Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide

The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology Vol. 39; no. 24; pp. 7609 - 7620
Main Authors: Webber, Julian, Yamagami, Yuichiro, Ducournau, Guillaume, Szriftgiser, Pascal, Iyoda, Kei, Fujita, Masayuki, Nagatsuma, Tadao, Singh, Ranjan
Format: Journal Article
Language:English
Published: New York IEEE 15-12-2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventional THz waveguides suffer from high bending losses and are sensitive to process defects. The recent revelation of the topological valley photonic crystal (VPC), which exhibits near zero-loss bends, zero back-scattering and zero junction-area, holds much promise for future high speed inter-device communications. Low dispersion in the photonic bandgap region as the number of bends increase is demonstrated through simulation and experiment of the transmission and group delay characteristics. Through comprehensive communications experiments we demonstrate online results below the forward error correction level including an 108-Gbit/s bit rate using multi-level modulation for a 10 mm straight VPC waveguide and a 62.5-Gbit/s bit-rate for a ten sharp bended structure.
AbstractList The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventional THz waveguides suffer from high bending losses and are sensitive to process defects. The recent revelation of the topological valley photonic crystal (VPC), which exhibits near zero-loss bends, zero back-scattering and zero junction-area, holds much promise for future high speed inter-device communications. Low dispersion in the photonic bandgap region as the number of bends increase is demonstrated through simulation and experiment of the transmission and group delay characteristics. Through comprehensive communications experiments we demonstrate online results below the forward error correction level including an 108-Gbit/s bit rate using multi-level modulation for a 10 mm straight VPC waveguide and a 62.5-Gbit/s bit-rate for a ten sharp bended structure.
Author Ducournau, Guillaume
Iyoda, Kei
Webber, Julian
Szriftgiser, Pascal
Nagatsuma, Tadao
Singh, Ranjan
Fujita, Masayuki
Yamagami, Yuichiro
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0001-7796-2898
  surname: Webber
  fullname: Webber, Julian
  email: webber@ee.es.osaka-u.ac.jp
  organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
– sequence: 2
  givenname: Yuichiro
  surname: Yamagami
  fullname: Yamagami, Yuichiro
  email: u206034e@alumni.osaka-u.ac.jp
  organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
– sequence: 3
  givenname: Guillaume
  orcidid: 0000-0002-9171-4767
  surname: Ducournau
  fullname: Ducournau, Guillaume
  email: guillaume.ducournau@univ-lille.fr
  organization: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille, Villeneuve d’Ascq, France
– sequence: 4
  givenname: Pascal
  orcidid: 0000-0002-7792-7256
  surname: Szriftgiser
  fullname: Szriftgiser, Pascal
  email: pascal.szriftgiser@univ-lille.fr
  organization: Laboratoire de Physique des Lasers Atomes et Molécules (PhLAM), UMR CNRS 8523, Université Lille, Villeneuve d’Ascq, France
– sequence: 5
  givenname: Kei
  surname: Iyoda
  fullname: Iyoda, Kei
  email: u986100d@ecs.osaka-u.ac.jp
  organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
– sequence: 6
  givenname: Masayuki
  orcidid: 0000-0003-1772-0891
  surname: Fujita
  fullname: Fujita, Masayuki
  email: fujita@ee.es.osaka-u.ac.jp
  organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
– sequence: 7
  givenname: Tadao
  orcidid: 0000-0002-7256-1021
  surname: Nagatsuma
  fullname: Nagatsuma, Tadao
  email: nagatuma@ee.es.osaka-u.ac.jp
  organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
– sequence: 8
  givenname: Ranjan
  orcidid: 0000-0001-8068-7428
  surname: Singh
  fullname: Singh, Ranjan
  email: ranjans@ntu.edu.sg
  organization: Nanyang Technological University, Singapore, Singapore
BackLink https://hal.science/hal-03507852$$DView record in HAL
BookMark eNo9kM9LwzAYhoNMcJveBS8FTx4687NNj3OoUwruUN0xpGm6dnTNTNrB_OvN6Njpg5fn_fi-ZwJGrWk1APcIzhCCyfNnms0wxGhGEIwjjq_AGDHGQ4wRGYExjAkJeYzpDZg4t4UQUcrjMVhl2spK2-4veJFtESzMbte3tZJdbVoXrOuuCjKzN43Z-LAJfmTT6GOwqkxnPBYs7NF1Pl_Lg970daFvwXUpG6fvznMKvt9es8UyTL_ePxbzNFQU0S6MYZIonKuSlqpUhBAeU15KDCmnicxzygnjslSaUFWULI5YDjlmOCoUpAQnZAqehr2VbMTe1jtpj8LIWiznqThlkDAYc4YPyLOPA7u35rfXrhNb09vWnydwBDljjCDqKThQyhrnrC4vaxEUJ8fCOxYnx-Ls2Fcehkqttb7gCcP-D0b-AQCpeGM
CODEN JLTEDG
CitedBy_id crossref_primary_10_1088_1402_4896_acab3c
crossref_primary_10_1038_s41928_022_00775_1
crossref_primary_10_1364_OE_482785
crossref_primary_10_1007_s10762_022_00879_x
crossref_primary_10_1063_5_0099423
crossref_primary_10_1364_JOSAB_453115
crossref_primary_10_1126_sciadv_adi8500
crossref_primary_10_1002_adma_202202370
crossref_primary_10_1109_JSTQE_2023_3284231
crossref_primary_10_1364_OE_486371
crossref_primary_10_1515_nanoph_2021_0673
crossref_primary_10_1038_s41467_022_32909_6
crossref_primary_10_3390_photonics9080515
crossref_primary_10_1063_5_0168016
crossref_primary_10_1016_j_optcom_2023_129446
crossref_primary_10_1063_5_0158350
crossref_primary_10_1016_j_rinp_2024_107399
crossref_primary_10_1103_PhysRevApplied_21_044044
crossref_primary_10_1109_LPT_2024_3406024
crossref_primary_10_3390_electronics12010109
crossref_primary_10_1088_1367_2630_acf519
crossref_primary_10_1515_nanoph_2022_0169
crossref_primary_10_1063_5_0170233
crossref_primary_10_1364_JOSAB_454949
crossref_primary_10_1364_OE_468010
crossref_primary_10_1364_AO_504776
crossref_primary_10_1049_ell2_12779
crossref_primary_10_1109_JLT_2023_3288342
crossref_primary_10_1109_JPHOT_2022_3172059
Cites_doi 10.1109/JPROC.2005.861013
10.1109/IRMMW-THz.2014.6956222
10.1038/s41467-019-08881-z
10.1038/nmat4573
10.1038/s41586-018-0829-0
10.1126/science.aao4551
10.1103/PhysRevLett.100.013904
10.7567/1882-0786/ab1cc5
10.1088/1367-2630/18/2/025012
10.1038/nature03040
10.1038/s41467-017-01515-2
10.1038/nmat4807
10.1038/nature08293
10.1109/IRMMW-THz46771.2020.9370972
10.1103/PhysRevLett.114.223901
10.1103/PhysRevB.96.201402
10.1049/el.2018.0905
10.1038/nphoton.2014.248
10.1038/nphoton.2016.65
10.1364/OPTICA.6.000786
10.1364/OE.398421
10.1103/RevModPhys.91.015006
10.1038/s41566-020-0618-9
10.1364/OE.27.028707
10.1126/science.aar4005
10.7567/1882-0786/aaf4b3
10.1038/nphoton.2007.3
10.1038/s41566-017-0006-2
10.1364/AOP.5.000169
10.1038/s41563-018-0191-5
10.1126/science.aaq0327
10.1364/OME.415128
10.1038/s41566-017-0048-5
10.1038/nphys2063
10.1038/nphys4304
10.1007/s10825-010-0337-4
10.1109/26.774849
10.1038/s41598-019-54627-8
10.1364/CLEO_QELS.2018.FM4Q.3
10.1016/j.jpdc.2020.02.002
10.1109/TMBMC.2019.2952863
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Attribution
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Attribution
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
1XC
VOOES
DOI 10.1109/JLT.2021.3107682
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 7620
ExternalDocumentID oai_HAL_hal_03507852v1
10_1109_JLT_2021_3107682
9522045
Genre orig-research
GrantInformation_xml – fundername: CPER Photonics for Society and DYDICO
– fundername: On-Chip Terahertz Topological Photonics for 6G Communication
– fundername: Grant- in-Aid for Scientific Research
– fundername: I-site ULNE and Metropole Européenne de Lille
– fundername: KAKENHI budget
– fundername: Ministry of Education, Culture, Sports, Science and Technology; Ministry of Education, Culture, Sports, Science and Technology of Japan
  grantid: 20H01064
  funderid: 10.13039/501100001700
– fundername: Core Research for Evolutional Science and Technology
  grantid: JPMJCR1534
  funderid: 10.13039/501100003382
– fundername: TERIL-WAVES
– fundername: National Research Foundation Singapore
  grantid: CRP23-2019-0005
  funderid: 10.13039/501100001381
– fundername: Japan Science and Technology Agency
  funderid: 10.13039/501100002241
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AASAJ
AAWJZ
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RIG
RNS
ROL
ROP
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c414t-7099c2bcf4fcfc3338748fa204849abb48358afce34cdf5765b082526dc043293
IEDL.DBID ESBDL
ISSN 0733-8724
IngestDate Wed Oct 09 06:33:47 EDT 2024
Thu Oct 10 16:34:23 EDT 2024
Fri Aug 23 02:39:40 EDT 2024
Wed Jun 26 19:25:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords on-chip communication
UTC-PD
valley photonic crystal (VPC)
Terahertz
topological
dispersion
terahertz communications
6 G
photonics
waveguide
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-7099c2bcf4fcfc3338748fa204849abb48358afce34cdf5765b082526dc043293
ORCID 0000-0001-8068-7428
0000-0002-7792-7256
0000-0001-7796-2898
0000-0002-9171-4767
0000-0003-1772-0891
0000-0002-7256-1021
0000-0002-0254-0938
OpenAccessLink https://ieeexplore.ieee.org/document/9522045
PQID 2608555314
PQPubID 85485
PageCount 12
ParticipantIDs crossref_primary_10_1109_JLT_2021_3107682
ieee_primary_9522045
hal_primary_oai_HAL_hal_03507852v1
proquest_journals_2608555314
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
(ref39) 2018
ref2
ref1
ref17
ref38
kaminow (ref40) 2013
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref41
  doi: 10.1109/JPROC.2005.861013
– ident: ref5
  doi: 10.1109/IRMMW-THz.2014.6956222
– ident: ref9
  doi: 10.1038/s41467-019-08881-z
– ident: ref19
  doi: 10.1038/nmat4573
– ident: ref17
  doi: 10.1038/s41586-018-0829-0
– ident: ref20
  doi: 10.1126/science.aao4551
– start-page: 1
  year: 2018
  ident: ref39
  article-title: Technical Specification Group Radio Access Network; GSM/EDGE Radio transmission and reception
– ident: ref30
  doi: 10.1103/PhysRevLett.100.013904
– ident: ref28
  doi: 10.7567/1882-0786/ab1cc5
– ident: ref26
  doi: 10.1088/1367-2630/18/2/025012
– ident: ref6
  doi: 10.1038/nature03040
– ident: ref35
  doi: 10.1038/s41467-017-01515-2
– ident: ref31
  doi: 10.1038/nmat4807
– ident: ref15
  doi: 10.1038/nature08293
– ident: ref29
  doi: 10.1109/IRMMW-THz46771.2020.9370972
– ident: ref24
  doi: 10.1103/PhysRevLett.114.223901
– ident: ref32
  doi: 10.1103/PhysRevB.96.201402
– ident: ref38
  doi: 10.1049/el.2018.0905
– ident: ref13
  doi: 10.1038/nphoton.2014.248
– ident: ref2
  doi: 10.1038/nphoton.2016.65
– ident: ref21
  doi: 10.1364/OPTICA.6.000786
– ident: ref25
  doi: 10.1364/OE.398421
– ident: ref11
  doi: 10.1103/RevModPhys.91.015006
– ident: ref10
  doi: 10.1038/s41566-020-0618-9
– ident: ref43
  doi: 10.1364/OE.27.028707
– ident: ref23
  doi: 10.1126/science.aar4005
– ident: ref8
  doi: 10.7567/1882-0786/aaf4b3
– ident: ref1
  doi: 10.1038/nphoton.2007.3
– ident: ref22
  doi: 10.1038/s41566-017-0006-2
– ident: ref36
  doi: 10.1364/AOP.5.000169
– ident: ref34
  doi: 10.1038/s41563-018-0191-5
– ident: ref16
  doi: 10.1126/science.aaq0327
– ident: ref12
  doi: 10.1364/OME.415128
– ident: ref14
  doi: 10.1038/s41566-017-0048-5
– ident: ref18
  doi: 10.1038/nphys2063
– ident: ref33
  doi: 10.1038/nphys4304
– ident: ref7
  doi: 10.1007/s10825-010-0337-4
– ident: ref37
  doi: 10.1109/26.774849
– ident: ref42
  doi: 10.1038/s41598-019-54627-8
– ident: ref27
  doi: 10.1364/CLEO_QELS.2018.FM4Q.3
– ident: ref3
  doi: 10.1016/j.jpdc.2020.02.002
– year: 2013
  ident: ref40
  article-title: Optical Fiber Communications
  contributor:
    fullname: kaminow
– ident: ref4
  doi: 10.1109/TMBMC.2019.2952863
SSID ssj0014487
Score 2.5795739
Snippet The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 7609
SubjectTerms 6 G
Bandwidth
Bends
Crystal defects
Dispersion
Electromagnetic waveguides
Engineering Sciences
Error correction
Group delay
on-chip communication
Optical losses
Photonic band gap
Photonic band gaps
Photonic crystals
photonics
System-on-chip
Terahertz
Terahertz communications
Terahertz frequencies
topological
Topology
UTC-PD
valley photonic crystal (VPC)
Valleys
waveguide
Waveguides
Title Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide
URI https://ieeexplore.ieee.org/document/9522045
https://www.proquest.com/docview/2608555314
https://hal.science/hal-03507852
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD5sKwv7oq7uYl1XBtmXhc3aJpNM5tFLpUhZBLvrvoW5nLEFaaVJBf31npOmBdEX30KYJMN8c_m-nBvAD5PJEBBtFILvRtKkLtKYsNuORptluTIpBwoPrtWf__l5n9Pk_FrHwiBi7XyGv_mytuX7mVvwr7JjTWSBKEgLNmJFvLkNG_3r0_Ph2mpAUqMOj1b0sVzFcmWW7Orjy-GIxGDcI43Ktqf4xTHUGrMTZF1d5dWWXJ8zF1vv6-E2bDZ8UpwsJ8Bn-IDTHdhquKVoVm65Ax9rV09X7sLVCGmDwXn1JE7N1IsXISKluJlUYzFalk5gAMU_rrbyKK7Gs4rT6Iqz-SMxyjtxYx7wdjHx-AX-XvRHZ4OoqasQOdmTVaSIFbrYuiCDCy4hkapkHgyn8JXaWCuJleUmOEyk84EESWpZSMaZd5zATydfoT2dTXEPRLCEgw8yk4aoACbaqK5R9BJnbeI1duDnapiL-2X6jKKWHV1dECQFQ1I0kHTgiHBYN-O814OTYcH32Pyp8jR-6HVgl0d93aoZ8A4crGArmkVYFiTV8jSlTUbuv_3UN_jEHWDvlF56AO1qvsDv0Cr94rCZWod1QOAzYWTNXQ
link.rule.ids 230,315,782,786,798,887,27642,27933,27934,54767,54942
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6iQ4i9bLAxURhgIV6QCGsTJ44fxy4qUKZJBMab5csxnTS1qEknbb-ec9K00gQve4siJ7H8xfb3-dwA3tlCxojokhjDIJE294nGjN12NLqiKJXNOVB49F2d_SqPTzhNzod1LAwits5n-JEvW1t-mPkFH5UdaCILREF68DCXqlDLaK21zYCERhscrehTpUrlyig50AdfxhVJwXRICpUtT-mdTag3YRfItrbKPwtyu8ucbt-vf09gq2OT4nAJ_1N4gNMd2O6Ypejmbb0Dj1pHT1_vwnmFtLzgvLkVn-w0iDsBIrW4uGwmoloWTmD4xE-utXIjziezhpPoiqP5DfHJK3Fhr_H34jLgM_hxelIdjZKuqkLi5VA2iSJO6FPno4w--owkqpJltJzAV2rrnCROVtroMZM-RJIjuWMZmRbBc_o-ne3BxnQ2xecgoiP1EqIspCUigJm2amAVvcQ7lwWNfXi_GmbzZ5k8w7SiY6ANQWIYEtNB0oe3hMO6GWe9Hh2ODd9j46cq8_R62IddHvV1q27A-7C_gs10U7A2JNTKPKclRr74_1Nv4PGo-jY2489nX1_CJneG_VSG-T5sNPMFvoJeHRav25_sLzECzjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+Band+Communications+With+Topological+Valley+Photonic+Crystal+Waveguide&rft.jtitle=Journal+of+lightwave+technology&rft.au=Webber%2C+Julian&rft.au=Yamagami%2C+Yuichiro&rft.au=Ducournau%2C+Guillaume&rft.au=Szriftgiser%2C+Pascal&rft.date=2021-12-15&rft.pub=IEEE&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=24&rft.spage=7609&rft.epage=7620&rft_id=info:doi/10.1109%2FJLT.2021.3107682&rft.externalDocID=9522045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon