An improved artificial bee colony-random forest (IABC-RF) model for predicting the tunnel deformation due to an adjacent foundation pit excavation

An improved artificial bee colony-random forest (IABC-RF) model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit. A new search strategy of the artificial bee colony (ABC) algorithm is herein developed and incorporated, with the results showing tha...

Full description

Saved in:
Bibliographic Details
Published in:Underground space (Beijing) Vol. 7; no. 4; pp. 514 - 527
Main Authors: Feng, Tugen, Wang, Chaoran, Zhang, Jian, Wang, Bin, Jin, Yin-Fu
Format: Journal Article
Language:English
Published: KeAi Communications Co., Ltd 01-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An improved artificial bee colony-random forest (IABC-RF) model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit. A new search strategy of the artificial bee colony (ABC) algorithm is herein developed and incorporated, with the results showing that a much higher computational efficiency can be achieved with the new model, while high computational accuracy can also be maintained. The improved ABC algorithm is thereafter utilised and combined with the random forest (RF) model, where four important hyper-parameters are optimized, for a tunnel deformation prediction. Results are thoroughly compared with those of other prediction methods based on machine learning (ML), as well as the monitored data on the site. Via the comparisons, the validity and effectiveness of the proposed model are fully demonstrated, and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.
AbstractList An improved artificial bee colony-random forest (IABC-RF) model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit. A new search strategy of the artificial bee colony (ABC) algorithm is herein developed and incorporated, with the results showing that a much higher computational efficiency can be achieved with the new model, while high computational accuracy can also be maintained. The improved ABC algorithm is thereafter utilised and combined with the random forest (RF) model, where four important hyper-parameters are optimized, for a tunnel deformation prediction. Results are thoroughly compared with those of other prediction methods based on machine learning (ML), as well as the monitored data on the site. Via the comparisons, the validity and effectiveness of the proposed model are fully demonstrated, and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.
Author Wang, Chaoran
Feng, Tugen
Zhang, Jian
Jin, Yin-Fu
Wang, Bin
Author_xml – sequence: 1
  givenname: Tugen
  surname: Feng
  fullname: Feng, Tugen
– sequence: 2
  givenname: Chaoran
  surname: Wang
  fullname: Wang, Chaoran
– sequence: 3
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
– sequence: 4
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
– sequence: 5
  givenname: Yin-Fu
  surname: Jin
  fullname: Jin, Yin-Fu
BookMark eNpNkcFu1DAQhi1UJErpE3DxEQ5JPckkTo7LisJKlZAQnC3HHhdHiR053oq-Bk9MdhdVnGbm_zWfRvO_ZVchBmLsPYgSBLR3Y3kMdl3KSlRQApRC4Ct2XWEri76VePVf_4bdrusohKhEJzvZXLM_u8D9vKT4RJbrlL3zxuuJD0TcxCmG5yLpYOPMXUy0Zv7hsPu0L77ff-RztDSdZL4kst5kHx55_kU8H0PYHEubN-vsY-D2uMmR68C1HbWhkLfF7eyLu_jM6bfRT-fxHXvt9LTS7b96w37ef_6x_1o8fPty2O8eCoOAubCDML3rWtFQj3Unoa4RXQUah4Y6gEagNdQbKxoYSJJsWzSVxcFgazdCfcMOF66NelRL8rNOzypqr85CTI_q9BAzkcKuJuug1bIbELHvLLoWHAotrMQaNlZ9YZkU1zWRe-GBUKeU1KjOKalTSgpAbSnVfwEAS4pK
CitedBy_id crossref_primary_10_1002_cnm_3599
crossref_primary_10_1038_s41598_024_62597_9
crossref_primary_10_1016_j_jtice_2023_104900
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_1016_j_isatra_2024_03_018
crossref_primary_10_1016_j_engappai_2023_107579
crossref_primary_10_3390_app14052079
crossref_primary_10_1007_s11440_023_02136_4
crossref_primary_10_1016_j_jocs_2024_102266
crossref_primary_10_3390_ijgi12020076
crossref_primary_10_3390_s22228737
crossref_primary_10_1016_j_trgeo_2023_101022
crossref_primary_10_1016_j_compgeo_2024_106244
crossref_primary_10_1016_j_cemconcomp_2024_105431
crossref_primary_10_1016_j_heliyon_2024_e26152
crossref_primary_10_1016_j_advengsoft_2024_103648
crossref_primary_10_3390_app13063826
crossref_primary_10_1109_JSEN_2023_3332871
crossref_primary_10_1016_j_autcon_2024_105516
crossref_primary_10_1007_s12145_023_01156_8
crossref_primary_10_3390_pr10050896
crossref_primary_10_1088_1755_1315_1337_1_012035
crossref_primary_10_1016_j_compgeo_2024_106255
crossref_primary_10_1016_j_engstruct_2023_116556
crossref_primary_10_3390_ijgi11120606
crossref_primary_10_1016_j_undsp_2023_09_014
crossref_primary_10_1016_j_ejor_2022_11_007
crossref_primary_10_1016_j_fochx_2023_100860
crossref_primary_10_1016_j_undsp_2023_11_002
Cites_doi 10.1016/j.knosys.2019.04.015
10.1007/s10064-015-0720-2
10.1007/s10898-007-9149-x
10.1016/j.ress.2020.107186
10.1007/s00500-018-3253-3
10.1016/j.undsp.2019.12.001
10.1007/s10064-020-02057-6
10.32604/cmc.2020.013813
10.1109/ACCESS.2021.3049578
10.1016/j.apor.2020.102223
10.1016/j.undsp.2019.12.003
10.1007/s10732-008-9080-4
10.1038/s41598-020-76569-2
10.1016/j.autcon.2019.102860
10.1007/s11709-019-0561-3
10.1007/s00521-018-03965-1
10.1016/j.enconman.2017.02.006
10.3390/su12010232
10.1016/j.egyr.2020.11.271
10.1016/j.engfailanal.2021.105784
10.1007/978-981-15-7984-4_17
10.4028/www.scientific.net/AMM.256-259.1157
10.1016/j.engfailanal.2020.104832
10.1016/j.gsf.2019.12.003
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.undsp.2021.11.004
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2467-9674
EndPage 527
ExternalDocumentID oai_doaj_org_article_483edf16a78b44498d4f61f40a0d7431
10_1016_j_undsp_2021_11_004
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
AAYXX
ABDBF
ABJCF
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IPNFZ
M7S
NCXOZ
O9-
OK1
PIMPY
PTHSS
RIG
ROL
SSZ
ID FETCH-LOGICAL-c414t-db0c9f8605e9438713344f21a4b5e811504dce9cd051be7e7664c2d4bc46d4143
IEDL.DBID DOA
ISSN 2467-9674
IngestDate Tue Oct 22 15:16:40 EDT 2024
Fri Aug 23 03:29:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-db0c9f8605e9438713344f21a4b5e811504dce9cd051be7e7664c2d4bc46d4143
OpenAccessLink https://doaj.org/article/483edf16a78b44498d4f61f40a0d7431
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_483edf16a78b44498d4f61f40a0d7431
crossref_primary_10_1016_j_undsp_2021_11_004
PublicationCentury 2000
PublicationDate 2022-08-00
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-00
PublicationDecade 2020
PublicationTitle Underground space (Beijing)
PublicationYear 2022
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Huang (10.1016/j.undsp.2021.11.004_b0040) 2020; 10
Feng (10.1016/j.undsp.2021.11.004_b0030) 2021; 1–19
García (10.1016/j.undsp.2021.11.004_b0035) 2009; 15
Assiri (10.1016/j.undsp.2021.11.004_b0005) 2020; 66
Zhang (10.1016/j.undsp.2021.11.004_b0120) 2021; 130
Su (10.1016/j.undsp.2021.11.004_b0085) 2021; 9
Zhang (10.1016/j.undsp.2021.11.004_b0115) 2020; 118
Liu (10.1016/j.undsp.2021.11.004_b0065) 2020; 2020
Wei (10.1016/j.undsp.2021.11.004_b0095) 2012; 256–259
Zheng (10.1016/j.undsp.2021.11.004_b0145) 2020; 1–21
Karaboga (10.1016/j.undsp.2021.11.004_b0055) 2007; 39
Utkin (10.1016/j.undsp.2021.11.004_b0090) 2019; 177
Ebrahimi (10.1016/j.undsp.2021.11.004_b0025) 2016; 75
Koopialipoor (10.1016/j.undsp.2021.11.004_b0060) 2019; 23
Zhang (10.1016/j.undsp.2021.11.004_b0135) 2020; 11
Zhang (10.1016/j.undsp.2021.11.004_b0125) 2019; 106
Yokoyama (10.1016/j.undsp.2021.11.004_b0110) 2020; 6
Shahrour (10.1016/j.undsp.2021.11.004_b0075) 2021; 6
Ibrahim (10.1016/j.undsp.2021.11.004_b0050) 2017; 138
Liu (10.1016/j.undsp.2021.11.004_b0070) 2021; 80
Chen (10.1016/j.undsp.2021.11.004_b0020) 2019; 13
Xu (10.1016/j.undsp.2021.11.004_b0100) 2021; 48
Simsekler (10.1016/j.undsp.2021.11.004_b0080) 2020; 204
Yan (10.1016/j.undsp.2021.11.004_b0105) 2020; 12
Asteris (10.1016/j.undsp.2021.11.004_b0010) 2019; 31
Zhang (10.1016/j.undsp.2021.11.004_b0140) 2021; 6
Huo (10.1016/j.undsp.2021.11.004_b0045) 2020; 1258
Zhang (10.1016/j.undsp.2021.11.004_b0130) 2020; 101
Birattari (10.1016/j.undsp.2021.11.004_b0015) 2010; 2010
References_xml – volume: 177
  start-page: 136
  year: 2019
  ident: 10.1016/j.undsp.2021.11.004_b0090
  article-title: A weighted random survival forest
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.04.015
  contributor:
    fullname: Utkin
– volume: 75
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.undsp.2021.11.004_b0025
  article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-015-0720-2
  contributor:
    fullname: Ebrahimi
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.undsp.2021.11.004_b0055
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
  contributor:
    fullname: Karaboga
– volume: 204
  start-page: 107186
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0080
  article-title: Evaluation of patient safety culture using a random forest algorithm
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107186
  contributor:
    fullname: Simsekler
– volume: 23
  start-page: 5913
  issue: 14
  year: 2019
  ident: 10.1016/j.undsp.2021.11.004_b0060
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3253-3
  contributor:
    fullname: Koopialipoor
– volume: 6
  start-page: 233
  issue: 3
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0075
  article-title: Use of soft computing techniques for TBM tunnelling optimisation
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2019.12.001
  contributor:
    fullname: Shahrour
– volume: 80
  start-page: 2283
  issue: 3
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0070
  article-title: Optimized ANN model for predicting rock mass quality ahead of tunnel face using measure-while-drilling data
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-020-02057-6
  contributor:
    fullname: Liu
– volume: 2010
  start-page: 311
  year: 2010
  ident: 10.1016/j.undsp.2021.11.004_b0015
  article-title: F-Race and Iterated F-Race: An Overview. In Experimental Methods for the Analysis of Optimization Algorithms
  publication-title: Berlin, Heidelberg: Springer, Berlin Heidelberg
  contributor:
    fullname: Birattari
– volume: 66
  start-page: 767
  issue: 1
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0005
  article-title: Anomaly classification using genetic algorithm-based random forest model for network attack detection
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.013813
  contributor:
    fullname: Assiri
– volume: 9
  start-page: 9142
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0085
  article-title: An improved random forest model for the prediction of dam displacement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049578
  contributor:
    fullname: Su
– volume: 1–19
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0030
  article-title: Prediction of stratum deformation during the excavation of a foundation pit in composite formation based on the artificial bee colony–back-propagation model
  publication-title: Engineering Optimization
  contributor:
    fullname: Feng
– volume: 101
  start-page: 102223
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0130
  article-title: Random forest based artificial intelligent model for predicting failure envelopes of caisson foundations in sand
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2020.102223
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 353
  issue: 4
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0140
  article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunnelling
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2019.12.003
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 10.1016/j.undsp.2021.11.004_b0035
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
  contributor:
    fullname: García
– volume: 10
  start-page: 19397
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0040
  article-title: A combination of fuzzy delphi method and hybrid ANN-based systems to forecast ground vibration resulting from blasting
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-76569-2
  contributor:
    fullname: Huang
– volume: 106
  start-page: 102860
  year: 2019
  ident: 10.1016/j.undsp.2021.11.004_b0125
  article-title: Real-time analysis and regulation of EPB shield steering using random forest
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2019.102860
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 1363
  issue: 6
  year: 2019
  ident: 10.1016/j.undsp.2021.11.004_b0020
  article-title: Prediction of shield tunneling-induced ground settlement using machine learning techniques
  publication-title: Frontiers of Structural and Civil Engineering
  doi: 10.1007/s11709-019-0561-3
  contributor:
    fullname: Chen
– volume: 31
  start-page: 4837
  issue: 9
  year: 2019
  ident: 10.1016/j.undsp.2021.11.004_b0010
  article-title: Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-03965-1
  contributor:
    fullname: Asteris
– volume: 138
  start-page: 413
  year: 2017
  ident: 10.1016/j.undsp.2021.11.004_b0050
  article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.02.006
  contributor:
    fullname: Ibrahim
– volume: 12
  start-page: 232
  issue: 1
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0105
  article-title: Tunnel surface settlement forecasting with ensemble learning
  publication-title: Sustainability
  doi: 10.3390/su12010232
  contributor:
    fullname: Yan
– volume: 1–21
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0145
  article-title: Random forest method-based prediction and control of bridge pier displacements during construction of two overlapped EPBM tunnels
  publication-title: European Journal of Environmental and Civil Engineering
  contributor:
    fullname: Zheng
– volume: 6
  start-page: 150
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0110
  article-title: Comparison between ANN and random forest for leakage current alarm prediction
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2020.11.271
  contributor:
    fullname: Yokoyama
– volume: 130
  start-page: 105784
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0120
  article-title: Evaluation and analysis of the causes of a landslide and treatment measures during the excavation of a tunnel through a soil-rock interface
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2021.105784
  contributor:
    fullname: Zhang
– volume: 1258
  start-page: 216
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0045
  article-title: Improved random forest algorithm based on adaptive step size artificial bee colony optimization. Data Science. ICPCSEE 2020
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-981-15-7984-4_17
  contributor:
    fullname: Huo
– volume: 256–259
  start-page: 1157
  year: 2012
  ident: 10.1016/j.undsp.2021.11.004_b0095
  article-title: Prediction of the deformation of the surrounding rock around tunnels by GA-Bp network model
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.256-259.1157
  contributor:
    fullname: Wei
– volume: 48
  start-page: 153
  issue: 3
  year: 2021
  ident: 10.1016/j.undsp.2021.11.004_b0100
  article-title: A Simplified Calculation Method for Horizontal Displacement
  publication-title: Journal of Hunan University (Natural Sciences)
  contributor:
    fullname: Xu
– volume: 118
  start-page: 104832
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0115
  article-title: Investigation of the cause of shield-driven tunnel instability in soil with a soft upper layer and hard lower layer
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2020.104832
  contributor:
    fullname: Zhang
– volume: 2020
  start-page: 8863425
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0065
  article-title: Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM
  publication-title: Mathematical Problems in Engineering
  contributor:
    fullname: Liu
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 10.1016/j.undsp.2021.11.004_b0135
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2019.12.003
  contributor:
    fullname: Zhang
SSID ssj0002087875
Score 2.4277985
Snippet An improved artificial bee colony-random forest (IABC-RF) model is proposed for predicting the tunnel deformation due to the excavation of an adjacent...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 514
SubjectTerms Hyper-parametric optimization search
Improved artificial bee colony algorithm
Random forest
Tunnel deformation prediction
Title An improved artificial bee colony-random forest (IABC-RF) model for predicting the tunnel deformation due to an adjacent foundation pit excavation
URI https://doaj.org/article/483edf16a78b44498d4f61f40a0d7431
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELaA02olBPsQb81hDyBtIEmniXNsoRVcOPCQuEV-TCQqkValkeBv8IuZcZqqNy5cLcdKPBPPw998o9Q_yz4Axr6IskrHEVJCkZW8VWKsNmxRsG-kOPn6Pr990lcjoclZtfoSTFhLD9xu3AXqHvkqyUyuLSIW2mOVJRXGJvZi_cLpG-u1YGoSrtc0a6LgF1M5CYosx45yKIC7mtq_CltlmpwLh-eyTVtnltbY-4OZGe-o7aV_CIP2vXbVBtW_1M_BWrr_t_oY1PAckgHkQb6gZYEASwRCQl2_R2yB_PQF2CPlUx9ObwbDy-hufAah8Y0Mw2wuVzQCegb2AWHRCOAFPK2qGcE3PDwFU4PxEyMoTn6wa8IEs-cF0JszbUr3j3ocjx4ur6Nlb4XIYYKLyNvYFZXmYIYK7GkJVRGrNDFo-6TFTUTvqHCef1pLOeVZhi71aB1mnlfo_VVb9bSmPQXEIaA12vVYJGiT2CKlPK8gMmnfWLev_ndbW85aCo2yw5ZNyiCJUiTBwUjJkthXQ9n-1VThvw4DrBXlUivKr7Ti4DsWOVQ_Uil2CHC_I7W1mDd0rDZffXMStO0T8G3YpA
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+artificial+bee+colony-random+forest+%28IABC-RF%29+model+for+predicting+the+tunnel+deformation+due+to+an+adjacent+foundation+pit+excavation&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Tugen+Feng&rft.au=Chaoran+Wang&rft.au=Jian+Zhang&rft.au=Bin+Wang&rft.date=2022-08-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2467-9674&rft.eissn=2467-9674&rft.volume=7&rft.issue=4&rft.spage=514&rft.epage=527&rft_id=info:doi/10.1016%2Fj.undsp.2021.11.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_483edf16a78b44498d4f61f40a0d7431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon