Design, 3D-QSAR, molecular docking, ADMET, molecular dynamics and MM-PBSA simulations for new anti-breast cancer agents

Breast cancer is the most frequent form of malignant tumor in women, and represents a major public health problem due to its high mortality rate. Although a multitude of therapeutic options exist for control of this disease, the emergence of resistance to current pharmaceutical treatments underscore...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics impact Vol. 8; p. 100455
Main Authors: El Rhabori, Said, Alaqarbeh, Marwa, El Aissouq, Abdellah, Bouachrine, Mohammed, Chtita, Samir, Khalil, Fouad
Format: Journal Article
Language:English
Published: Elsevier B.V 01-06-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Breast cancer is the most frequent form of malignant tumor in women, and represents a major public health problem due to its high mortality rate. Although a multitude of therapeutic options exist for control of this disease, the emergence of resistance to current pharmaceutical treatments underscores the urgency of developing new anti- breast cancer drugs, with a focus on reducing the adverse effects associated with current therapeutic agents. The present study concerns a new series of (23) compounds based on 1,4-quinone and quinoline derivatives to design candidate drugs against breast cancer. For this purpose, integrated computational techniques were applied, including 3D-QSAR, molecular docking and molecular dynamics simulations (MD). CoMFA and CoMSIA were used to build a robust and highly reliable 3D-QSAR models. To validate the model's predictive capabilities, an external validation was carried out. The results of the best model (CoMSIA/SEA) revealed that electrostatic, steric and hydrogen bond acceptor fields had a significant effect on the anti-breast cancer activity of molecules studied. In addition, evaluation of ADMET properties determined whether these newly designed ligands were likely to be selected as drug-candidates. To confirm the binding stability of the selected ligands to aromatase (3S7S) and validate the molecular docking results, molecular dynamics simulations lasting 100 nanoseconds were performed by calculating RMSD, RMSF, RoG, H-bond, SASA and MM-PBSA parameters. As a result, only one designed compound (ligand 5) emerged as the most promising drug candidate for experimental in vitro and in vivo testing, due to its potential inhibition of breast cancer. [Display omitted]
ISSN:2667-0224
2667-0224
DOI:10.1016/j.chphi.2023.100455