres.2021.106470 10.1666/11‐138.1 10.1130/0‐8137‐2379‐5.135 10.1017/jpa.2019.6 10.1130/0091‐7613(1980)8<70:CMIALP>2.0.CO;2 10.1130/G30723.1 10.1130/0016‐7606(2001)113<0163:PMCAGE>2.0.CO;2 10.1098/rspb.2006.3537 10.1016/j.precamres.2003.09.016 10.1016/0146‐6380(90)90145‐P 10.1038/s43247‐022‐00424‐7 10.1038/320160a0 10.1126/science.179.4080.1319 10.1080/002919600433751 10.1126/sciadv.abe9487 10.1080/03067318708078398 10.1098/rsfs.2020.0011 10.1016/0016-7037(83)90151-5 10.1073/pnas.1111784109 10.1126/science.281.5380.1173 10.1017/S0022336000030109 10.1111/pala.12238 10.1130/G46346.1 10.1130/B25538.1 10.1017/S0022336000030663 10.1666/0022‐3360(2003)077<0409:VMFTNC>2.0.CO;2 10.1016/j.epsl.2009.11.059 10.1016/j.cub.2019.02.003 10.1130/B31768.1 10.1016/j.cub.2019.01.078 10.1038/s41561‐018‐0131‐7 10.1130/G48116.1 10.1130/0091‐7613(2000)28<619:CGOTGC>2.0.CO;2 10.1017/jpa.2016.57 10.1130/B32012.1 10.1002/aic.10174 10.1016/j.protis.2010.10.002 10.1666/0094‐8373(2000)026<0360:TAITNE>2.0.CO;2 10.1126/sciadv.aba6883 10.1111/gbi.12439 10.2113/gscanmin.42.5.1563 10.1063/1.3625338 10.3389/feart.2020.588310 10.1130/0016‐7606(1951)62[953:NGOTGC]2.0.CO;2 10.1111/pala.12315 10.1089/ast.2020.2376 10.1126/science.195.4279.676 10.1130/G33492.1 10.1111/gbi.12378 10.1130/G22526.1 10.1038/ngeo525 10.1099/00221287‐34‐2‐195 10.1238/Physica.Topical.115a01011 10.1038/s41598‐020‐64990‐6 10.1126/science.abc6035 10.1130/0016‐7606(1973)84<1243:LPCGGC>2.0.CO;2 10.1016/0301-9268(85)90038-5 10.1016/0016‐7037(88)90031‐2 10.1016/j.gca.2008.04.033 10.1038/s41467‐018‐05943‐6 10.2138/gsrmg.43.1.607 10.1038/ncomms14220 10.1029/2005GL024253 10.1017/jpa.2017.16 10.1016/0301‐9268(93)90116‐J 10.1073/pnas.2116101119 10.1111/j.1550‐7408.1988.tb04147.x 10.1038/srep05841 10.1130/G31648.1 10.1016/S0037‐0738(01)00087‐2 10.1016/j.precamres.2017.09.019 10.1111/gbi.12165 10.1130/G45271.1 10.1080/00222938400770291 10.1666/09‐133.1 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Geobiology published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Geobiology published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F1W FR3 H95 L.G P64 RC3 7X8 OTOTI |
DOI | 10.1111/gbi.12544 |
DatabaseName | Wiley_OA刊 Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1472-4669 |
EndPage | 309 |
ExternalDocumentID | 1909727 10_1111_gbi_12544 36651474 GBI12544 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Arizona Grand Canyon United States--US |
GeographicLocations_xml | – name: Arizona – name: Grand Canyon – name: United States--US |
GrantInformation_xml | – fundername: NASA – fundername: Clay Minerals Society – fundername: National Science Foundation funderid: EAR‐1855092; EAR‐2029521 – fundername: National Institute of General Medical Sciences – fundername: National Institutes of Health funderid: P30GM133894 – fundername: U.S. Department of Energy funderid: DE‐AC02‐76SF00515 – fundername: University of California, Santa Barbara – fundername: NIH HHS grantid: P30GM133894 – fundername: NIGMS NIH HHS |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WIH WIK WIN WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 8FD F1W FR3 H95 L.G P64 RC3 7X8 AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4154-f1e79a0adfc3f7d24ed821959be117b01bf22b7d5d27ad415e93cc69510bab683 |
IEDL.DBID | 33P |
ISSN | 1472-4677 |
IngestDate | Mon Aug 28 20:02:20 EDT 2023 Sat Aug 17 01:35:24 EDT 2024 Thu Oct 10 19:47:15 EDT 2024 Thu Nov 21 22:39:24 EST 2024 Sat Sep 28 08:12:56 EDT 2024 Sat Aug 24 00:48:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | testate amoebae Tonian vase-shaped microfossils Neoproterozoic Chuar Group organic preservation amoebozoa pyrite |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Geobiology published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4154-f1e79a0adfc3f7d24ed821959be117b01bf22b7d5d27ad415e93cc69510bab683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE DE‐AC02‐76SF00515 |
ORCID | 0000-0002-4707-9428 0000-0002-6121-9677 0000000261219677 0000000247079428 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbi.12544 |
PMID | 36651474 |
PQID | 2799111748 |
PQPubID | 2034137 |
PageCount | 20 |
ParticipantIDs | osti_scitechconnect_1909727 proquest_miscellaneous_2766720325 proquest_journals_2799111748 crossref_primary_10_1111_gbi_12544 pubmed_primary_36651474 wiley_primary_10_1111_gbi_12544_GBI12544 |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Chichester – name: United Kingdom |
PublicationTitle | Geobiology |
PublicationTitleAlternate | Geobiology |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley-Blackwell |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-Blackwell |
References | 1998; 281 1985; 28 2017; 8 2019; 93 2021; 21 2001; 141 2006; 34 1993; 61 1990; 16 2021; 367 1988; 35 2019; 18 2020; 10 1999; 83 1998; 41 2008; 72 2004; 129 1983; 57 1978; 9 1951; 62 2018; 46 2001; 43 2020; 8 2018; 130 2018; 9 2020; 6 1973; 84 2014; 5 2014; 4 2004; 379 2016; 90 2000 2020; 132 2004; 35 2019; 29 2005; 32 1984; 18 1964; 34 2011; 162 1983; 26 1985; 59 2017; 129 2021; 7 1998; 29 2021; 49 2004; 42 1970; 268 2010; 38 2017; 60 2000; 28 2015; 3 2000; 26 2011 1988; 14 2013; 41 2005; 117 2006; 273 1899; 10 2005 1988; 52 2011; 39 2022; 119 2016; 59 2016; 14 2010; 84 2012; 109 2003; 77 2014; 42 1973; 179 2001; 113 2004; 50 2017; 91 1979; 134 2020; 350 2022; 3 1991; 65 1986; 320 2019; 47 2021; 19 1980; 8 2014; 36 2021; 371 1985; 632 2021; 494 2016 2018; 319 1988; 62 2000; 80 2010; 290 2018; 11 2009; 2 1977; 195 1987; 28 1983; 47 2012; 86 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_4_1 e_1_2_11_48_1 Kraskov L. N. (e_1_2_11_43_1) 1985; 632 Huntoon J. E. (e_1_2_11_36_1) 1999; 83 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 Knoll A. H. (e_1_2_11_41_1) 1983; 26 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 Gabbott S. E. (e_1_2_11_29_1) 1998; 41 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_39_1 Fairchild T. R. (e_1_2_11_27_1) 1978; 9 e_1_2_11_72_1 e_1_2_11_91_1 Bloeser B. (e_1_2_11_11_1) 1985; 59 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_6_1 e_1_2_11_2_1 Lillis P. G. (e_1_2_11_47_1) 2016 e_1_2_11_83_1 e_1_2_11_60_1 Horodyski R. J. (e_1_2_11_34_1) 1983; 57 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_87_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_26_1 e_1_2_11_3_1 Saito Y. (e_1_2_11_75_1) 1988; 14 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 Meisterfeld R. (e_1_2_11_53_1) 2000 e_1_2_11_18_1 e_1_2_11_37_1 |
References_xml | – year: 2011 – volume: 59 start-page: 741 year: 1985 end-page: 765 article-title: , a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona publication-title: Journal of Paleontology – volume: 5 start-page: 1 issue: 1 year: 2014 end-page: 12 article-title: A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression publication-title: Nature Communications – year: 2005 – volume: 8 year: 2017 article-title: Evidence of preserved collagen in an early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy publication-title: Nature Communications – volume: 49 start-page: 556 issue: 5 year: 2021 end-page: 560 article-title: Total organic carbon and the preservation of organic‐walled microfossils in Precambrian shale publication-title: Geology – volume: 8 year: 2020 article-title: Mechanisms of pyrite formation promoted by sulfate‐reducing bacteria in pure culture publication-title: Frontiers in Earth Science – volume: 9 start-page: 74 year: 1978 end-page: 79 article-title: Microfossils in the "Eopaleozoic" Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil publication-title: Boletim IG (Universidade de Sao Paulo, Instituto de Geociencias) – volume: 29 start-page: 991 issue: 6 year: 2019 end-page: 1001 article-title: Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic publication-title: Current Biology – volume: 29 start-page: R212 issue: 6 year: 2019 end-page: R215 article-title: Evolution: Ancient fossilized amoebae find their home in the tree publication-title: Current Biology – volume: 117 start-page: 1573 issue: 11–12 year: 2005 end-page: 1595 article-title: Tectonic inferences from the ca. 1255–1100 ma Unkar Group and Nankoweap Formation, Grand Canyon: Intracratonic deformation and basin formation during protracted Grenville orogenesis publication-title: GSA Bulletin – volume: 371 start-page: 178 issue: 6525 year: 2021 end-page: 181 article-title: Microbial sulfate reduction and organic sulfur formation in sinking marine particles publication-title: Science – volume: 367 year: 2021 article-title: Diverse vase‐shaped microfossils within a Cryogenian glacial setting in the Urucum Formation (Brazil) publication-title: Precambrian Research – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization publication-title: Nature Communications – volume: 10 start-page: 199 year: 1899 end-page: 244 article-title: Precambrian fossiliferous formations publication-title: Geological Society of America Bulletin – volume: 18 start-page: 341 issue: 3 year: 1984 end-page: 361 article-title: Shell structure of some testate amoebae from Britain (protozoa, Rhizopoda) publication-title: Journal of Natural History – volume: 83 start-page: 467 issue: 3 year: 1999 end-page: 495 article-title: The search for a source rock for the giant tar sand triangle accumulation, southeastern Utah publication-title: American Association of Petroleum Geologists Bulletin – volume: 3 year: 2015 article-title: The phanerozoic diversification of silica‐cycling testate amoebae and its possible links to changes in terrestrial ecosystems publication-title: PeerJ – volume: 93 start-page: 612 issue: 4 year: 2019 end-page: 627 article-title: Insights into vase‐shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries publication-title: Journal of Paleontology – volume: 80 start-page: 213 year: 2000 end-page: 228 article-title: Internal morphology and taphonomic history of the Neoproterozoic vase‐shaped microfossils from the Visingsö Group, Sweden publication-title: Norsk Geologisk Tidsskrift – volume: 268 start-page: 1 issue: 1 year: 1970 end-page: 23 article-title: Sedimentary pyrite formation publication-title: American Journal of Science – volume: 320 start-page: 160 issue: 6058 year: 1986 end-page: 162 article-title: Isoprenoid thiophenes: Novel products of sediment diagenesis? publication-title: Nature – volume: 319 start-page: 19 year: 2018 end-page: 36 article-title: Vase‐shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon publication-title: Precambrian Research – volume: 130 start-page: 1085 year: 2018 end-page: 1098 article-title: Coupled Re‐Os and U‐Pb geochronology of the Tonian Chuar Group, Grand Canyon publication-title: Geological Society of America Bulletin – volume: 42 start-page: 659 issue: 8 year: 2014 end-page: 662 article-title: 740 ma vase‐shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy publication-title: Geology – volume: 77 start-page: 409 issue: 3 year: 2003 end-page: 429 article-title: Vase‐shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae publication-title: Journal of Paleontology – volume: 90 start-page: 815 year: 2016 end-page: 853 article-title: Systematics of organic‐walled microfossils from the mid‐Neoproterozoic Chuar Group, Grand Canyon, Arizona publication-title: Journal of Paleontology – volume: 62 start-page: 835 issue: 6 year: 1988 end-page: 852 article-title: Microfossils from oolites and pisolites of the upper Proterozoic Eleonore Bay Group, central East Greenland publication-title: Journal of Paleontology – volume: 36 start-page: 482 issue: 5 year: 2014 end-page: 490 article-title: Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life publication-title: BioEssays – volume: 141 start-page: 465 year: 2001 end-page: 499 article-title: Neoproterozoic Chuar Group (∼800–742 ma), Grand Canyon: A record of cyclic marine deposition during global cooling and supercontinent rifting publication-title: Sedimentary Geology – volume: 59 start-page: 337 issue: 3 year: 2016 end-page: 350 article-title: Fossilization of melanosomes via sulfurization publication-title: Palaeontology – volume: 11 start-page: 438 year: 2018 end-page: 443 article-title: Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons publication-title: Nature Geoscience – volume: 494 start-page: 355 year: 2021 end-page: 359 article-title: Early formation and taphonomic significance of kaolinite associated with burgess shale fossils publication-title: Geology – volume: 14 start-page: 129 issue: 2 year: 2016 end-page: 149 article-title: Early sponges and toxic protists: Possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth publication-title: Geobiology – volume: 10 issue: 4 year: 2020 article-title: Aluminosilicate haloes preserve complex life approximately 800 million years ago publication-title: Interface Focus – volume: 19 start-page: 364 year: 2021 end-page: 375 article-title: Phosphatic scales in vase‐shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard publication-title: Geobiology – volume: 86 start-page: 775 issue: 5 year: 2012 end-page: 800 article-title: Scale microfossils from the mid‐neoproterozoic Fifteenmile Group, Yukon territory publication-title: Journal of Paleontology – volume: 129 start-page: 607 year: 2017 end-page: 624 article-title: Synthesis of the 780–740 ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia‐wide cratonic marine basins publication-title: Geological Society of America Bulletin – volume: 273 start-page: 1867 issue: 1596 year: 2006 end-page: 1872 article-title: A molecular time‐scale for eukaryote evolution recalibrated with the continuous microfossil record publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 32 issue: 21 year: 2005 article-title: Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars publication-title: Geophysical Research Letters – volume: 65 start-page: 531 issue: 4 year: 1991 end-page: 570 article-title: Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen publication-title: Journal of Paleontology – volume: 179 start-page: 1319 issue: 4080 year: 1973 end-page: 1321 article-title: Microorganisms from the late Precambrian of the Grand Canyon, Arizona publication-title: Science – volume: 84 start-page: 363 issue: 3 year: 2010 end-page: 401 article-title: Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation publication-title: Journal of Paleontology – volume: 62 start-page: 953 issue: 8 year: 1951 end-page: 959 article-title: Nankoweap Group of the Grand Canyon Algonkian of Arizona publication-title: Geological Society of America Bulletin – volume: 119 issue: 6 year: 2022 article-title: Strong evidence for a weakly oxygenated ocean–atmosphere system during the Proterozoic publication-title: Proceedings of the National Academy of Sciences – volume: 46 start-page: 711 issue: 8 year: 2018 end-page: 714 article-title: Exceptional preservation of organic matrix and shell microstructure in a late cretaceous fossil revealed by photoemission electron spectromicroscopy publication-title: Geology – start-page: 827 year: 2000 end-page: 800 – volume: 21 start-page: 1 issue: 9 year: 2021 end-page: 18 article-title: Ancient oil as a source of carbonaceous matter in 1.88‐billion‐year‐old gunflint stromatolites and microfossils publication-title: Astrobiology – volume: 34 start-page: 195 year: 1964 end-page: 212 article-title: Microbiological fractionation of sulphur isotopes publication-title: Microbiology – volume: 43 start-page: 607 year: 2001 end-page: 636 article-title: Biogeochemistry of sulfur isotopes publication-title: Reviews in Mineralogy and Geochemistry – volume: 41 start-page: 123 issue: 2 year: 2013 end-page: 126 article-title: Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective publication-title: Geology – volume: 46 start-page: 347 issue: 4 year: 2018 end-page: 350 article-title: A mineralogical signature for Burgess Shale–type fossilization publication-title: Geology – volume: 7 issue: 5 year: 2021 article-title: Experimental taphonomy of organelles and the fossil record of early eukaryote evolution publication-title: Science Advances – volume: 28 start-page: 1 year: 1987 end-page: 19 article-title: The origin and fate of isoprenoid C20 and C15 sulphur compounds in sediments and oils publication-title: International Journal of Environmental Analytical Chemistry – volume: 41 start-page: 631 year: 1998 end-page: 668 article-title: Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals publication-title: Palaeontology – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: Rapid pyritization in the presence of a sulfur/sulfate‐reducing bacterial consortium publication-title: Scientific Reports – start-page: 79 year: 2016 end-page: 137 – volume: 8 start-page: 70 year: 1980 end-page: 71 article-title: Chitinozoan‐like microfossils in a late Precambrian dolostone from Saudi Arabia publication-title: Geology – volume: 3 start-page: 1 issue: 1 year: 2022 end-page: 10 article-title: The exceptional preservation of Aix‐En‐Provence spider fossils could have been facilitated by diatoms publication-title: Communications Earth & Environment – volume: 18 start-page: 326 issue: 3 year: 2019 end-page: 347 article-title: Free and kerogen‐bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid‐Neoproterozoic marine communities publication-title: Geobiology – volume: 6 year: 2020 article-title: Phylogenetic and physiological signals in metazoan fossil biomolecules publication-title: Science Advances – volume: 61 start-page: 241 year: 1993 end-page: 278 article-title: Paleontology of Proterozoic shales and mudstones: Examples for the Belt Supergroup, Chuar Group and Pahrump Group, western USA publication-title: Precambrian Resesarch – volume: 632 start-page: 149 year: 1985 end-page: 152 article-title: Haxoдкa пpoблeмaтичecкиx opгaнизмoв в oтлoжeнияx Чaткapaгaйcкoa cвиты (Taлaccкий xpeбeт) (finding of problematic organisms in sediments of Chatkaragai suite (Talas ridge)) publication-title: Aкaдeмии нayк CCCP, Tpyды (USSR Academy of Sciences, Proceedings) – volume: 290 start-page: 64 year: 2010 end-page: 73 article-title: An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA publication-title: Earth and Planetary Science Letters – volume: 162 start-page: 332 year: 2011 end-page: 372 article-title: Novel cultured protists identify deep‐branching environmental DNA clades of Cercozoa: New genera , , , , publication-title: Protist – volume: 2 start-page: 415 issue: 6 year: 2009 end-page: 418 article-title: Biotic turnover driven by eutrophication before the Sturtian low‐latitude glaciation publication-title: Nature Geoscience – volume: 35 start-page: 537 issue: 4 year: 1988 end-page: 540 article-title: Fine structure of the Shell Wall in the soil testate amoeba (Rhizopoda) publication-title: The Journal of Protozoology – volume: 16 start-page: 1077 year: 1990 end-page: 1101 article-title: Analysis, structure and geochemical significance of organically‐bound sulphur in the geosphere: State of the art and future research publication-title: Organic Geochemistry – volume: 47 start-page: 1107 year: 2019 end-page: 1111 article-title: Organic‐rich microfossils produced by oil infiltration of hollow silicified bacteria: Evidence from the ca. 340 ma red dog Zn‐Pb deposit, Alaska publication-title: Geology – volume: 26 start-page: 467 issue: 3 year: 1983 end-page: 496 article-title: Microbiotas of the late Precambrian Ryssö formation, Nordaustlandet, Svalbard publication-title: Palaeontology – volume: 132 start-page: 710 issue: 3–4 year: 2020 end-page: 738 article-title: Paleomagnetism of the Chuar Group and evaluation of the late Tonian Laurentian apparent polar wander path with implications for the makeup and breakup of Rodinia publication-title: Geological Society of America Bulletin – volume: 42 start-page: 1563 issue: 5 year: 2004 end-page: 1581 article-title: Preservation of microborings as fluid inclusions publication-title: The Canadian Mineralogist – volume: 50 start-page: 1917 year: 2004 end-page: 1927 article-title: Role of fine clays in bitumen extraction from oil sands publication-title: American Institute of Chemical Engineers Journal – volume: 52 start-page: 2625 year: 1988 end-page: 2637 article-title: Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott member, Chuar Group, Grand Canyon, Arizona publication-title: Geochimica et Cosmochimica Acta – volume: 129 start-page: 71 year: 2004 end-page: 92 article-title: Paleomagnetism of the Neoproterozoic Chuar group, grand canyon supergroup, Arizona: Implications for Laurentia's Neoproterozoic APWP and Rodinia breakup publication-title: Precambrian Research – volume: 134 start-page: 1 year: 1979 end-page: 40 article-title: Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland publication-title: Grønlands Geologiske Undersøgelse – volume: 28 start-page: 349 issue: 3–4 year: 1985 end-page: 389 article-title: Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications publication-title: Precambrian Research – volume: 28 start-page: 619 issue: 7 year: 2000 end-page: 622 article-title: Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma publication-title: Geology – volume: 281 start-page: 1173 year: 1998 end-page: 1175 article-title: Cambrian burgess shale animals replicated in clay minerals publication-title: Science – volume: 113 start-page: 163 issue: 2 year: 2001 end-page: 181 article-title: Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the grand canyon supergroup and establishment of northwest‐and north‐trending tectonic grains in the southwestern United States publication-title: Geological Society of America Bulletin – volume: 84 start-page: 1243 year: 1973 end-page: 1260 article-title: Late Precambrian Chuar Group, Grand Canyon, Arizona publication-title: Geological Society of America Bulletin – volume: 60 start-page: 683 issue: 5 year: 2017 end-page: 701 article-title: Vase‐shaped microfossils from the Tonian Callison Lake formation of Yukon, Canada: Taxonomy, taphonomy and stratigraphic palaeobiology publication-title: Palaeontology – volume: 39 start-page: 255 issue: 3 year: 2011 end-page: 258 article-title: Molecular signature of chitin‐protein complex in Paleozoic arthropods publication-title: Geology – volume: 91 start-page: 393 issue: 3 year: 2017 end-page: 406 article-title: Carbonaceous and siliceous Neoproterozoic vase‐shaped microfossils (Urucum formation, Brazil) and the question of early protistan biomineralization publication-title: Journal of Paleontology – volume: 379 start-page: 135 year: 2004 end-page: 150 article-title: Organic sulfur biogeochemistry: Recent advances and future research directions publication-title: Geological Society of America Special Papers – volume: 195 start-page: 676 issue: 4279 year: 1977 end-page: 679 article-title: Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona publication-title: Science – volume: 47 start-page: 855 issue: 5 year: 1983 end-page: 862 article-title: Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory publication-title: Geochimica et Cosmochimica Acta – volume: 29 start-page: 1837 year: 1998 end-page: 1848 article-title: Laboratory sulfurisation of the marine microalga publication-title: Organic Geochemistry – volume: 26 start-page: 360 issue: 3 year: 2000 end-page: 385 article-title: Testate amoebae in the Neoproterozoic era: Evidence from vase‐shaped microfossils in the Chuar Group, Grand Canyon publication-title: Paleobiology – volume: 34 start-page: 641 issue: 8 year: 2006 end-page: 644 article-title: High‐fidelity organic preservation of bone marrow in ca. 10 ma amphibians publication-title: Geology – volume: 350 year: 2020 article-title: Morphologically diverse vase‐shaped microfossils from the Russøya Member, Elbobreen Formation, in Spitsbergen publication-title: Precambrian Research – volume: 14 start-page: 59 issue: 2 year: 1988 end-page: 70 article-title: Precambrian and Cambrian cherts in northwestern Tasmania publication-title: Bulletin of the National Science Museum – volume: 4 start-page: 1 year: 2014 end-page: 11 article-title: Enhanced cellular preservation by clay minerals in 1 billion‐year‐old lakes publication-title: Scientific Reports – volume: 109 start-page: 5180 issue: 14 year: 2012 end-page: 5184 article-title: Mechanism for burgess shale‐type preservation publication-title: Proceedings of the National Academy of Sciences – volume: 35 start-page: 909 year: 2004 end-page: 921 article-title: Reaction of polysulfide anions with α, β unsaturated isoprenoid aldehydes in aquatic media: Simulation of oceanic conditions publication-title: Organic Geochemistry – volume: 72 start-page: 3489 issue: 14 year: 2008 end-page: 3502 article-title: Investigating pathways of diagenetic organic matter sulfurization using compound‐specific sulfur isotope analysis publication-title: Geochimica et Cosmochimica Acta – volume: 38 start-page: 415 year: 2010 end-page: 418 article-title: High isotope fractionations during sulfate reduction in a low‐sulfate euxinic ocean analog publication-title: Geology – volume: 57 start-page: 321 year: 1983 end-page: 326 article-title: Possible eukaryotic algal filaments from the late Proterozoic Chuar Group, Grand Canyon, Arizona publication-title: Journal of Paleontology – ident: e_1_2_11_2_1 doi: 10.1016/j.orggeochem.2004.04.002 – ident: e_1_2_11_81_1 doi: 10.1130/G35736.1 – ident: e_1_2_11_24_1 doi: 10.1130/B31532.1 – ident: e_1_2_11_14_1 doi: 10.1002/bies.201400010 – volume: 9 start-page: 74 year: 1978 ident: e_1_2_11_27_1 article-title: Microfossils in the "Eopaleozoic" Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil publication-title: Boletim IG (Universidade de Sao Paulo, Instituto de Geociencias) contributor: fullname: Fairchild T. R. – ident: e_1_2_11_50_1 doi: 10.1016/j.precamres.2020.105899 – ident: e_1_2_11_89_1 doi: 10.1130/GSAB‐10‐199 – ident: e_1_2_11_76_1 doi: 10.1038/ncomms6754 – ident: e_1_2_11_7_1 doi: 10.2475/ajs.268.1.1 – ident: e_1_2_11_86_1 doi: 10.34194/bullggu.v134.6676 – ident: e_1_2_11_31_1 doi: 10.1016/S0146‐6380(98)00171‐5 – ident: e_1_2_11_44_1 doi: 10.7717/peerj.1234 – ident: e_1_2_11_4_1 doi: 10.1130/G39941.1 – ident: e_1_2_11_56_1 doi: 10.1016/j.precamres.2021.106470 – ident: e_1_2_11_22_1 doi: 10.1666/11‐138.1 – ident: e_1_2_11_94_1 doi: 10.1130/0‐8137‐2379‐5.135 – ident: e_1_2_11_57_1 doi: 10.1017/jpa.2019.6 – ident: e_1_2_11_10_1 doi: 10.1130/0091‐7613(1980)8<70:CMIALP>2.0.CO;2 – ident: e_1_2_11_18_1 doi: 10.1130/G30723.1 – volume: 57 start-page: 321 year: 1983 ident: e_1_2_11_34_1 article-title: Possible eukaryotic algal filaments from the late Proterozoic Chuar Group, Grand Canyon, Arizona publication-title: Journal of Paleontology contributor: fullname: Horodyski R. J. – ident: e_1_2_11_83_1 doi: 10.1130/0016‐7606(2001)113<0163:PMCAGE>2.0.CO;2 – ident: e_1_2_11_9_1 doi: 10.1098/rspb.2006.3537 – ident: e_1_2_11_93_1 doi: 10.1016/j.precamres.2003.09.016 – volume: 59 start-page: 741 year: 1985 ident: e_1_2_11_11_1 article-title: Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona publication-title: Journal of Paleontology contributor: fullname: Bloeser B. – volume: 41 start-page: 631 year: 1998 ident: e_1_2_11_29_1 article-title: Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals publication-title: Palaeontology contributor: fullname: Gabbott S. E. – ident: e_1_2_11_80_1 doi: 10.1016/0146‐6380(90)90145‐P – ident: e_1_2_11_62_1 doi: 10.1038/s43247‐022‐00424‐7 – ident: e_1_2_11_5_1 doi: 10.1130/G39941.1 – ident: e_1_2_11_13_1 doi: 10.1038/320160a0 – ident: e_1_2_11_77_1 doi: 10.1126/science.179.4080.1319 – ident: e_1_2_11_49_1 doi: 10.1080/002919600433751 – ident: e_1_2_11_19_1 doi: 10.1126/sciadv.abe9487 – ident: e_1_2_11_79_1 doi: 10.1080/03067318708078398 – ident: e_1_2_11_3_1 doi: 10.1098/rsfs.2020.0011 – ident: e_1_2_11_8_1 doi: 10.1016/0016-7037(83)90151-5 – ident: e_1_2_11_30_1 doi: 10.1073/pnas.1111784109 – ident: e_1_2_11_63_1 doi: 10.1126/science.281.5380.1173 – ident: e_1_2_11_32_1 doi: 10.1017/S0022336000030109 – ident: e_1_2_11_52_1 doi: 10.1111/pala.12238 – ident: e_1_2_11_68_1 doi: 10.1130/G46346.1 – ident: e_1_2_11_84_1 doi: 10.1130/B25538.1 – ident: e_1_2_11_42_1 doi: 10.1017/S0022336000030663 – ident: e_1_2_11_65_1 doi: 10.1666/0022‐3360(2003)077<0409:VMFTNC>2.0.CO;2 – ident: e_1_2_11_37_1 doi: 10.1016/j.epsl.2009.11.059 – ident: e_1_2_11_67_1 doi: 10.1016/j.cub.2019.02.003 – ident: e_1_2_11_74_1 doi: 10.1130/B31768.1 – start-page: 827 volume-title: Illustrated guide to the protozoa year: 2000 ident: e_1_2_11_53_1 contributor: fullname: Meisterfeld R. – ident: e_1_2_11_45_1 doi: 10.1016/j.cub.2019.01.078 – ident: e_1_2_11_39_1 doi: 10.1038/s41561‐018‐0131‐7 – ident: e_1_2_11_97_1 doi: 10.1130/G48116.1 – ident: e_1_2_11_40_1 doi: 10.1130/0091‐7613(2000)28<619:CGOTGC>2.0.CO;2 – start-page: 79 volume-title: Hydrocarbon source rocks in unconventional plays, Rocky Mountain Region year: 2016 ident: e_1_2_11_47_1 contributor: fullname: Lillis P. G. – ident: e_1_2_11_66_1 doi: 10.1017/jpa.2016.57 – ident: e_1_2_11_26_1 doi: 10.1130/B32012.1 – ident: e_1_2_11_48_1 doi: 10.1002/aic.10174 – ident: e_1_2_11_35_1 doi: 10.1016/j.protis.2010.10.002 – ident: e_1_2_11_64_1 doi: 10.1666/0094‐8373(2000)026<0360:TAITNE>2.0.CO;2 – ident: e_1_2_11_96_1 doi: 10.1126/sciadv.aba6883 – ident: e_1_2_11_73_1 doi: 10.1111/gbi.12439 – ident: e_1_2_11_16_1 doi: 10.2113/gscanmin.42.5.1563 – ident: e_1_2_11_92_1 doi: 10.1063/1.3625338 – volume: 632 start-page: 149 year: 1985 ident: e_1_2_11_43_1 article-title: Haxoдкa пpoблeмaтичecкиx opгaнизмoв в oтлoжeнияx Чaткapaгaйcкoa cвиты (Taлaccкий xpeбeт) (finding of problematic organisms in sediments of Chatkaragai suite (Talas ridge)) publication-title: Aкaдeмии нayк CCCP, Tpyды (USSR Academy of Sciences, Proceedings) contributor: fullname: Kraskov L. N. – ident: e_1_2_11_25_1 doi: 10.3389/feart.2020.588310 – volume: 14 start-page: 59 issue: 2 year: 1988 ident: e_1_2_11_75_1 article-title: Precambrian and Cambrian cherts in northwestern Tasmania publication-title: Bulletin of the National Science Museum contributor: fullname: Saito Y. – ident: e_1_2_11_85_1 doi: 10.1130/0016‐7606(1951)62[953:NGOTGC]2.0.CO;2 – ident: e_1_2_11_21_1 doi: 10.1111/pala.12315 – ident: e_1_2_11_69_1 doi: 10.1089/ast.2020.2376 – ident: e_1_2_11_12_1 doi: 10.1126/science.195.4279.676 – ident: e_1_2_11_54_1 doi: 10.1130/G33492.1 – ident: e_1_2_11_99_1 doi: 10.1111/gbi.12378 – ident: e_1_2_11_51_1 doi: 10.1130/G22526.1 – ident: e_1_2_11_59_1 doi: 10.1038/ngeo525 – ident: e_1_2_11_38_1 doi: 10.1099/00221287‐34‐2‐195 – ident: e_1_2_11_91_1 doi: 10.1238/Physica.Topical.115a01011 – ident: e_1_2_11_6_1 doi: 10.1038/s41598‐020‐64990‐6 – ident: e_1_2_11_71_1 doi: 10.1126/science.abc6035 – ident: e_1_2_11_28_1 doi: 10.1130/0016‐7606(1973)84<1243:LPCGGC>2.0.CO;2 – volume: 83 start-page: 467 issue: 3 year: 1999 ident: e_1_2_11_36_1 article-title: The search for a source rock for the giant tar sand triangle accumulation, southeastern Utah publication-title: American Association of Petroleum Geologists Bulletin contributor: fullname: Huntoon J. E. – ident: e_1_2_11_87_1 doi: 10.1016/0301-9268(85)90038-5 – ident: e_1_2_11_82_1 doi: 10.1016/0016‐7037(88)90031‐2 – ident: e_1_2_11_95_1 doi: 10.1016/j.gca.2008.04.033 – ident: e_1_2_11_70_1 doi: 10.1038/s41467‐018‐05943‐6 – ident: e_1_2_11_17_1 doi: 10.2138/gsrmg.43.1.607 – ident: e_1_2_11_46_1 doi: 10.1038/ncomms14220 – ident: e_1_2_11_98_1 doi: 10.1029/2005GL024253 – ident: e_1_2_11_55_1 doi: 10.1017/jpa.2017.16 – ident: e_1_2_11_33_1 doi: 10.1016/0301‐9268(93)90116‐J – volume: 26 start-page: 467 issue: 3 year: 1983 ident: e_1_2_11_41_1 article-title: Microbiotas of the late Precambrian Ryssö formation, Nordaustlandet, Svalbard publication-title: Palaeontology contributor: fullname: Knoll A. H. – ident: e_1_2_11_90_1 doi: 10.1073/pnas.2116101119 – ident: e_1_2_11_61_1 doi: 10.1111/j.1550‐7408.1988.tb04147.x – ident: e_1_2_11_88_1 doi: 10.1038/srep05841 – ident: e_1_2_11_20_1 doi: 10.1130/G31648.1 – ident: e_1_2_11_23_1 doi: 10.1016/S0037‐0738(01)00087‐2 – ident: e_1_2_11_72_1 doi: 10.1016/j.precamres.2017.09.019 – ident: e_1_2_11_15_1 doi: 10.1111/gbi.12165 – ident: e_1_2_11_58_1 doi: 10.1130/G45271.1 – ident: e_1_2_11_60_1 doi: 10.1080/00222938400770291 – ident: e_1_2_11_78_1 doi: 10.1666/09‐133.1 |
SSID | ssj0024531 |
Score | 2.3992543 |
Snippet | Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate... Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate... Abstract Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate... |
SourceID | osti proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 290 |
SubjectTerms | Absorption spectroscopy amoebozoa Analytical methods Arizona Bitumen Canyons Chuar Group Colour Cretaceous Electron microscopy Fossils Iron Light microscopy Microscopy Neoproterozoic Organic matter organic preservation Preservation Pyrite Raman spectroscopy Scanning electron microscopy Shales Silica Spectrum analysis Spectrum Analysis, Raman - methods Sulfur Sulphur testate amoebae Tonian vase‐shaped microfossils Wavelength |
Title | Organic preservation of vase‐shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbi.12544 https://www.ncbi.nlm.nih.gov/pubmed/36651474 https://www.proquest.com/docview/2799111748 https://search.proquest.com/docview/2766720325 https://www.osti.gov/biblio/1909727 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61K1XiUqCFEv7kVj1w2KBN4sSJeqILFC4ICZC4Rf6FlSBBhEWCE4_AM_IkzDibpUggVeopkWLLjscz83k8_gzw00bEasVtOChcFuL6S4bSah6K1GUCXYa1kkIDe0fi4DTf3iGanF_dWZiWH2IacCPN8PaaFFyq5i8lP1OjzYgIttD-4irBH99IDl949lJ_F2HERYxdEGLCKkRZPNOar3xRr0adegtnvoat3u_szv5Xj-fg8wRusq12fszDB1t9gU_tBZR3X6Fuj2JqRumwXXiW1Y7donN7enhszuWVNeySsvYc_sLoomF0IIUhbGQXCFPZMdoEWbHhOU415gNZfXzIyrAhmpm66mPbo3uE-312crS1ACe7O8fDvXByBUOo0bPz0EVWFHIgjdOJEwZlZ_KY-GiUjSKhBpFycayESU0spMEqtki0zgi2KamyPFmEXlVXdglYqrEafuZRobjlLtd57izCQaes0nwQwI9OGOVVy7RRdisUHLnSj1wAKySmEuEBcdxqSgbSNyWimgKBWACrnfTKiSo2ZSwKMuiC5wF8n35GJaKdEVnZekxlsoz2o-M0gG-t1Kd9SLIMQaXApje8cN_vXPnn975_Wf73oiswQxfYtymUq9C7uR7bNfjYmPG6n8_PTp71_g |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RRQgupeVRQltqEAcOG7RJHDuRuJTtY6uWCqlbiZvlZ7tSSSq2WwlO_AR-I7-EmWSzUKlISJwSKbbseDyez-PxNwCvfUKsVtzHgzKIGPdfOtbe8ljmQUg0Gd5rcg2MTuTxp2Jnl2hy3nV3YVp-iIXDjTSjWa9Jwckh_YeWn5nJ24QYtpbgLhc4EekCR_bxN9Ne3mQjTLhMsRNSznmFKI5nUfWGNerVqFW3Ic2bwLWxPHsP_6_PK7A8R5xsu50iq3DHV4_gXpuD8utjqNvbmJZRRGznoWV1YNdo335-_zE915fesc8UuBfwHyYXU0Z3UhgiR3aBSJWNcVnQFRue42xjjS-rjw9dOTbElaau-tj25Bsi_j47Pdl-Aqd7u-PhKJ5nYYgtGnceh8TLUg-0CzYL0qH4XJESJY3xSSLNIDEhTY10uUuldljFl5m1gpCb0UYU2VPoVXXlnwHLLVbDzzwpDfc8FLYogkdEGIw3lg8ieNVJQ122ZBuq26TgyKlm5CJYJzkpRAhEc2spHsheKQQ2JWKxCDY68am5Nk5VKkta0yUvIni5-Ix6RIcjuvL1jMoIQUfSaR7BWiv2RR8yIRBXSmz6TSPdv3dO7b8_aF6e_3vRLbg_Gn84UkcHx4fr8IDy2bcRlRvQu_oy85uwNHWzF83k_gXYkfom |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VrUC90B9om-62dRGHHjbVJnHiRD3RhQUEQkiAxM3yb1mJJqsui9Se-gg8I0_SmWSzLRKVKnFKpNiy4_F4Po_H3wBsuohYrbgLB4XPQtx_qVA5w0OR-kygyXBOkWtg70QcnefbO0ST87m9C9PwQywcbqQZ9XpNCj6x_i8l_6rHnyIi2FqCxxxhOBHnJ8nxH6K9tE5GGHERYx-EmNMKURjPouodY9SpUKnuA5p3cWtteEZPH9TlZ7A6x5tsq5kgz-GRK1_AcpOB8scaVM1dTMMoHrb1z7LKs2u0bre_bqYXauIs-0Zhex5_YXw5ZXQjhSFuZJeIU9kpLgqqZMMLnGus9mT18aFKy4a4zlRlH9se_0S832dnJ1vrcDbaOR3uhfMcDKFB085DHzlRqIGy3iReWBSezWMipNEuioQeRNrHsRY2tbFQFqu4IjEmI9ymlc7y5CV0yqp0r4GlBqvhZx4Vmjvuc5Pn3iEe9NppwwcBbLTCkJOGakO2WxQcOVmPXABdEpNEfEAkt4aigcyVRFhTIBILoNdKT851cSpjUdCKLngewIfFZ9QiOhpRpatmVCbL6EA6TgN41Uh90YckyxBVCmz6Yy3cf3dO7n7Zr1_e_H_R97ByvD2Sh_tHB114Qsnsm3DKHnSuvs_cW1ia2tm7emr_BtLZ-Mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+preservation+of+vase%E2%80%90shaped+microfossils+from+the+late+Tonian+Chuar+Group%2C+Grand+Canyon%2C+Arizona%2C+USA&rft.jtitle=Geobiology&rft.au=Tingle%2C+Kelly+E.&rft.au=Porter%2C+Susannah+M.&rft.au=Raven%2C+Morgan+R.&rft.au=Czaja%2C+Andrew+D.&rft.date=2023-05-01&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=21&rft.issue=3&rft.spage=290&rft.epage=309&rft_id=info:doi/10.1111%2Fgbi.12544&rft.externalDBID=10.1111%252Fgbi.12544&rft.externalDocID=GBI12544 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon |