Cirsilineol Treatment Attenuates PM2.5-Induced Lung Injury in Mice

Ultrafine particulate matter with less than 2.5 μm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita. In t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 23; no. 22; p. 13948
Main Authors: Kim, Chaeyeong, Kim, Go Oun, Bae, Jong-Sup
Format: Journal Article
Language:English
Published: Basel MDPI AG 12-11-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafine particulate matter with less than 2.5 μm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita. In this study, the efficacy of CSL on PM2.5-induced lung toxicity was tested, and its mechanism was identified. Lung injury was caused by intratracheal administration of PM2.5 suspension in animal models. Two days after PM2.5 pretreatment, CSL was injected via mouse tail vein for two days. The effects of CSL on PM2.5-induced lung damage, autophagy, apoptosis, and pulmonary inflammation in a mouse model and their mechanisms were investigated. CSL significantly suppressed histological lung damage and lung wet/dry weight proportion. CSL also significantly reduced PM2.5-induced autophagy dysfunction, apoptosis, lymphocyte suppression, and inflammatory cytokine levels in bronchoalveolar fluid (BALF). Furthermore, CSL increased mammalian target of rapamycin (mTOR) phosphorylation and significantly inhibited the expression of Toll-like receptors (TLR) 2 and 4, MyD88, and the autophagy proteins, Beclin1 and LC3II. Thus, CSL exerts protective effects on pulmonary damage by regulating mTOR and TLR2,4–myD88 autophagy pathways. Therefore, CSL can be used as an effective treatment for PM2.5-induced lung damage.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232213948