Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide
The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventi...
Saved in:
Published in: | Journal of lightwave technology Vol. 39; no. 24; pp. 7609 - 7620 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
15-12-2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventional THz waveguides suffer from high bending losses and are sensitive to process defects. The recent revelation of the topological valley photonic crystal (VPC), which exhibits near zero-loss bends, zero back-scattering and zero junction-area, holds much promise for future high speed inter-device communications. Low dispersion in the photonic bandgap region as the number of bends increase is demonstrated through simulation and experiment of the transmission and group delay characteristics. Through comprehensive communications experiments we demonstrate online results below the forward error correction level including an 108-Gbit/s bit rate using multi-level modulation for a 10 mm straight VPC waveguide and a 62.5-Gbit/s bit-rate for a ten sharp bended structure. |
---|---|
AbstractList | The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventional THz waveguides suffer from high bending losses and are sensitive to process defects. The recent revelation of the topological valley photonic crystal (VPC), which exhibits near zero-loss bends, zero back-scattering and zero junction-area, holds much promise for future high speed inter-device communications. Low dispersion in the photonic bandgap region as the number of bends increase is demonstrated through simulation and experiment of the transmission and group delay characteristics. Through comprehensive communications experiments we demonstrate online results below the forward error correction level including an 108-Gbit/s bit rate using multi-level modulation for a 10 mm straight VPC waveguide and a 62.5-Gbit/s bit-rate for a ten sharp bended structure. |
Author | Ducournau, Guillaume Iyoda, Kei Webber, Julian Szriftgiser, Pascal Nagatsuma, Tadao Singh, Ranjan Fujita, Masayuki Yamagami, Yuichiro |
Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0001-7796-2898 surname: Webber fullname: Webber, Julian email: webber@ee.es.osaka-u.ac.jp organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan – sequence: 2 givenname: Yuichiro surname: Yamagami fullname: Yamagami, Yuichiro email: u206034e@alumni.osaka-u.ac.jp organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan – sequence: 3 givenname: Guillaume orcidid: 0000-0002-9171-4767 surname: Ducournau fullname: Ducournau, Guillaume email: guillaume.ducournau@univ-lille.fr organization: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille, Villeneuve d’Ascq, France – sequence: 4 givenname: Pascal orcidid: 0000-0002-7792-7256 surname: Szriftgiser fullname: Szriftgiser, Pascal email: pascal.szriftgiser@univ-lille.fr organization: Laboratoire de Physique des Lasers Atomes et Molécules (PhLAM), UMR CNRS 8523, Université Lille, Villeneuve d’Ascq, France – sequence: 5 givenname: Kei surname: Iyoda fullname: Iyoda, Kei email: u986100d@ecs.osaka-u.ac.jp organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan – sequence: 6 givenname: Masayuki orcidid: 0000-0003-1772-0891 surname: Fujita fullname: Fujita, Masayuki email: fujita@ee.es.osaka-u.ac.jp organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan – sequence: 7 givenname: Tadao orcidid: 0000-0002-7256-1021 surname: Nagatsuma fullname: Nagatsuma, Tadao email: nagatuma@ee.es.osaka-u.ac.jp organization: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan – sequence: 8 givenname: Ranjan orcidid: 0000-0001-8068-7428 surname: Singh fullname: Singh, Ranjan email: ranjans@ntu.edu.sg organization: Nanyang Technological University, Singapore, Singapore |
BackLink | https://hal.science/hal-03507852$$DView record in HAL |
BookMark | eNo9kM9LwzAYhoNMcJveBS8FTx4687NNj3OoUwruUN0xpGm6dnTNTNrB_OvN6Njpg5fn_fi-ZwJGrWk1APcIzhCCyfNnms0wxGhGEIwjjq_AGDHGQ4wRGYExjAkJeYzpDZg4t4UQUcrjMVhl2spK2-4veJFtESzMbte3tZJdbVoXrOuuCjKzN43Z-LAJfmTT6GOwqkxnPBYs7NF1Pl_Lg970daFvwXUpG6fvznMKvt9es8UyTL_ePxbzNFQU0S6MYZIonKuSlqpUhBAeU15KDCmnicxzygnjslSaUFWULI5YDjlmOCoUpAQnZAqehr2VbMTe1jtpj8LIWiznqThlkDAYc4YPyLOPA7u35rfXrhNb09vWnydwBDljjCDqKThQyhrnrC4vaxEUJ8fCOxYnx-Ls2Fcehkqttb7gCcP-D0b-AQCpeGM |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1088_1402_4896_acab3c crossref_primary_10_1038_s41928_022_00775_1 crossref_primary_10_1364_OE_482785 crossref_primary_10_1007_s10762_022_00879_x crossref_primary_10_1063_5_0099423 crossref_primary_10_1364_JOSAB_453115 crossref_primary_10_1126_sciadv_adi8500 crossref_primary_10_1002_adma_202202370 crossref_primary_10_1109_JSTQE_2023_3284231 crossref_primary_10_1364_OE_486371 crossref_primary_10_1515_nanoph_2021_0673 crossref_primary_10_1038_s41467_022_32909_6 crossref_primary_10_3390_photonics9080515 crossref_primary_10_1063_5_0168016 crossref_primary_10_1016_j_optcom_2023_129446 crossref_primary_10_1063_5_0158350 crossref_primary_10_1016_j_rinp_2024_107399 crossref_primary_10_1103_PhysRevApplied_21_044044 crossref_primary_10_1109_LPT_2024_3406024 crossref_primary_10_3390_electronics12010109 crossref_primary_10_1088_1367_2630_acf519 crossref_primary_10_1515_nanoph_2022_0169 crossref_primary_10_1063_5_0170233 crossref_primary_10_1364_JOSAB_454949 crossref_primary_10_1364_OE_468010 crossref_primary_10_1364_AO_504776 crossref_primary_10_1049_ell2_12779 crossref_primary_10_1109_JLT_2023_3288342 crossref_primary_10_1109_JPHOT_2022_3172059 |
Cites_doi | 10.1109/JPROC.2005.861013 10.1109/IRMMW-THz.2014.6956222 10.1038/s41467-019-08881-z 10.1038/nmat4573 10.1038/s41586-018-0829-0 10.1126/science.aao4551 10.1103/PhysRevLett.100.013904 10.7567/1882-0786/ab1cc5 10.1088/1367-2630/18/2/025012 10.1038/nature03040 10.1038/s41467-017-01515-2 10.1038/nmat4807 10.1038/nature08293 10.1109/IRMMW-THz46771.2020.9370972 10.1103/PhysRevLett.114.223901 10.1103/PhysRevB.96.201402 10.1049/el.2018.0905 10.1038/nphoton.2014.248 10.1038/nphoton.2016.65 10.1364/OPTICA.6.000786 10.1364/OE.398421 10.1103/RevModPhys.91.015006 10.1038/s41566-020-0618-9 10.1364/OE.27.028707 10.1126/science.aar4005 10.7567/1882-0786/aaf4b3 10.1038/nphoton.2007.3 10.1038/s41566-017-0006-2 10.1364/AOP.5.000169 10.1038/s41563-018-0191-5 10.1126/science.aaq0327 10.1364/OME.415128 10.1038/s41566-017-0048-5 10.1038/nphys2063 10.1038/nphys4304 10.1007/s10825-010-0337-4 10.1109/26.774849 10.1038/s41598-019-54627-8 10.1364/CLEO_QELS.2018.FM4Q.3 10.1016/j.jpdc.2020.02.002 10.1109/TMBMC.2019.2952863 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Attribution |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Attribution |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M 1XC VOOES |
DOI | 10.1109/JLT.2021.3107682 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 7620 |
ExternalDocumentID | oai_HAL_hal_03507852v1 10_1109_JLT_2021_3107682 9522045 |
Genre | orig-research |
GrantInformation_xml | – fundername: CPER Photonics for Society and DYDICO – fundername: On-Chip Terahertz Topological Photonics for 6G Communication – fundername: Grant- in-Aid for Scientific Research – fundername: I-site ULNE and Metropole Européenne de Lille – fundername: KAKENHI budget – fundername: Ministry of Education, Culture, Sports, Science and Technology; Ministry of Education, Culture, Sports, Science and Technology of Japan grantid: 20H01064 funderid: 10.13039/501100001700 – fundername: Core Research for Evolutional Science and Technology grantid: JPMJCR1534 funderid: 10.13039/501100003382 – fundername: TERIL-WAVES – fundername: National Research Foundation Singapore grantid: CRP23-2019-0005 funderid: 10.13039/501100001381 – fundername: Japan Science and Technology Agency funderid: 10.13039/501100002241 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AASAJ AAWJZ ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RIG RNS ROL ROP ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c414t-7099c2bcf4fcfc3338748fa204849abb48358afce34cdf5765b082526dc043293 |
IEDL.DBID | ESBDL |
ISSN | 0733-8724 |
IngestDate | Wed Oct 09 06:33:47 EDT 2024 Thu Oct 10 16:34:23 EDT 2024 Fri Aug 23 02:39:40 EDT 2024 Wed Jun 26 19:25:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | on-chip communication UTC-PD valley photonic crystal (VPC) Terahertz topological dispersion terahertz communications 6 G photonics waveguide |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-7099c2bcf4fcfc3338748fa204849abb48358afce34cdf5765b082526dc043293 |
ORCID | 0000-0001-8068-7428 0000-0002-7792-7256 0000-0001-7796-2898 0000-0002-9171-4767 0000-0003-1772-0891 0000-0002-7256-1021 0000-0002-0254-0938 |
OpenAccessLink | https://ieeexplore.ieee.org/document/9522045 |
PQID | 2608555314 |
PQPubID | 85485 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_JLT_2021_3107682 ieee_primary_9522045 hal_primary_oai_HAL_hal_03507852v1 proquest_journals_2608555314 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 (ref39) 2018 ref2 ref1 ref17 ref38 kaminow (ref40) 2013 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref41 doi: 10.1109/JPROC.2005.861013 – ident: ref5 doi: 10.1109/IRMMW-THz.2014.6956222 – ident: ref9 doi: 10.1038/s41467-019-08881-z – ident: ref19 doi: 10.1038/nmat4573 – ident: ref17 doi: 10.1038/s41586-018-0829-0 – ident: ref20 doi: 10.1126/science.aao4551 – start-page: 1 year: 2018 ident: ref39 article-title: Technical Specification Group Radio Access Network; GSM/EDGE Radio transmission and reception – ident: ref30 doi: 10.1103/PhysRevLett.100.013904 – ident: ref28 doi: 10.7567/1882-0786/ab1cc5 – ident: ref26 doi: 10.1088/1367-2630/18/2/025012 – ident: ref6 doi: 10.1038/nature03040 – ident: ref35 doi: 10.1038/s41467-017-01515-2 – ident: ref31 doi: 10.1038/nmat4807 – ident: ref15 doi: 10.1038/nature08293 – ident: ref29 doi: 10.1109/IRMMW-THz46771.2020.9370972 – ident: ref24 doi: 10.1103/PhysRevLett.114.223901 – ident: ref32 doi: 10.1103/PhysRevB.96.201402 – ident: ref38 doi: 10.1049/el.2018.0905 – ident: ref13 doi: 10.1038/nphoton.2014.248 – ident: ref2 doi: 10.1038/nphoton.2016.65 – ident: ref21 doi: 10.1364/OPTICA.6.000786 – ident: ref25 doi: 10.1364/OE.398421 – ident: ref11 doi: 10.1103/RevModPhys.91.015006 – ident: ref10 doi: 10.1038/s41566-020-0618-9 – ident: ref43 doi: 10.1364/OE.27.028707 – ident: ref23 doi: 10.1126/science.aar4005 – ident: ref8 doi: 10.7567/1882-0786/aaf4b3 – ident: ref1 doi: 10.1038/nphoton.2007.3 – ident: ref22 doi: 10.1038/s41566-017-0006-2 – ident: ref36 doi: 10.1364/AOP.5.000169 – ident: ref34 doi: 10.1038/s41563-018-0191-5 – ident: ref16 doi: 10.1126/science.aaq0327 – ident: ref12 doi: 10.1364/OME.415128 – ident: ref14 doi: 10.1038/s41566-017-0048-5 – ident: ref18 doi: 10.1038/nphys2063 – ident: ref33 doi: 10.1038/nphys4304 – ident: ref7 doi: 10.1007/s10825-010-0337-4 – ident: ref37 doi: 10.1109/26.774849 – ident: ref42 doi: 10.1038/s41598-019-54627-8 – ident: ref27 doi: 10.1364/CLEO_QELS.2018.FM4Q.3 – ident: ref3 doi: 10.1016/j.jpdc.2020.02.002 – year: 2013 ident: ref40 article-title: Optical Fiber Communications contributor: fullname: kaminow – ident: ref4 doi: 10.1109/TMBMC.2019.2952863 |
SSID | ssj0014487 |
Score | 2.5795739 |
Snippet | The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 7609 |
SubjectTerms | 6 G Bandwidth Bends Crystal defects Dispersion Electromagnetic waveguides Engineering Sciences Error correction Group delay on-chip communication Optical losses Photonic band gap Photonic band gaps Photonic crystals photonics System-on-chip Terahertz Terahertz communications Terahertz frequencies topological Topology UTC-PD valley photonic crystal (VPC) Valleys waveguide Waveguides |
Title | Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide |
URI | https://ieeexplore.ieee.org/document/9522045 https://www.proquest.com/docview/2608555314 https://hal.science/hal-03507852 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD5sKwv7oq7uYl1XBtmXhc3aJpNM5tFLpUhZBLvrvoW5nLEFaaVJBf31npOmBdEX30KYJMN8c_m-nBvAD5PJEBBtFILvRtKkLtKYsNuORptluTIpBwoPrtWf__l5n9Pk_FrHwiBi7XyGv_mytuX7mVvwr7JjTWSBKEgLNmJFvLkNG_3r0_Ph2mpAUqMOj1b0sVzFcmWW7Orjy-GIxGDcI43Ktqf4xTHUGrMTZF1d5dWWXJ8zF1vv6-E2bDZ8UpwsJ8Bn-IDTHdhquKVoVm65Ax9rV09X7sLVCGmDwXn1JE7N1IsXISKluJlUYzFalk5gAMU_rrbyKK7Gs4rT6Iqz-SMxyjtxYx7wdjHx-AX-XvRHZ4OoqasQOdmTVaSIFbrYuiCDCy4hkapkHgyn8JXaWCuJleUmOEyk84EESWpZSMaZd5zATydfoT2dTXEPRLCEgw8yk4aoACbaqK5R9BJnbeI1duDnapiL-2X6jKKWHV1dECQFQ1I0kHTgiHBYN-O814OTYcH32Pyp8jR-6HVgl0d93aoZ8A4crGArmkVYFiTV8jSlTUbuv_3UN_jEHWDvlF56AO1qvsDv0Cr94rCZWod1QOAzYWTNXQ |
link.rule.ids | 230,315,782,786,798,887,27642,27933,27934,54767,54942 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6iQ4i9bLAxURhgIV6QCGsTJ44fxy4qUKZJBMab5csxnTS1qEknbb-ec9K00gQve4siJ7H8xfb3-dwA3tlCxojokhjDIJE294nGjN12NLqiKJXNOVB49F2d_SqPTzhNzod1LAwits5n-JEvW1t-mPkFH5UdaCILREF68DCXqlDLaK21zYCERhscrehTpUrlyig50AdfxhVJwXRICpUtT-mdTag3YRfItrbKPwtyu8ucbt-vf09gq2OT4nAJ_1N4gNMd2O6Ypejmbb0Dj1pHT1_vwnmFtLzgvLkVn-w0iDsBIrW4uGwmoloWTmD4xE-utXIjziezhpPoiqP5DfHJK3Fhr_H34jLgM_hxelIdjZKuqkLi5VA2iSJO6FPno4w--owkqpJltJzAV2rrnCROVtroMZM-RJIjuWMZmRbBc_o-ne3BxnQ2xecgoiP1EqIspCUigJm2amAVvcQ7lwWNfXi_GmbzZ5k8w7SiY6ANQWIYEtNB0oe3hMO6GWe9Hh2ODd9j46cq8_R62IddHvV1q27A-7C_gs10U7A2JNTKPKclRr74_1Nv4PGo-jY2489nX1_CJneG_VSG-T5sNPMFvoJeHRav25_sLzECzjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+Band+Communications+With+Topological+Valley+Photonic+Crystal+Waveguide&rft.jtitle=Journal+of+lightwave+technology&rft.au=Webber%2C+Julian&rft.au=Yamagami%2C+Yuichiro&rft.au=Ducournau%2C+Guillaume&rft.au=Szriftgiser%2C+Pascal&rft.date=2021-12-15&rft.pub=IEEE&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=24&rft.spage=7609&rft.epage=7620&rft_id=info:doi/10.1109%2FJLT.2021.3107682&rft.externalDocID=9522045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |