Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry

Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry Vol. 29; no. 7; pp. 1541 - 1547
Main Author: 盖楠 杨永亮 黎涛 姚俊 王飞 陈辉伦
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 01-07-2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
AbstractList Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 μg·g−1 were applied in these soils, and the results showed that an increase of the amount of Pb2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Microcalorimetry was used to investigate the microbial activity in three types of soil, and to evaluate the influence of different concentrations of Pb2+ on soil microbial activity. It revealed that the different behaviors of microbial activity were influenced by environmental features. Microcalorimetric data also show changes in the metabolism processes affected by the different concentrations of Pb2+.
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 µg·g-1 were applied in these soils, and the results showed that an increase of the amount of Pb2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb 2+ ) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz . 0, 10, 20, 40, 80, 160 μg·g −1 were applied in these soils, and the results showed that an increase of the amount of Pb 2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb 2+ . In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb super(2+)) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 mu g.g super(-1) were applied in these soils, and the results showed that an increase of the amount of Pb super(2+) is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb super(2+). In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Microcalorimetry was used to investigate the microbial activity in three types of soil, and to evaluate the influence of different concentrations of Pb super(2+) on soil microbial activity. It revealed that the different behaviors of microbial activity were influenced by environmental features. Microcalorimetric data also show changes in the metabolism processes affected by the different concentrations of Pb super(2+).
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
Author Gai, Nan
Chen, Huilun
Yao, Jun
Li, Tao
Wang, Fei
Yang, Yongliang
AuthorAffiliation National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China School of Environmental Studies & Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education & Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, Wuhan, Hubei 430074, China National Environment & Energy International Cooperation Base, and Civil & Environment Engineering School University of Science and Technology, Beijing 100083, China
Author_xml – sequence: 1
  fullname: 盖楠 杨永亮 黎涛 姚俊 王飞 陈辉伦
BookMark eNqFkE1v1DAQhi3USvSDK-cgLlyyHceOP44laheqLT1QWm6Wk9jFS9Zu7Wwh_x6vUq0QFyRLtsbPM5p5j9GBD94g9BbDAgNUZ906dIsKMBZQcf4KHWGGacmB1Qf5DYBLBvT7a3Sc0hp2SMWO0O2FtaYbi2CLldF90QQ_6o3zenTBF_l8DW4orl0XQ-v0UJx3o3t241RcG5220fRFO83fnR5CdBszxukUHVo9JPPm5T5B3y4vbptP5epm-bk5X5UdxZSXAow1NdeyxjVtLQVOmdSS97YSdW-4poJyokVPgAiWy6BbTPuWa0GkJZycoA9z38cYnrYmjWrjUmeGQXsTtklhiaVkjNSQ0ff_oOuwjT5PpzBnTIDANcvUYqbyPilFY9VjXknHSWFQu5DVLmS1DzkLchZ-ucFM_6FVc3XT_O2Ws-vSaH7vXR1_KsYJr9X9l6VawfKOVx9BXWb-3ctwP4J_eHL-Ye_keKQkmJA_8Y2bfQ
CitedBy_id crossref_primary_10_1016_j_geoderma_2016_11_003
crossref_primary_10_1016_j_chemosphere_2020_127450
Cites_doi 10.1289/ehp.7038
10.1002/etc.5620190332
10.1016/j.soilbio.2005.04.031
10.1016/S0165-022X(00)00115-9
10.1016/S0040-6031(02)00247-2
10.1016/S1383-5718(02)00004-9
10.1016/0038-0717(94)90144-9
10.1007/s002530051050
10.1016/S0038-0717(99)00115-7
10.1016/S0040-6031(03)00371-X
10.1016/j.apsoil.2006.03.007
10.1016/j.mrfmmm.2003.07.010
10.1111/j.1365-2389.1983.tb01043.x
10.1016/j.envpol.2006.01.045
10.1002/cjoc.200990356
10.1023/A:1009738307837
10.1128/aem.62.8.2970-2977.1996
10.1016/S0045-6535(98)00224-0
10.1111/j.1469-8137.1993.tb03796.x
10.1016/j.cattod.2009.10.020
10.1016/S0301-4622(03)00059-0
10.1016/j.ecoenv.2007.02.005
10.1007/s003740050609
10.1016/j.jhazmat.2009.08.114
10.1016/S0038-0717(00)00238-8
10.1007/s10973-005-7200-z
10.1016/j.soilbio.2004.06.015
10.1016/j.chemosphere.2007.11.038
10.1016/0038-0717(78)90099-8
10.1016/S0040-6031(97)00071-3
10.1016/j.soilbio.2009.07.019
10.1128/AEM.64.6.2173-2180.1998
10.1016/S0929-1393(01)00166-4
ContentType Journal Article
Copyright Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 2RA
92L
CQIGP
~WA
BSCLL
AAYXX
CITATION
7T7
8FD
C1K
FR3
P64
DOI 10.1002/cjoc.201180277
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Istex
CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

CrossRef
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry
EISSN 1614-7065
EndPage 1547
ExternalDocumentID 3957975311
10_1002_cjoc_201180277
CJOC201180277
ark_67375_WNG_L0GV72B0_F
38699313
Genre shortCommunication
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 40873060
– fundername: the National Outstanding Youth Research Foundation of China
  funderid: 40925010
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29B
2RA
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92L
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
BZXJU
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RK2
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WA
~WT
-SB
-S~
5XA
5XC
AAXDM
AITYG
BSCLL
CAJEB
HGLYW
OIG
Q--
U1G
U5L
AAMNL
AAYXX
CITATION
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c4147-80efe57a95154bf407469a97df285de7a48473a8d303867df0ab14db7a839f373
IEDL.DBID 33P
ISSN 1001-604X
IngestDate Sat Aug 17 01:51:34 EDT 2024
Tue Nov 19 04:56:18 EST 2024
Thu Nov 21 21:00:59 EST 2024
Sat Aug 24 00:47:07 EDT 2024
Wed Oct 30 09:48:03 EDT 2024
Wed Feb 14 09:50:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4147-80efe57a95154bf407469a97df285de7a48473a8d303867df0ab14db7a839f373
Notes 31-1547/O6
soil microbial activity, microcalorimetry, lead contamination
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
Gai, Nan Yang, Yongliang Li, Tao Yao, Jun Wang, Fei Chen, Huilun( a National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China b School of Environmental Studies & Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education & Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, Wuhan, Hubei 430074, China c National Environment & Energy International Cooperation Base, and Civil & Environment Engineering School University of Science and Technology, Beijing 100083, China)
the National Outstanding Youth Research Foundation of China - No. 40925010
the National Natural Science Foundation of China - No. 40873060
ArticleID:CJOC201180277
istex:AEEB275F5E9647C3ADB7392A02E89F72CFCFF157
ark:/67375/WNG-L0GV72B0-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1766808156
PQPubID 986331
PageCount 7
ParticipantIDs proquest_miscellaneous_1919966350
proquest_journals_1766808156
crossref_primary_10_1002_cjoc_201180277
wiley_primary_10_1002_cjoc_201180277_CJOC201180277
istex_primary_ark_67375_WNG_L0GV72B0_F
chongqing_primary_38699313
PublicationCentury 2000
PublicationDate July, 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July, 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationTitleAlternate Chinese Journal of Chemistry
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Khan, M.; Scullion, J.. Biol. Fertil. Soils, 1999, 30, 202.
Barros, N.; Feijóo, S.. Biophys. Chem., 2003, 104, 561.
Nicklin, J.; Graeme, K. C.; Paget, T.; Killington, R. A., Microbiology, BIOS Scientific Publishers, UK, 1999, pp. 103-107.
Sparling, G. P.. Eur. J. Soil Sci., 1983, 34, 381.
Haynes, R. J.; Naidu, R.. Nutr. Cycling Agroecosyst., 1998, 51, 123.
Núñez-Regueira, L.; Rodríguez-Añón, J. A.; Proupín-Castiñeiras, J.; Núñez-Fernández, O.. Soil Biol. Biochem., 2006, 38, 115.
Yan, C. N.; Liu, Y.; Wang, T. Z.; Tan, Z. Q.; Qu, S. S.; Shen, P.. Chemosphere, 1999, 38, 891.
Sposito, G., The Chemistry of Soils, Oxford University Press, Oxford, UK, 1989, pp. 203-205.
Renella, G.; Landi, L.; Mench, M.; Nannipieri, P.. Soil Biol. Biochem., 2005, 37, 133.
Pennanen, T.; Fritze, H.; Vanhala, P.; Kiikkila, O.; Neuvonen, S.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1998, 64, 2173.
Barros, N.; Feijóo, S.; Balsa, R.. Thermochim. Acta, 1997, 296, 53.
Yao, J.; Tian, L.; Wang, Y. X.; Atakora, D.; Wang, F.; Chen, H. L.. Ecotoxicol. Environ. Saf., 2008, 69, 289.
Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Appl. Soil Ecol., 2001, 18, 271.
Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Thermochim. Acta, 2004, 410, 35.
Turner, B. L.; Bristow, A. W.; Haygarth, P. M.. Soil Biol. Biochem., 2001, 33, 913.
Silbergeld, E. K.. Mutat. Res., 2003, 533, 121.
Chen, H. L.; Yao, J.; Wang, F.; Gyula, Z.. Chin. J. Chem., 2009, 27, 2125.
Díaz-Ravińa, M.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1996, 62, 2970.
Majer, B. J.; Tscherko, D.; Paschke, A.; Wennrich, R.; Kundi, M.; Kandeler, E.; Knasmüller, S.. Mutat. Res., 2002, 515, 111.
Teeling, H.; Cypionka, H.. Appl. Microbiol. Biotechnol., 1997, 48, 275.
McNeill, D. R.; Narayana, A.; Wong, H. K.; Wilson III, D. M.. Environ. Health Perspect., 2004, 112, 799.
Griffiths, R. I.; Bailey, J. M.; Mcnamara, N. P.; Whiteley, A. S.. Appl. Soil Ecol., 2006, 33, 114.
Nú ñez-Regueira, L.; Rodríguez-Añón, J. A.; Proupín-Castiñeiras, J.; Villanueva-López, M.; Núñez-Fernández, O.. J. Therm. Anal. Calorim., 2006, 84, 7.
Needleman, H. L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E. N.. J. Med. Chem., 1990, 322, 83.
Fliessbach, A.; Martens, R.; Reber, H.. Soil Biol. Biochem., 1994, 26, 1201.
Gadd, G. M.. New Phytol., 1993, 124, 25.
Liu, Y.; Li, X.; Qu, S. S.; Shen, P.. J. Biochem. Biophys. Methods, 2000, 45, 231.
Wang, F.; Yao, J.; Si, Y.; Chen, H. L.; Mohammad, R.; Chen, K.; Qian, Y. G.; Gyula, Z.; Emilia, B.. J. Hazard. Mater., 2010, 173, 510.
Rodríguez Martín, J. A.; Arias, M. L.; Grau Cobí, J. M.. Environ. Pollut., 2006, 144, 1001.
Anderson, J. P. E.; Domsch, K. H.. Soil Biol. Biochem., 1978, 10, 215.
Desmartin-Chomel, A.; Hamad, B.; Palomeque, J.; Essayem, N.; Bergeret, G.; Figueras, F.. Catal. Today, 2010, 152, 110.
Zheng, S. X.; Hu, J. L.; Chen, K.; Yao, J.; Yu, Z. N.; Lin, X. G.. Soil Biol. Biochem., 2009, 41, 2094.
Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Thermochim. Acta, 2002, 394, 145.
Speir, T. W.; Kettles, H. A.; Percival, H. J.; Parshotam, A.. Soil Biol. Biochem., 1999, 31, 1953.
Rajkumar, M.; Freitas, H.. Chemosphere, 2008, 71, 834.
Díaz-Raviña, M.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1996, 62, 2970.
Preston, S.; Road, N.; Townsend, J.; Killham, K.; Paton, G. I.. Environ. Toxicol. Chem., 2000, 19, 775.
2009; 41
2000; 45
1978; 10
2006; 33
2002; 394
1997; 296
1997; 48
2006; 38
1994; 26
2002; 515
2003; 533
1990; 322
1993; 124
2008; 71
1998; 64
2009; 27
1983; 34
1999
2004; 112
2000; 19
2004; 410
2006; 84
1999; 38
2008; 69
2010; 152
1996; 62
1999; 31
1999; 30
2010; 173
2001; 18
2005; 37
2003; 104
2001; 33
1998; 51
2006; 144
1989
Needleman H. L. (e_1_2_1_11_2) 1990; 322
e_1_2_1_22_2
e_1_2_1_23_2
Díaz‐Ravińa M. (e_1_2_1_34_2) 1996; 62
e_1_2_1_20_2
e_1_2_1_21_2
Nicklin J. (e_1_2_1_37_2) 1999
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Sposito G. (e_1_2_1_2_2) 1989
e_1_2_1_29_2
Díaz‐Raviña M. (e_1_2_1_28_2) 1996; 62
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
Pennanen T. (e_1_2_1_36_2) 1998; 64
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – start-page: 203
  year: 1989
  end-page: 205
– volume: 152
  start-page: 110
  year: 2010
  publication-title: Catal. Today
– volume: 64
  start-page: 2173
  year: 1998
  publication-title: Appl. Environ. Microbiol.
– volume: 71
  start-page: 834
  year: 2008
  publication-title: Chemosphere
– volume: 515
  start-page: 111
  year: 2002
  publication-title: Mutat. Res.
– volume: 62
  start-page: 2970
  year: 1996
  publication-title: Appl. Environ. Microbiol.
– volume: 33
  start-page: 913
  year: 2001
  publication-title: Soil Biol. Biochem.
– volume: 112
  start-page: 799
  year: 2004
  publication-title: Environ. Health Perspect.
– start-page: 103
  year: 1999
  end-page: 107
– volume: 84
  start-page: 7
  year: 2006
  publication-title: J. Therm. Anal. Calorim.
– volume: 144
  start-page: 1001
  year: 2006
  publication-title: Environ. Pollut.
– volume: 38
  start-page: 115
  year: 2006
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 891
  year: 1999
  publication-title: Chemosphere
– volume: 33
  start-page: 114
  year: 2006
  publication-title: Appl. Soil Ecol.
– volume: 34
  start-page: 381
  year: 1983
  publication-title: Eur. J. Soil Sci.
– volume: 394
  start-page: 145
  year: 2002
  publication-title: Thermochim. Acta
– volume: 124
  start-page: 25
  year: 1993
  publication-title: New Phytol.
– volume: 322
  start-page: 83
  year: 1990
  publication-title: J. Med. Chem.
– volume: 104
  start-page: 561
  year: 2003
  publication-title: Biophys. Chem.
– volume: 26
  start-page: 1201
  year: 1994
  publication-title: Soil Biol. Biochem.
– volume: 410
  start-page: 35
  year: 2004
  publication-title: Thermochim. Acta
– volume: 173
  start-page: 510
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 2094
  year: 2009
  publication-title: Soil Biol. Biochem.
– volume: 69
  start-page: 289
  year: 2008
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 296
  start-page: 53
  year: 1997
  publication-title: Thermochim. Acta
– volume: 533
  start-page: 121
  year: 2003
  publication-title: Mutat. Res.
– volume: 37
  start-page: 133
  year: 2005
  publication-title: Soil Biol. Biochem.
– volume: 45
  start-page: 231
  year: 2000
  publication-title: J. Biochem. Biophys. Methods
– volume: 27
  start-page: 2125
  year: 2009
  publication-title: Chin. J. Chem.
– volume: 31
  start-page: 1953
  year: 1999
  publication-title: Soil Biol. Biochem.
– volume: 10
  start-page: 215
  year: 1978
  publication-title: Soil Biol. Biochem.
– volume: 51
  start-page: 123
  year: 1998
  publication-title: Nutr. Cycling Agroecosyst.
– volume: 30
  start-page: 202
  year: 1999
  publication-title: Biol. Fertil. Soils
– volume: 18
  start-page: 271
  year: 2001
  publication-title: Appl. Soil Ecol.
– volume: 19
  start-page: 775
  year: 2000
  publication-title: Environ. Toxicol. Chem.
– volume: 48
  start-page: 275
  year: 1997
  publication-title: Appl. Microbiol. Biotechnol.
– ident: e_1_2_1_33_2
  doi: 10.1289/ehp.7038
– ident: e_1_2_1_8_2
  doi: 10.1002/etc.5620190332
– ident: e_1_2_1_27_2
  doi: 10.1016/j.soilbio.2005.04.031
– ident: e_1_2_1_29_2
  doi: 10.1016/S0165-022X(00)00115-9
– ident: e_1_2_1_17_2
  doi: 10.1016/S0040-6031(02)00247-2
– ident: e_1_2_1_12_2
  doi: 10.1016/S1383-5718(02)00004-9
– ident: e_1_2_1_30_2
  doi: 10.1016/0038-0717(94)90144-9
– ident: e_1_2_1_23_2
  doi: 10.1007/s002530051050
– ident: e_1_2_1_35_2
  doi: 10.1016/S0038-0717(99)00115-7
– ident: e_1_2_1_4_2
  doi: 10.1016/S0040-6031(03)00371-X
– ident: e_1_2_1_6_2
  doi: 10.1016/j.apsoil.2006.03.007
– ident: e_1_2_1_32_2
  doi: 10.1016/j.mrfmmm.2003.07.010
– start-page: 203
  volume-title: The Chemistry of Soils
  year: 1989
  ident: e_1_2_1_2_2
  contributor:
    fullname: Sposito G.
– ident: e_1_2_1_19_2
  doi: 10.1111/j.1365-2389.1983.tb01043.x
– ident: e_1_2_1_10_2
  doi: 10.1016/j.envpol.2006.01.045
– ident: e_1_2_1_21_2
  doi: 10.1002/cjoc.200990356
– ident: e_1_2_1_25_2
  doi: 10.1023/A:1009738307837
– volume: 62
  start-page: 2970
  year: 1996
  ident: e_1_2_1_34_2
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.62.8.2970-2977.1996
  contributor:
    fullname: Díaz‐Ravińa M.
– ident: e_1_2_1_24_2
  doi: 10.1016/S0045-6535(98)00224-0
– ident: e_1_2_1_31_2
  doi: 10.1111/j.1469-8137.1993.tb03796.x
– ident: e_1_2_1_20_2
  doi: 10.1016/j.cattod.2009.10.020
– ident: e_1_2_1_18_2
  doi: 10.1016/S0301-4622(03)00059-0
– ident: e_1_2_1_5_2
  doi: 10.1016/j.ecoenv.2007.02.005
– ident: e_1_2_1_7_2
  doi: 10.1007/s003740050609
– start-page: 103
  volume-title: Microbiology
  year: 1999
  ident: e_1_2_1_37_2
  contributor:
    fullname: Nicklin J.
– ident: e_1_2_1_13_2
  doi: 10.1016/j.jhazmat.2009.08.114
– ident: e_1_2_1_22_2
  doi: 10.1016/S0038-0717(00)00238-8
– ident: e_1_2_1_26_2
  doi: 10.1007/s10973-005-7200-z
– ident: e_1_2_1_9_2
  doi: 10.1016/j.soilbio.2004.06.015
– ident: e_1_2_1_15_2
  doi: 10.1016/j.chemosphere.2007.11.038
– ident: e_1_2_1_38_2
  doi: 10.1016/0038-0717(78)90099-8
– volume: 322
  start-page: 83
  year: 1990
  ident: e_1_2_1_11_2
  publication-title: J. Med. Chem.
  contributor:
    fullname: Needleman H. L.
– ident: e_1_2_1_3_2
  doi: 10.1016/S0040-6031(97)00071-3
– ident: e_1_2_1_14_2
  doi: 10.1016/j.soilbio.2009.07.019
– volume: 64
  start-page: 2173
  year: 1998
  ident: e_1_2_1_36_2
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.6.2173-2180.1998
  contributor:
    fullname: Pennanen T.
– ident: e_1_2_1_16_2
  doi: 10.1016/S0929-1393(01)00166-4
– volume: 62
  start-page: 2970
  year: 1996
  ident: e_1_2_1_28_2
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.62.8.2970-2977.1996
  contributor:
    fullname: Díaz‐Raviña M.
SSID ssj0027726
Score 1.9099112
Snippet Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate...
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate...
SourceID proquest
crossref
wiley
istex
chongqing
SourceType Aggregation Database
Publisher
StartPage 1541
SubjectTerms lead contamination
microcalorimetry
soil microbial activity
土壤微生物活性
土壤样品
微生物数量
微生物活动
果园土壤
活性下降
生物活性测定
铅污染
Title Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry
URI http://lib.cqvip.com/qk/84126X/201107/38699313.html
https://api.istex.fr/ark:/67375/WNG-L0GV72B0-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201180277
https://www.proquest.com/docview/1766808156
https://search.proquest.com/docview/1919966350
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZ4HODC8hRlAQUJwamiTdOmPS4DA0K8JJ63KG1TdhbUssyOtPx77GSmMCckkHppk0aRncR24nwfwDbGsXGZlKHPM8MxQJGRn5eoEKJ1wJg5L4S9lXZ8Jc_v04NDgslpb_E7fIh2w41mhl2vaYLrvL_3Dhpa_GkKC8GZ0jEkLsIYKtg7HNHle8QlLd8a4Qz5SSDuR6iNAd8b_52QFX439cNftBdjFmqahP1_zP386MRaK9T98f3-z8Pc0ANlv9yQWYAJUy_CTGdE_LYE1w7RmDUVIwJORgBWmjJmSIcMn6um98TOehbCiVoqHAMFO3P7jSXLX10x6r8h-gBsdhluuofXnWN_SL7gFyIUZLlMZWKp0QOLRV4J4iXJdCbLiqN2jdQC7Vqk0xJtYJrg50DnoShzqdHlqiIZrcBU3dRmFRivpIiLJEq0CemYThcyDquYpzh-dMZzD9Za4atnB7KhsFF0ncLIg92RNtoyB7XMFYlQtSL0YMcqq62mXx4pbU3G6u78SJ0GR7eS7weq68H6SJtqOGP7ioAyiYUkTjzYaotR8nSAomvTDLBORjnb6KIFHnCr20-6pDonF532be0rP_2EWbeNTRnC6zD172VgNmCyXw427Vh_Ayda-tk
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7R5lAulKdwCbBIqJys2uu11z6WkDQtSYrUAL2t1vYa-pBd2kZq_z0zu7FDTkgIyRd7H7JnZj0z-_g-gPeYx8ZlUoY-zwzHBEVGfl6iQojWAXPmvBD2VNr4RM5O009DgsnZb8_COHyIbsKNRob9X9MApwnpvRVqaHHeFBaDM6V1yA3oiQStkU5xRF9WOZe0jGuENOQngThtcRsDvrfenrAVfjb1j1_oMdZ8VI_EfbcWgP4Zxlo_NNr-D1_wGB4tg1C276zmCTww9VPYGrTcb89g7kCNWVMx4uBkhGGladMMqZHhddKcXbLpmUVxop4KR0LBpm7KsWT5vStGE2iIQQC7fQ5fR8P5YOwv-Rf8QoSCnJepTCw1BmGxyCtB1CSZzmRZcVSwkVqga4t0WqIbTBN8HOg8FGUuNUZdVSSjF7BZN7V5CYxXUsRFEiXahLRSpwsZh1XMUzQhnfHcg51O-urK4Wwo7BSjpzDy4EOrjq7MoS1zRSJUnQg92LXa6qrp6wvauSZj9X12oCbBwTfJPwZq5EG_VadaDtobRViZREQSJx6864pR8rSGomvTLLBORtu2MUoLPOBWuX95JTU4Oh50dzv_0ugtbI3n04maHM4-v4KHblabNgz3YfP2emFew8ZNuXhjDf83D8r_AQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAoXoIWK8KorVe0pInGcODmWhYW2sEXiebOc2CnQKuG1UvvvO2Pvhu4JqUi5JH4ombEzM_b4-wA-YBybmszEIS8sxwBFJmFpUCFE64Axc1kJdyrt4EQOLvPdPYLJ6U7xe3yIbsGNZob7X9MEvzX19hNoaHXTVg6CM6dtyGmYFeiLE3p-khw_hVzSEa4R0FCYReJyDNsY8e3J9gStcNU2P-7QYEyYqFmS9u8J__NfL9aZof7iyz9gCRZGLij77MfMa5iyzRuY642Z35bh1EMas7ZmxMDJCMFKU8oMKZHhddJe_2JH1w7DiXqqPAUFO_ILjoaVf3wxDoCW-AOw2xU46--d9g7CEftCWIlYkOmytU2lRhcsFWUtiJik0IU0NUf1WqkFGrZE5waNYJ7h40iXsTCl1Ohz1YlM3sJM0zZ2FRivpUirLMm0jWmfTlcyjeuU5ziAdMHLANY64atbj7KhsFP0neIkgE9jbXRlHmuZKxKh6kQYwEenrK6avv9JeWsyVReDfXUY7Z9LvhOpfgAbY22q0ZR9UISUSTQkaRbA-64YJU87KLqx7RDrFJS0jT5aFAB3un3mlVTv6_ded7f2P43ewavj3b46_DL4tg7zfkmbsoU3YObxfmg3YfrBDLfcsP8L6Hf9pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Lead+Contamination+on+Soil+Microbial+Activity+Measured+by+Microcalorimetry&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Gai%2C+Nan&rft.au=Yang%2C+Yongliang&rft.au=Li%2C+Tao&rft.au=Yao%2C+Jun&rft.date=2011-07-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=7&rft.spage=1541&rft.epage=1547&rft_id=info:doi/10.1002%2Fcjoc.201180277&rft.externalDBID=10.1002%252Fcjoc.201180277&rft.externalDocID=CJOC201180277
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg