Organic preservation of vase‐shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA

Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary minerali...

Full description

Saved in:
Bibliographic Details
Published in:Geobiology Vol. 21; no. 3; pp. 290 - 309
Main Authors: Tingle, Kelly E., Porter, Susannah M., Raven, Morgan R., Czaja, Andrew D., Webb, Samuel M., Bloeser, Bonnie
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-05-2023
Wiley-Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light.
AbstractList Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light.
Abstract Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell‐forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X‐ray spectroscopy (EDS) and wavelength dispersive X‐ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X‐ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light‐colored, translucent appearance in transmitted light.
Author Raven, Morgan R.
Porter, Susannah M.
Czaja, Andrew D.
Webb, Samuel M.
Tingle, Kelly E.
Bloeser, Bonnie
Author_xml – sequence: 1
  givenname: Kelly E.
  orcidid: 0000-0002-6121-9677
  surname: Tingle
  fullname: Tingle, Kelly E.
  email: kelly.e.tingle@vanderbilt.edu
  organization: University of California
– sequence: 2
  givenname: Susannah M.
  orcidid: 0000-0002-4707-9428
  surname: Porter
  fullname: Porter, Susannah M.
  organization: University of California
– sequence: 3
  givenname: Morgan R.
  surname: Raven
  fullname: Raven, Morgan R.
  organization: University of California
– sequence: 4
  givenname: Andrew D.
  surname: Czaja
  fullname: Czaja, Andrew D.
  organization: University of Cincinnati
– sequence: 5
  givenname: Samuel M.
  surname: Webb
  fullname: Webb, Samuel M.
  organization: Stanford University
– sequence: 6
  givenname: Bonnie
  surname: Bloeser
  fullname: Bloeser, Bonnie
  organization: San Diego State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36651474$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1909727$$D View this record in Osti.gov
BookMark eNp1kc9uFSEUh4mpsX904QsYYjc2ubcFhhnK8nqj1yZNurBdEwYOvTQzMMJMzXXlI_iMPom0U7swkc0h4Tu_E853iPZCDIDQW0pOaTlnt60_pazm_AU6oFywJW8aufd8F2IfHeZ8RwjjdUVfof2qaeryyA9QvEq3OniDhwQZ0r0efQw4OnyvM_z--Stv9QAW996k6GLOvsvYpdjjcQu40yPg6xi8Dni9nXTCmxSnYVGKDhavddjFsMCr5H_EoBf45uvqNXrpdJfhzVM9QjefP12vvywvrzYX69Xl0nBa86WjIKQm2jpTOWEZB3vOqKxlC5SKltDWMdYKW1smtC0tICtjGllT0uq2Oa-O0Ps5N-bRq2z8CGZrYghgRkUlkYKJAn2YoSHFbxPkUfU-G-g6HSBOWTHRNIKRitUFPf4HvYtTCuULhZKyWBD8YerJTJVt5ZzAqSH5XqedokQ9qFJFlXpUVdh3T4lT24N9Jv-6KcDZDHz3Hez-n6Q2Hy_myD_5xp7E
CitedBy_id crossref_primary_10_1016_j_gca_2023_02_020
crossref_primary_10_1016_j_precamres_2023_107207
crossref_primary_10_1016_j_precamres_2023_107156
Cites_doi 10.1016/j.orggeochem.2004.04.002
10.1130/G35736.1
10.1130/B31532.1
10.1002/bies.201400010
10.1016/j.precamres.2020.105899
10.1130/GSAB‐10‐199
10.1038/ncomms6754
10.2475/ajs.268.1.1
10.34194/bullggu.v134.6676
10.1016/S0146‐6380(98)00171‐5
10.7717/peerj.1234
10.1130/G39941.1
10.1016/j.precamres.2021.106470
10.1666/11‐138.1
10.1130/0‐8137‐2379‐5.135
10.1017/jpa.2019.6
10.1130/0091‐7613(1980)8<70:CMIALP>2.0.CO;2
10.1130/G30723.1
10.1130/0016‐7606(2001)113<0163:PMCAGE>2.0.CO;2
10.1098/rspb.2006.3537
10.1016/j.precamres.2003.09.016
10.1016/0146‐6380(90)90145‐P
10.1038/s43247‐022‐00424‐7
10.1038/320160a0
10.1126/science.179.4080.1319
10.1080/002919600433751
10.1126/sciadv.abe9487
10.1080/03067318708078398
10.1098/rsfs.2020.0011
10.1016/0016-7037(83)90151-5
10.1073/pnas.1111784109
10.1126/science.281.5380.1173
10.1017/S0022336000030109
10.1111/pala.12238
10.1130/G46346.1
10.1130/B25538.1
10.1017/S0022336000030663
10.1666/0022‐3360(2003)077<0409:VMFTNC>2.0.CO;2
10.1016/j.epsl.2009.11.059
10.1016/j.cub.2019.02.003
10.1130/B31768.1
10.1016/j.cub.2019.01.078
10.1038/s41561‐018‐0131‐7
10.1130/G48116.1
10.1130/0091‐7613(2000)28<619:CGOTGC>2.0.CO;2
10.1017/jpa.2016.57
10.1130/B32012.1
10.1002/aic.10174
10.1016/j.protis.2010.10.002
10.1666/0094‐8373(2000)026<0360:TAITNE>2.0.CO;2
10.1126/sciadv.aba6883
10.1111/gbi.12439
10.2113/gscanmin.42.5.1563
10.1063/1.3625338
10.3389/feart.2020.588310
10.1130/0016‐7606(1951)62[953:NGOTGC]2.0.CO;2
10.1111/pala.12315
10.1089/ast.2020.2376
10.1126/science.195.4279.676
10.1130/G33492.1
10.1111/gbi.12378
10.1130/G22526.1
10.1038/ngeo525
10.1099/00221287‐34‐2‐195
10.1238/Physica.Topical.115a01011
10.1038/s41598‐020‐64990‐6
10.1126/science.abc6035
10.1130/0016‐7606(1973)84<1243:LPCGGC>2.0.CO;2
10.1016/0301-9268(85)90038-5
10.1016/0016‐7037(88)90031‐2
10.1016/j.gca.2008.04.033
10.1038/s41467‐018‐05943‐6
10.2138/gsrmg.43.1.607
10.1038/ncomms14220
10.1029/2005GL024253
10.1017/jpa.2017.16
10.1016/0301‐9268(93)90116‐J
10.1073/pnas.2116101119
10.1111/j.1550‐7408.1988.tb04147.x
10.1038/srep05841
10.1130/G31648.1
10.1016/S0037‐0738(01)00087‐2
10.1016/j.precamres.2017.09.019
10.1111/gbi.12165
10.1130/G45271.1
10.1080/00222938400770291
10.1666/09‐133.1
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Geobiology published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Geobiology published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
OTOTI
DOI 10.1111/gbi.12544
DatabaseName Wiley_OA刊
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1472-4669
EndPage 309
ExternalDocumentID 1909727
10_1111_gbi_12544
36651474
GBI12544
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Arizona
Grand Canyon
United States--US
GeographicLocations_xml – name: Arizona
– name: Grand Canyon
– name: United States--US
GrantInformation_xml – fundername: NASA
– fundername: Clay Minerals Society
– fundername: National Science Foundation
  funderid: EAR‐1855092; EAR‐2029521
– fundername: National Institute of General Medical Sciences
– fundername: National Institutes of Health
  funderid: P30GM133894
– fundername: U.S. Department of Energy
  funderid: DE‐AC02‐76SF00515
– fundername: University of California, Santa Barbara
– fundername: NIH HHS
  grantid: P30GM133894
– fundername: NIGMS NIH HHS
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4154-f1e79a0adfc3f7d24ed821959be117b01bf22b7d5d27ad415e93cc69510bab683
IEDL.DBID 33P
ISSN 1472-4677
IngestDate Mon Aug 28 20:02:20 EDT 2023
Sat Aug 17 01:35:24 EDT 2024
Thu Oct 10 19:47:15 EDT 2024
Thu Nov 21 22:39:24 EST 2024
Sat Sep 28 08:12:56 EDT 2024
Sat Aug 24 00:48:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords testate amoebae
Tonian
vase-shaped microfossils
Neoproterozoic
Chuar Group
organic preservation
amoebozoa
pyrite
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Geobiology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4154-f1e79a0adfc3f7d24ed821959be117b01bf22b7d5d27ad415e93cc69510bab683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
DE‐AC02‐76SF00515
ORCID 0000-0002-4707-9428
0000-0002-6121-9677
0000000261219677
0000000247079428
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbi.12544
PMID 36651474
PQID 2799111748
PQPubID 2034137
PageCount 20
ParticipantIDs osti_scitechconnect_1909727
proquest_miscellaneous_2766720325
proquest_journals_2799111748
crossref_primary_10_1111_gbi_12544
pubmed_primary_36651474
wiley_primary_10_1111_gbi_12544_GBI12544
PublicationCentury 2000
PublicationDate May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
– name: United Kingdom
PublicationTitle Geobiology
PublicationTitleAlternate Geobiology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 1998; 281
1985; 28
2017; 8
2019; 93
2021; 21
2001; 141
2006; 34
1993; 61
1990; 16
2021; 367
1988; 35
2019; 18
2020; 10
1999; 83
1998; 41
2008; 72
2004; 129
1983; 57
1978; 9
1951; 62
2018; 46
2001; 43
2020; 8
2018; 130
2018; 9
2020; 6
1973; 84
2014; 5
2014; 4
2004; 379
2016; 90
2000
2020; 132
2004; 35
2019; 29
2005; 32
1984; 18
1964; 34
2011; 162
1983; 26
1985; 59
2017; 129
2021; 7
1998; 29
2021; 49
2004; 42
1970; 268
2010; 38
2017; 60
2000; 28
2015; 3
2000; 26
2011
1988; 14
2013; 41
2005; 117
2006; 273
1899; 10
2005
1988; 52
2011; 39
2022; 119
2016; 59
2016; 14
2010; 84
2012; 109
2003; 77
2014; 42
1973; 179
2001; 113
2004; 50
2017; 91
1979; 134
2020; 350
2022; 3
1991; 65
1986; 320
2019; 47
2021; 19
1980; 8
2014; 36
2021; 371
1985; 632
2021; 494
2016
2018; 319
1988; 62
2000; 80
2010; 290
2018; 11
2009; 2
1977; 195
1987; 28
1983; 47
2012; 86
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_4_1
e_1_2_11_48_1
Kraskov L. N. (e_1_2_11_43_1) 1985; 632
Huntoon J. E. (e_1_2_11_36_1) 1999; 83
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
Knoll A. H. (e_1_2_11_41_1) 1983; 26
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
Gabbott S. E. (e_1_2_11_29_1) 1998; 41
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
Fairchild T. R. (e_1_2_11_27_1) 1978; 9
e_1_2_11_72_1
e_1_2_11_91_1
Bloeser B. (e_1_2_11_11_1) 1985; 59
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_6_1
e_1_2_11_2_1
Lillis P. G. (e_1_2_11_47_1) 2016
e_1_2_11_83_1
e_1_2_11_60_1
Horodyski R. J. (e_1_2_11_34_1) 1983; 57
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_87_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_26_1
e_1_2_11_3_1
Saito Y. (e_1_2_11_75_1) 1988; 14
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
Meisterfeld R. (e_1_2_11_53_1) 2000
e_1_2_11_18_1
e_1_2_11_37_1
References_xml – year: 2011
– volume: 59
  start-page: 741
  year: 1985
  end-page: 765
  article-title: , a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona
  publication-title: Journal of Paleontology
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  end-page: 12
  article-title: A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression
  publication-title: Nature Communications
– year: 2005
– volume: 8
  year: 2017
  article-title: Evidence of preserved collagen in an early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy
  publication-title: Nature Communications
– volume: 49
  start-page: 556
  issue: 5
  year: 2021
  end-page: 560
  article-title: Total organic carbon and the preservation of organic‐walled microfossils in Precambrian shale
  publication-title: Geology
– volume: 8
  year: 2020
  article-title: Mechanisms of pyrite formation promoted by sulfate‐reducing bacteria in pure culture
  publication-title: Frontiers in Earth Science
– volume: 9
  start-page: 74
  year: 1978
  end-page: 79
  article-title: Microfossils in the "Eopaleozoic" Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil
  publication-title: Boletim IG (Universidade de Sao Paulo, Instituto de Geociencias)
– volume: 29
  start-page: 991
  issue: 6
  year: 2019
  end-page: 1001
  article-title: Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic
  publication-title: Current Biology
– volume: 29
  start-page: R212
  issue: 6
  year: 2019
  end-page: R215
  article-title: Evolution: Ancient fossilized amoebae find their home in the tree
  publication-title: Current Biology
– volume: 117
  start-page: 1573
  issue: 11–12
  year: 2005
  end-page: 1595
  article-title: Tectonic inferences from the ca. 1255–1100 ma Unkar Group and Nankoweap Formation, Grand Canyon: Intracratonic deformation and basin formation during protracted Grenville orogenesis
  publication-title: GSA Bulletin
– volume: 371
  start-page: 178
  issue: 6525
  year: 2021
  end-page: 181
  article-title: Microbial sulfate reduction and organic sulfur formation in sinking marine particles
  publication-title: Science
– volume: 367
  year: 2021
  article-title: Diverse vase‐shaped microfossils within a Cryogenian glacial setting in the Urucum Formation (Brazil)
  publication-title: Precambrian Research
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization
  publication-title: Nature Communications
– volume: 10
  start-page: 199
  year: 1899
  end-page: 244
  article-title: Precambrian fossiliferous formations
  publication-title: Geological Society of America Bulletin
– volume: 18
  start-page: 341
  issue: 3
  year: 1984
  end-page: 361
  article-title: Shell structure of some testate amoebae from Britain (protozoa, Rhizopoda)
  publication-title: Journal of Natural History
– volume: 83
  start-page: 467
  issue: 3
  year: 1999
  end-page: 495
  article-title: The search for a source rock for the giant tar sand triangle accumulation, southeastern Utah
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 3
  year: 2015
  article-title: The phanerozoic diversification of silica‐cycling testate amoebae and its possible links to changes in terrestrial ecosystems
  publication-title: PeerJ
– volume: 93
  start-page: 612
  issue: 4
  year: 2019
  end-page: 627
  article-title: Insights into vase‐shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries
  publication-title: Journal of Paleontology
– volume: 80
  start-page: 213
  year: 2000
  end-page: 228
  article-title: Internal morphology and taphonomic history of the Neoproterozoic vase‐shaped microfossils from the Visingsö Group, Sweden
  publication-title: Norsk Geologisk Tidsskrift
– volume: 268
  start-page: 1
  issue: 1
  year: 1970
  end-page: 23
  article-title: Sedimentary pyrite formation
  publication-title: American Journal of Science
– volume: 320
  start-page: 160
  issue: 6058
  year: 1986
  end-page: 162
  article-title: Isoprenoid thiophenes: Novel products of sediment diagenesis?
  publication-title: Nature
– volume: 319
  start-page: 19
  year: 2018
  end-page: 36
  article-title: Vase‐shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon
  publication-title: Precambrian Research
– volume: 130
  start-page: 1085
  year: 2018
  end-page: 1098
  article-title: Coupled Re‐Os and U‐Pb geochronology of the Tonian Chuar Group, Grand Canyon
  publication-title: Geological Society of America Bulletin
– volume: 42
  start-page: 659
  issue: 8
  year: 2014
  end-page: 662
  article-title: 740 ma vase‐shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy
  publication-title: Geology
– volume: 77
  start-page: 409
  issue: 3
  year: 2003
  end-page: 429
  article-title: Vase‐shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae
  publication-title: Journal of Paleontology
– volume: 90
  start-page: 815
  year: 2016
  end-page: 853
  article-title: Systematics of organic‐walled microfossils from the mid‐Neoproterozoic Chuar Group, Grand Canyon, Arizona
  publication-title: Journal of Paleontology
– volume: 62
  start-page: 835
  issue: 6
  year: 1988
  end-page: 852
  article-title: Microfossils from oolites and pisolites of the upper Proterozoic Eleonore Bay Group, central East Greenland
  publication-title: Journal of Paleontology
– volume: 36
  start-page: 482
  issue: 5
  year: 2014
  end-page: 490
  article-title: Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life
  publication-title: BioEssays
– volume: 141
  start-page: 465
  year: 2001
  end-page: 499
  article-title: Neoproterozoic Chuar Group (∼800–742 ma), Grand Canyon: A record of cyclic marine deposition during global cooling and supercontinent rifting
  publication-title: Sedimentary Geology
– volume: 59
  start-page: 337
  issue: 3
  year: 2016
  end-page: 350
  article-title: Fossilization of melanosomes via sulfurization
  publication-title: Palaeontology
– volume: 11
  start-page: 438
  year: 2018
  end-page: 443
  article-title: Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons
  publication-title: Nature Geoscience
– volume: 494
  start-page: 355
  year: 2021
  end-page: 359
  article-title: Early formation and taphonomic significance of kaolinite associated with burgess shale fossils
  publication-title: Geology
– volume: 14
  start-page: 129
  issue: 2
  year: 2016
  end-page: 149
  article-title: Early sponges and toxic protists: Possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth
  publication-title: Geobiology
– volume: 10
  issue: 4
  year: 2020
  article-title: Aluminosilicate haloes preserve complex life approximately 800 million years ago
  publication-title: Interface Focus
– volume: 19
  start-page: 364
  year: 2021
  end-page: 375
  article-title: Phosphatic scales in vase‐shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard
  publication-title: Geobiology
– volume: 86
  start-page: 775
  issue: 5
  year: 2012
  end-page: 800
  article-title: Scale microfossils from the mid‐neoproterozoic Fifteenmile Group, Yukon territory
  publication-title: Journal of Paleontology
– volume: 129
  start-page: 607
  year: 2017
  end-page: 624
  article-title: Synthesis of the 780–740 ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia‐wide cratonic marine basins
  publication-title: Geological Society of America Bulletin
– volume: 273
  start-page: 1867
  issue: 1596
  year: 2006
  end-page: 1872
  article-title: A molecular time‐scale for eukaryote evolution recalibrated with the continuous microfossil record
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 32
  issue: 21
  year: 2005
  article-title: Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars
  publication-title: Geophysical Research Letters
– volume: 65
  start-page: 531
  issue: 4
  year: 1991
  end-page: 570
  article-title: Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen
  publication-title: Journal of Paleontology
– volume: 179
  start-page: 1319
  issue: 4080
  year: 1973
  end-page: 1321
  article-title: Microorganisms from the late Precambrian of the Grand Canyon, Arizona
  publication-title: Science
– volume: 84
  start-page: 363
  issue: 3
  year: 2010
  end-page: 401
  article-title: Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation
  publication-title: Journal of Paleontology
– volume: 62
  start-page: 953
  issue: 8
  year: 1951
  end-page: 959
  article-title: Nankoweap Group of the Grand Canyon Algonkian of Arizona
  publication-title: Geological Society of America Bulletin
– volume: 119
  issue: 6
  year: 2022
  article-title: Strong evidence for a weakly oxygenated ocean–atmosphere system during the Proterozoic
  publication-title: Proceedings of the National Academy of Sciences
– volume: 46
  start-page: 711
  issue: 8
  year: 2018
  end-page: 714
  article-title: Exceptional preservation of organic matrix and shell microstructure in a late cretaceous fossil revealed by photoemission electron spectromicroscopy
  publication-title: Geology
– start-page: 827
  year: 2000
  end-page: 800
– volume: 21
  start-page: 1
  issue: 9
  year: 2021
  end-page: 18
  article-title: Ancient oil as a source of carbonaceous matter in 1.88‐billion‐year‐old gunflint stromatolites and microfossils
  publication-title: Astrobiology
– volume: 34
  start-page: 195
  year: 1964
  end-page: 212
  article-title: Microbiological fractionation of sulphur isotopes
  publication-title: Microbiology
– volume: 43
  start-page: 607
  year: 2001
  end-page: 636
  article-title: Biogeochemistry of sulfur isotopes
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 41
  start-page: 123
  issue: 2
  year: 2013
  end-page: 126
  article-title: Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective
  publication-title: Geology
– volume: 46
  start-page: 347
  issue: 4
  year: 2018
  end-page: 350
  article-title: A mineralogical signature for Burgess Shale–type fossilization
  publication-title: Geology
– volume: 7
  issue: 5
  year: 2021
  article-title: Experimental taphonomy of organelles and the fossil record of early eukaryote evolution
  publication-title: Science Advances
– volume: 28
  start-page: 1
  year: 1987
  end-page: 19
  article-title: The origin and fate of isoprenoid C20 and C15 sulphur compounds in sediments and oils
  publication-title: International Journal of Environmental Analytical Chemistry
– volume: 41
  start-page: 631
  year: 1998
  end-page: 668
  article-title: Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals
  publication-title: Palaeontology
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Rapid pyritization in the presence of a sulfur/sulfate‐reducing bacterial consortium
  publication-title: Scientific Reports
– start-page: 79
  year: 2016
  end-page: 137
– volume: 8
  start-page: 70
  year: 1980
  end-page: 71
  article-title: Chitinozoan‐like microfossils in a late Precambrian dolostone from Saudi Arabia
  publication-title: Geology
– volume: 3
  start-page: 1
  issue: 1
  year: 2022
  end-page: 10
  article-title: The exceptional preservation of Aix‐En‐Provence spider fossils could have been facilitated by diatoms
  publication-title: Communications Earth & Environment
– volume: 18
  start-page: 326
  issue: 3
  year: 2019
  end-page: 347
  article-title: Free and kerogen‐bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid‐Neoproterozoic marine communities
  publication-title: Geobiology
– volume: 6
  year: 2020
  article-title: Phylogenetic and physiological signals in metazoan fossil biomolecules
  publication-title: Science Advances
– volume: 61
  start-page: 241
  year: 1993
  end-page: 278
  article-title: Paleontology of Proterozoic shales and mudstones: Examples for the Belt Supergroup, Chuar Group and Pahrump Group, western USA
  publication-title: Precambrian Resesarch
– volume: 632
  start-page: 149
  year: 1985
  end-page: 152
  article-title: Haxoдкa пpoблeмaтичecкиx opгaнизмoв в oтлoжeнияx Чaткapaгaйcкoa cвиты (Taлaccкий xpeбeт) (finding of problematic organisms in sediments of Chatkaragai suite (Talas ridge))
  publication-title: Aкaдeмии нayк CCCP, Tpyды (USSR Academy of Sciences, Proceedings)
– volume: 290
  start-page: 64
  year: 2010
  end-page: 73
  article-title: An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA
  publication-title: Earth and Planetary Science Letters
– volume: 162
  start-page: 332
  year: 2011
  end-page: 372
  article-title: Novel cultured protists identify deep‐branching environmental DNA clades of Cercozoa: New genera , , , ,
  publication-title: Protist
– volume: 2
  start-page: 415
  issue: 6
  year: 2009
  end-page: 418
  article-title: Biotic turnover driven by eutrophication before the Sturtian low‐latitude glaciation
  publication-title: Nature Geoscience
– volume: 35
  start-page: 537
  issue: 4
  year: 1988
  end-page: 540
  article-title: Fine structure of the Shell Wall in the soil testate amoeba (Rhizopoda)
  publication-title: The Journal of Protozoology
– volume: 16
  start-page: 1077
  year: 1990
  end-page: 1101
  article-title: Analysis, structure and geochemical significance of organically‐bound sulphur in the geosphere: State of the art and future research
  publication-title: Organic Geochemistry
– volume: 47
  start-page: 1107
  year: 2019
  end-page: 1111
  article-title: Organic‐rich microfossils produced by oil infiltration of hollow silicified bacteria: Evidence from the ca. 340 ma red dog Zn‐Pb deposit, Alaska
  publication-title: Geology
– volume: 26
  start-page: 467
  issue: 3
  year: 1983
  end-page: 496
  article-title: Microbiotas of the late Precambrian Ryssö formation, Nordaustlandet, Svalbard
  publication-title: Palaeontology
– volume: 132
  start-page: 710
  issue: 3–4
  year: 2020
  end-page: 738
  article-title: Paleomagnetism of the Chuar Group and evaluation of the late Tonian Laurentian apparent polar wander path with implications for the makeup and breakup of Rodinia
  publication-title: Geological Society of America Bulletin
– volume: 42
  start-page: 1563
  issue: 5
  year: 2004
  end-page: 1581
  article-title: Preservation of microborings as fluid inclusions
  publication-title: The Canadian Mineralogist
– volume: 50
  start-page: 1917
  year: 2004
  end-page: 1927
  article-title: Role of fine clays in bitumen extraction from oil sands
  publication-title: American Institute of Chemical Engineers Journal
– volume: 52
  start-page: 2625
  year: 1988
  end-page: 2637
  article-title: Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott member, Chuar Group, Grand Canyon, Arizona
  publication-title: Geochimica et Cosmochimica Acta
– volume: 129
  start-page: 71
  year: 2004
  end-page: 92
  article-title: Paleomagnetism of the Neoproterozoic Chuar group, grand canyon supergroup, Arizona: Implications for Laurentia's Neoproterozoic APWP and Rodinia breakup
  publication-title: Precambrian Research
– volume: 134
  start-page: 1
  year: 1979
  end-page: 40
  article-title: Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland
  publication-title: Grønlands Geologiske Undersøgelse
– volume: 28
  start-page: 349
  issue: 3–4
  year: 1985
  end-page: 389
  article-title: Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications
  publication-title: Precambrian Research
– volume: 28
  start-page: 619
  issue: 7
  year: 2000
  end-page: 622
  article-title: Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma
  publication-title: Geology
– volume: 281
  start-page: 1173
  year: 1998
  end-page: 1175
  article-title: Cambrian burgess shale animals replicated in clay minerals
  publication-title: Science
– volume: 113
  start-page: 163
  issue: 2
  year: 2001
  end-page: 181
  article-title: Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the grand canyon supergroup and establishment of northwest‐and north‐trending tectonic grains in the southwestern United States
  publication-title: Geological Society of America Bulletin
– volume: 84
  start-page: 1243
  year: 1973
  end-page: 1260
  article-title: Late Precambrian Chuar Group, Grand Canyon, Arizona
  publication-title: Geological Society of America Bulletin
– volume: 60
  start-page: 683
  issue: 5
  year: 2017
  end-page: 701
  article-title: Vase‐shaped microfossils from the Tonian Callison Lake formation of Yukon, Canada: Taxonomy, taphonomy and stratigraphic palaeobiology
  publication-title: Palaeontology
– volume: 39
  start-page: 255
  issue: 3
  year: 2011
  end-page: 258
  article-title: Molecular signature of chitin‐protein complex in Paleozoic arthropods
  publication-title: Geology
– volume: 91
  start-page: 393
  issue: 3
  year: 2017
  end-page: 406
  article-title: Carbonaceous and siliceous Neoproterozoic vase‐shaped microfossils (Urucum formation, Brazil) and the question of early protistan biomineralization
  publication-title: Journal of Paleontology
– volume: 379
  start-page: 135
  year: 2004
  end-page: 150
  article-title: Organic sulfur biogeochemistry: Recent advances and future research directions
  publication-title: Geological Society of America Special Papers
– volume: 195
  start-page: 676
  issue: 4279
  year: 1977
  end-page: 679
  article-title: Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona
  publication-title: Science
– volume: 47
  start-page: 855
  issue: 5
  year: 1983
  end-page: 862
  article-title: Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory
  publication-title: Geochimica et Cosmochimica Acta
– volume: 29
  start-page: 1837
  year: 1998
  end-page: 1848
  article-title: Laboratory sulfurisation of the marine microalga
  publication-title: Organic Geochemistry
– volume: 26
  start-page: 360
  issue: 3
  year: 2000
  end-page: 385
  article-title: Testate amoebae in the Neoproterozoic era: Evidence from vase‐shaped microfossils in the Chuar Group, Grand Canyon
  publication-title: Paleobiology
– volume: 34
  start-page: 641
  issue: 8
  year: 2006
  end-page: 644
  article-title: High‐fidelity organic preservation of bone marrow in ca. 10 ma amphibians
  publication-title: Geology
– volume: 350
  year: 2020
  article-title: Morphologically diverse vase‐shaped microfossils from the Russøya Member, Elbobreen Formation, in Spitsbergen
  publication-title: Precambrian Research
– volume: 14
  start-page: 59
  issue: 2
  year: 1988
  end-page: 70
  article-title: Precambrian and Cambrian cherts in northwestern Tasmania
  publication-title: Bulletin of the National Science Museum
– volume: 4
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Enhanced cellular preservation by clay minerals in 1 billion‐year‐old lakes
  publication-title: Scientific Reports
– volume: 109
  start-page: 5180
  issue: 14
  year: 2012
  end-page: 5184
  article-title: Mechanism for burgess shale‐type preservation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 35
  start-page: 909
  year: 2004
  end-page: 921
  article-title: Reaction of polysulfide anions with α, β unsaturated isoprenoid aldehydes in aquatic media: Simulation of oceanic conditions
  publication-title: Organic Geochemistry
– volume: 72
  start-page: 3489
  issue: 14
  year: 2008
  end-page: 3502
  article-title: Investigating pathways of diagenetic organic matter sulfurization using compound‐specific sulfur isotope analysis
  publication-title: Geochimica et Cosmochimica Acta
– volume: 38
  start-page: 415
  year: 2010
  end-page: 418
  article-title: High isotope fractionations during sulfate reduction in a low‐sulfate euxinic ocean analog
  publication-title: Geology
– volume: 57
  start-page: 321
  year: 1983
  end-page: 326
  article-title: Possible eukaryotic algal filaments from the late Proterozoic Chuar Group, Grand Canyon, Arizona
  publication-title: Journal of Paleontology
– ident: e_1_2_11_2_1
  doi: 10.1016/j.orggeochem.2004.04.002
– ident: e_1_2_11_81_1
  doi: 10.1130/G35736.1
– ident: e_1_2_11_24_1
  doi: 10.1130/B31532.1
– ident: e_1_2_11_14_1
  doi: 10.1002/bies.201400010
– volume: 9
  start-page: 74
  year: 1978
  ident: e_1_2_11_27_1
  article-title: Microfossils in the "Eopaleozoic" Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil
  publication-title: Boletim IG (Universidade de Sao Paulo, Instituto de Geociencias)
  contributor:
    fullname: Fairchild T. R.
– ident: e_1_2_11_50_1
  doi: 10.1016/j.precamres.2020.105899
– ident: e_1_2_11_89_1
  doi: 10.1130/GSAB‐10‐199
– ident: e_1_2_11_76_1
  doi: 10.1038/ncomms6754
– ident: e_1_2_11_7_1
  doi: 10.2475/ajs.268.1.1
– ident: e_1_2_11_86_1
  doi: 10.34194/bullggu.v134.6676
– ident: e_1_2_11_31_1
  doi: 10.1016/S0146‐6380(98)00171‐5
– ident: e_1_2_11_44_1
  doi: 10.7717/peerj.1234
– ident: e_1_2_11_4_1
  doi: 10.1130/G39941.1
– ident: e_1_2_11_56_1
  doi: 10.1016/j.precamres.2021.106470
– ident: e_1_2_11_22_1
  doi: 10.1666/11‐138.1
– ident: e_1_2_11_94_1
  doi: 10.1130/0‐8137‐2379‐5.135
– ident: e_1_2_11_57_1
  doi: 10.1017/jpa.2019.6
– ident: e_1_2_11_10_1
  doi: 10.1130/0091‐7613(1980)8<70:CMIALP>2.0.CO;2
– ident: e_1_2_11_18_1
  doi: 10.1130/G30723.1
– volume: 57
  start-page: 321
  year: 1983
  ident: e_1_2_11_34_1
  article-title: Possible eukaryotic algal filaments from the late Proterozoic Chuar Group, Grand Canyon, Arizona
  publication-title: Journal of Paleontology
  contributor:
    fullname: Horodyski R. J.
– ident: e_1_2_11_83_1
  doi: 10.1130/0016‐7606(2001)113<0163:PMCAGE>2.0.CO;2
– ident: e_1_2_11_9_1
  doi: 10.1098/rspb.2006.3537
– ident: e_1_2_11_93_1
  doi: 10.1016/j.precamres.2003.09.016
– volume: 59
  start-page: 741
  year: 1985
  ident: e_1_2_11_11_1
  article-title: Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona
  publication-title: Journal of Paleontology
  contributor:
    fullname: Bloeser B.
– volume: 41
  start-page: 631
  year: 1998
  ident: e_1_2_11_29_1
  article-title: Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals
  publication-title: Palaeontology
  contributor:
    fullname: Gabbott S. E.
– ident: e_1_2_11_80_1
  doi: 10.1016/0146‐6380(90)90145‐P
– ident: e_1_2_11_62_1
  doi: 10.1038/s43247‐022‐00424‐7
– ident: e_1_2_11_5_1
  doi: 10.1130/G39941.1
– ident: e_1_2_11_13_1
  doi: 10.1038/320160a0
– ident: e_1_2_11_77_1
  doi: 10.1126/science.179.4080.1319
– ident: e_1_2_11_49_1
  doi: 10.1080/002919600433751
– ident: e_1_2_11_19_1
  doi: 10.1126/sciadv.abe9487
– ident: e_1_2_11_79_1
  doi: 10.1080/03067318708078398
– ident: e_1_2_11_3_1
  doi: 10.1098/rsfs.2020.0011
– ident: e_1_2_11_8_1
  doi: 10.1016/0016-7037(83)90151-5
– ident: e_1_2_11_30_1
  doi: 10.1073/pnas.1111784109
– ident: e_1_2_11_63_1
  doi: 10.1126/science.281.5380.1173
– ident: e_1_2_11_32_1
  doi: 10.1017/S0022336000030109
– ident: e_1_2_11_52_1
  doi: 10.1111/pala.12238
– ident: e_1_2_11_68_1
  doi: 10.1130/G46346.1
– ident: e_1_2_11_84_1
  doi: 10.1130/B25538.1
– ident: e_1_2_11_42_1
  doi: 10.1017/S0022336000030663
– ident: e_1_2_11_65_1
  doi: 10.1666/0022‐3360(2003)077<0409:VMFTNC>2.0.CO;2
– ident: e_1_2_11_37_1
  doi: 10.1016/j.epsl.2009.11.059
– ident: e_1_2_11_67_1
  doi: 10.1016/j.cub.2019.02.003
– ident: e_1_2_11_74_1
  doi: 10.1130/B31768.1
– start-page: 827
  volume-title: Illustrated guide to the protozoa
  year: 2000
  ident: e_1_2_11_53_1
  contributor:
    fullname: Meisterfeld R.
– ident: e_1_2_11_45_1
  doi: 10.1016/j.cub.2019.01.078
– ident: e_1_2_11_39_1
  doi: 10.1038/s41561‐018‐0131‐7
– ident: e_1_2_11_97_1
  doi: 10.1130/G48116.1
– ident: e_1_2_11_40_1
  doi: 10.1130/0091‐7613(2000)28<619:CGOTGC>2.0.CO;2
– start-page: 79
  volume-title: Hydrocarbon source rocks in unconventional plays, Rocky Mountain Region
  year: 2016
  ident: e_1_2_11_47_1
  contributor:
    fullname: Lillis P. G.
– ident: e_1_2_11_66_1
  doi: 10.1017/jpa.2016.57
– ident: e_1_2_11_26_1
  doi: 10.1130/B32012.1
– ident: e_1_2_11_48_1
  doi: 10.1002/aic.10174
– ident: e_1_2_11_35_1
  doi: 10.1016/j.protis.2010.10.002
– ident: e_1_2_11_64_1
  doi: 10.1666/0094‐8373(2000)026<0360:TAITNE>2.0.CO;2
– ident: e_1_2_11_96_1
  doi: 10.1126/sciadv.aba6883
– ident: e_1_2_11_73_1
  doi: 10.1111/gbi.12439
– ident: e_1_2_11_16_1
  doi: 10.2113/gscanmin.42.5.1563
– ident: e_1_2_11_92_1
  doi: 10.1063/1.3625338
– volume: 632
  start-page: 149
  year: 1985
  ident: e_1_2_11_43_1
  article-title: Haxoдкa пpoблeмaтичecкиx opгaнизмoв в oтлoжeнияx Чaткapaгaйcкoa cвиты (Taлaccкий xpeбeт) (finding of problematic organisms in sediments of Chatkaragai suite (Talas ridge))
  publication-title: Aкaдeмии нayк CCCP, Tpyды (USSR Academy of Sciences, Proceedings)
  contributor:
    fullname: Kraskov L. N.
– ident: e_1_2_11_25_1
  doi: 10.3389/feart.2020.588310
– volume: 14
  start-page: 59
  issue: 2
  year: 1988
  ident: e_1_2_11_75_1
  article-title: Precambrian and Cambrian cherts in northwestern Tasmania
  publication-title: Bulletin of the National Science Museum
  contributor:
    fullname: Saito Y.
– ident: e_1_2_11_85_1
  doi: 10.1130/0016‐7606(1951)62[953:NGOTGC]2.0.CO;2
– ident: e_1_2_11_21_1
  doi: 10.1111/pala.12315
– ident: e_1_2_11_69_1
  doi: 10.1089/ast.2020.2376
– ident: e_1_2_11_12_1
  doi: 10.1126/science.195.4279.676
– ident: e_1_2_11_54_1
  doi: 10.1130/G33492.1
– ident: e_1_2_11_99_1
  doi: 10.1111/gbi.12378
– ident: e_1_2_11_51_1
  doi: 10.1130/G22526.1
– ident: e_1_2_11_59_1
  doi: 10.1038/ngeo525
– ident: e_1_2_11_38_1
  doi: 10.1099/00221287‐34‐2‐195
– ident: e_1_2_11_91_1
  doi: 10.1238/Physica.Topical.115a01011
– ident: e_1_2_11_6_1
  doi: 10.1038/s41598‐020‐64990‐6
– ident: e_1_2_11_71_1
  doi: 10.1126/science.abc6035
– ident: e_1_2_11_28_1
  doi: 10.1130/0016‐7606(1973)84<1243:LPCGGC>2.0.CO;2
– volume: 83
  start-page: 467
  issue: 3
  year: 1999
  ident: e_1_2_11_36_1
  article-title: The search for a source rock for the giant tar sand triangle accumulation, southeastern Utah
  publication-title: American Association of Petroleum Geologists Bulletin
  contributor:
    fullname: Huntoon J. E.
– ident: e_1_2_11_87_1
  doi: 10.1016/0301-9268(85)90038-5
– ident: e_1_2_11_82_1
  doi: 10.1016/0016‐7037(88)90031‐2
– ident: e_1_2_11_95_1
  doi: 10.1016/j.gca.2008.04.033
– ident: e_1_2_11_70_1
  doi: 10.1038/s41467‐018‐05943‐6
– ident: e_1_2_11_17_1
  doi: 10.2138/gsrmg.43.1.607
– ident: e_1_2_11_46_1
  doi: 10.1038/ncomms14220
– ident: e_1_2_11_98_1
  doi: 10.1029/2005GL024253
– ident: e_1_2_11_55_1
  doi: 10.1017/jpa.2017.16
– ident: e_1_2_11_33_1
  doi: 10.1016/0301‐9268(93)90116‐J
– volume: 26
  start-page: 467
  issue: 3
  year: 1983
  ident: e_1_2_11_41_1
  article-title: Microbiotas of the late Precambrian Ryssö formation, Nordaustlandet, Svalbard
  publication-title: Palaeontology
  contributor:
    fullname: Knoll A. H.
– ident: e_1_2_11_90_1
  doi: 10.1073/pnas.2116101119
– ident: e_1_2_11_61_1
  doi: 10.1111/j.1550‐7408.1988.tb04147.x
– ident: e_1_2_11_88_1
  doi: 10.1038/srep05841
– ident: e_1_2_11_20_1
  doi: 10.1130/G31648.1
– ident: e_1_2_11_23_1
  doi: 10.1016/S0037‐0738(01)00087‐2
– ident: e_1_2_11_72_1
  doi: 10.1016/j.precamres.2017.09.019
– ident: e_1_2_11_15_1
  doi: 10.1111/gbi.12165
– ident: e_1_2_11_58_1
  doi: 10.1130/G45271.1
– ident: e_1_2_11_60_1
  doi: 10.1080/00222938400770291
– ident: e_1_2_11_78_1
  doi: 10.1666/09‐133.1
SSID ssj0024531
Score 2.3992543
Snippet Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate...
Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate...
Abstract Vase‐shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate...
SourceID osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 290
SubjectTerms Absorption spectroscopy
amoebozoa
Analytical methods
Arizona
Bitumen
Canyons
Chuar Group
Colour
Cretaceous
Electron microscopy
Fossils
Iron
Light microscopy
Microscopy
Neoproterozoic
Organic matter
organic preservation
Preservation
Pyrite
Raman spectroscopy
Scanning electron microscopy
Shales
Silica
Spectrum analysis
Spectrum Analysis, Raman - methods
Sulfur
Sulphur
testate amoebae
Tonian
vase‐shaped microfossils
Wavelength
Title Organic preservation of vase‐shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbi.12544
https://www.ncbi.nlm.nih.gov/pubmed/36651474
https://www.proquest.com/docview/2799111748
https://search.proquest.com/docview/2766720325
https://www.osti.gov/biblio/1909727
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61K1XiUqCFEv7kVj1w2KBN4sSJeqILFC4ICZC4Rf6FlSBBhEWCE4_AM_IkzDibpUggVeopkWLLjscz83k8_gzw00bEasVtOChcFuL6S4bSah6K1GUCXYa1kkIDe0fi4DTf3iGanF_dWZiWH2IacCPN8PaaFFyq5i8lP1OjzYgIttD-4irBH99IDl949lJ_F2HERYxdEGLCKkRZPNOar3xRr0adegtnvoat3u_szv5Xj-fg8wRusq12fszDB1t9gU_tBZR3X6Fuj2JqRumwXXiW1Y7donN7enhszuWVNeySsvYc_sLoomF0IIUhbGQXCFPZMdoEWbHhOU415gNZfXzIyrAhmpm66mPbo3uE-312crS1ACe7O8fDvXByBUOo0bPz0EVWFHIgjdOJEwZlZ_KY-GiUjSKhBpFycayESU0spMEqtki0zgi2KamyPFmEXlVXdglYqrEafuZRobjlLtd57izCQaes0nwQwI9OGOVVy7RRdisUHLnSj1wAKySmEuEBcdxqSgbSNyWimgKBWACrnfTKiSo2ZSwKMuiC5wF8n35GJaKdEVnZekxlsoz2o-M0gG-t1Kd9SLIMQaXApje8cN_vXPnn975_Wf73oiswQxfYtymUq9C7uR7bNfjYmPG6n8_PTp71_g
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RRQgupeVRQltqEAcOG7RJHDuRuJTtY6uWCqlbiZvlZ7tSSSq2WwlO_AR-I7-EmWSzUKlISJwSKbbseDyez-PxNwCvfUKsVtzHgzKIGPdfOtbe8ljmQUg0Gd5rcg2MTuTxp2Jnl2hy3nV3YVp-iIXDjTSjWa9Jwckh_YeWn5nJ24QYtpbgLhc4EekCR_bxN9Ne3mQjTLhMsRNSznmFKI5nUfWGNerVqFW3Ic2bwLWxPHsP_6_PK7A8R5xsu50iq3DHV4_gXpuD8utjqNvbmJZRRGznoWV1YNdo335-_zE915fesc8UuBfwHyYXU0Z3UhgiR3aBSJWNcVnQFRue42xjjS-rjw9dOTbElaau-tj25Bsi_j47Pdl-Aqd7u-PhKJ5nYYgtGnceh8TLUg-0CzYL0qH4XJESJY3xSSLNIDEhTY10uUuldljFl5m1gpCb0UYU2VPoVXXlnwHLLVbDzzwpDfc8FLYogkdEGIw3lg8ieNVJQ122ZBuq26TgyKlm5CJYJzkpRAhEc2spHsheKQQ2JWKxCDY68am5Nk5VKkta0yUvIni5-Ix6RIcjuvL1jMoIQUfSaR7BWiv2RR8yIRBXSmz6TSPdv3dO7b8_aF6e_3vRLbg_Gn84UkcHx4fr8IDy2bcRlRvQu_oy85uwNHWzF83k_gXYkfom
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VrUC90B9om-62dRGHHjbVJnHiRD3RhQUEQkiAxM3yb1mJJqsui9Se-gg8I0_SmWSzLRKVKnFKpNiy4_F4Po_H3wBsuohYrbgLB4XPQtx_qVA5w0OR-kygyXBOkWtg70QcnefbO0ST87m9C9PwQywcbqQZ9XpNCj6x_i8l_6rHnyIi2FqCxxxhOBHnJ8nxH6K9tE5GGHERYx-EmNMKURjPouodY9SpUKnuA5p3cWtteEZPH9TlZ7A6x5tsq5kgz-GRK1_AcpOB8scaVM1dTMMoHrb1z7LKs2u0bre_bqYXauIs-0Zhex5_YXw5ZXQjhSFuZJeIU9kpLgqqZMMLnGus9mT18aFKy4a4zlRlH9se_0S832dnJ1vrcDbaOR3uhfMcDKFB085DHzlRqIGy3iReWBSezWMipNEuioQeRNrHsRY2tbFQFqu4IjEmI9ymlc7y5CV0yqp0r4GlBqvhZx4Vmjvuc5Pn3iEe9NppwwcBbLTCkJOGakO2WxQcOVmPXABdEpNEfEAkt4aigcyVRFhTIBILoNdKT851cSpjUdCKLngewIfFZ9QiOhpRpatmVCbL6EA6TgN41Uh90YckyxBVCmz6Yy3cf3dO7n7Zr1_e_H_R97ByvD2Sh_tHB114Qsnsm3DKHnSuvs_cW1ia2tm7emr_BtLZ-Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+preservation+of+vase%E2%80%90shaped+microfossils+from+the+late+Tonian+Chuar+Group%2C+Grand+Canyon%2C+Arizona%2C+USA&rft.jtitle=Geobiology&rft.au=Tingle%2C+Kelly+E.&rft.au=Porter%2C+Susannah+M.&rft.au=Raven%2C+Morgan+R.&rft.au=Czaja%2C+Andrew+D.&rft.date=2023-05-01&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=21&rft.issue=3&rft.spage=290&rft.epage=309&rft_id=info:doi/10.1111%2Fgbi.12544&rft.externalDBID=10.1111%252Fgbi.12544&rft.externalDocID=GBI12544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon