Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different...
Saved in:
Published in: | Chinese journal of chemistry Vol. 29; no. 7; pp. 1541 - 1547 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-07-2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. |
---|---|
AbstractList | Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 μg·g−1 were applied in these soils, and the results showed that an increase of the amount of Pb2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.
Microcalorimetry was used to investigate the microbial activity in three types of soil, and to evaluate the influence of different concentrations of Pb2+ on soil microbial activity. It revealed that the different behaviors of microbial activity were influenced by environmental features. Microcalorimetric data also show changes in the metabolism processes affected by the different concentrations of Pb2+. Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 µg·g-1 were applied in these soils, and the results showed that an increase of the amount of Pb2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb 2+ ) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz . 0, 10, 20, 40, 80, 160 μg·g −1 were applied in these soils, and the results showed that an increase of the amount of Pb 2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb 2+ . In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb super(2+)) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 mu g.g super(-1) were applied in these soils, and the results showed that an increase of the amount of Pb super(2+) is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb super(2+). In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Microcalorimetry was used to investigate the microbial activity in three types of soil, and to evaluate the influence of different concentrations of Pb super(2+) on soil microbial activity. It revealed that the different behaviors of microbial activity were influenced by environmental features. Microcalorimetric data also show changes in the metabolism processes affected by the different concentrations of Pb super(2+). Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. |
Author | Gai, Nan Chen, Huilun Yao, Jun Li, Tao Wang, Fei Yang, Yongliang |
AuthorAffiliation | National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China School of Environmental Studies & Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education & Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, Wuhan, Hubei 430074, China National Environment & Energy International Cooperation Base, and Civil & Environment Engineering School University of Science and Technology, Beijing 100083, China |
Author_xml | – sequence: 1 fullname: 盖楠 杨永亮 黎涛 姚俊 王飞 陈辉伦 |
BookMark | eNqFkE1v1DAQhi3USvSDK-cgLlyyHceOP44laheqLT1QWm6Wk9jFS9Zu7Wwh_x6vUq0QFyRLtsbPM5p5j9GBD94g9BbDAgNUZ906dIsKMBZQcf4KHWGGacmB1Qf5DYBLBvT7a3Sc0hp2SMWO0O2FtaYbi2CLldF90QQ_6o3zenTBF_l8DW4orl0XQ-v0UJx3o3t241RcG5220fRFO83fnR5CdBszxukUHVo9JPPm5T5B3y4vbptP5epm-bk5X5UdxZSXAow1NdeyxjVtLQVOmdSS97YSdW-4poJyokVPgAiWy6BbTPuWa0GkJZycoA9z38cYnrYmjWrjUmeGQXsTtklhiaVkjNSQ0ff_oOuwjT5PpzBnTIDANcvUYqbyPilFY9VjXknHSWFQu5DVLmS1DzkLchZ-ucFM_6FVc3XT_O2Ws-vSaH7vXR1_KsYJr9X9l6VawfKOVx9BXWb-3ctwP4J_eHL-Ye_keKQkmJA_8Y2bfQ |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2016_11_003 crossref_primary_10_1016_j_chemosphere_2020_127450 |
Cites_doi | 10.1289/ehp.7038 10.1002/etc.5620190332 10.1016/j.soilbio.2005.04.031 10.1016/S0165-022X(00)00115-9 10.1016/S0040-6031(02)00247-2 10.1016/S1383-5718(02)00004-9 10.1016/0038-0717(94)90144-9 10.1007/s002530051050 10.1016/S0038-0717(99)00115-7 10.1016/S0040-6031(03)00371-X 10.1016/j.apsoil.2006.03.007 10.1016/j.mrfmmm.2003.07.010 10.1111/j.1365-2389.1983.tb01043.x 10.1016/j.envpol.2006.01.045 10.1002/cjoc.200990356 10.1023/A:1009738307837 10.1128/aem.62.8.2970-2977.1996 10.1016/S0045-6535(98)00224-0 10.1111/j.1469-8137.1993.tb03796.x 10.1016/j.cattod.2009.10.020 10.1016/S0301-4622(03)00059-0 10.1016/j.ecoenv.2007.02.005 10.1007/s003740050609 10.1016/j.jhazmat.2009.08.114 10.1016/S0038-0717(00)00238-8 10.1007/s10973-005-7200-z 10.1016/j.soilbio.2004.06.015 10.1016/j.chemosphere.2007.11.038 10.1016/0038-0717(78)90099-8 10.1016/S0040-6031(97)00071-3 10.1016/j.soilbio.2009.07.019 10.1128/AEM.64.6.2173-2180.1998 10.1016/S0929-1393(01)00166-4 |
ContentType | Journal Article |
Copyright | Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 2RA 92L CQIGP ~WA BSCLL AAYXX CITATION 7T7 8FD C1K FR3 P64 |
DOI | 10.1002/cjoc.201180277 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Istex CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry |
EISSN | 1614-7065 |
EndPage | 1547 |
ExternalDocumentID | 3957975311 10_1002_cjoc_201180277 CJOC201180277 ark_67375_WNG_L0GV72B0_F 38699313 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China funderid: 40873060 – fundername: the National Outstanding Youth Research Foundation of China funderid: 40925010 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 2RA 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92L AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AHBTC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CCEZO CDRFL CHBEP CQIGP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WA ~WT -SB -S~ 5XA 5XC AAXDM AITYG BSCLL CAJEB HGLYW OIG Q-- U1G U5L AAMNL AAYXX CITATION 7T7 8FD C1K FR3 P64 |
ID | FETCH-LOGICAL-c4147-80efe57a95154bf407469a97df285de7a48473a8d303867df0ab14db7a839f373 |
IEDL.DBID | 33P |
ISSN | 1001-604X |
IngestDate | Sat Aug 17 01:51:34 EDT 2024 Tue Nov 19 04:56:18 EST 2024 Thu Nov 21 21:00:59 EST 2024 Sat Aug 24 00:47:07 EDT 2024 Wed Oct 30 09:48:03 EDT 2024 Wed Feb 14 09:50:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4147-80efe57a95154bf407469a97df285de7a48473a8d303867df0ab14db7a839f373 |
Notes | 31-1547/O6 soil microbial activity, microcalorimetry, lead contamination Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. Gai, Nan Yang, Yongliang Li, Tao Yao, Jun Wang, Fei Chen, Huilun( a National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China b School of Environmental Studies & Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education & Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, Wuhan, Hubei 430074, China c National Environment & Energy International Cooperation Base, and Civil & Environment Engineering School University of Science and Technology, Beijing 100083, China) the National Outstanding Youth Research Foundation of China - No. 40925010 the National Natural Science Foundation of China - No. 40873060 ArticleID:CJOC201180277 istex:AEEB275F5E9647C3ADB7392A02E89F72CFCFF157 ark:/67375/WNG-L0GV72B0-F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1766808156 |
PQPubID | 986331 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1919966350 proquest_journals_1766808156 crossref_primary_10_1002_cjoc_201180277 wiley_primary_10_1002_cjoc_201180277_CJOC201180277 istex_primary_ark_67375_WNG_L0GV72B0_F chongqing_primary_38699313 |
PublicationCentury | 2000 |
PublicationDate | July, 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July, 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationTitleAlternate | Chinese Journal of Chemistry |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Khan, M.; Scullion, J.. Biol. Fertil. Soils, 1999, 30, 202. Barros, N.; Feijóo, S.. Biophys. Chem., 2003, 104, 561. Nicklin, J.; Graeme, K. C.; Paget, T.; Killington, R. A., Microbiology, BIOS Scientific Publishers, UK, 1999, pp. 103-107. Sparling, G. P.. Eur. J. Soil Sci., 1983, 34, 381. Haynes, R. J.; Naidu, R.. Nutr. Cycling Agroecosyst., 1998, 51, 123. Núñez-Regueira, L.; Rodríguez-Añón, J. A.; Proupín-Castiñeiras, J.; Núñez-Fernández, O.. Soil Biol. Biochem., 2006, 38, 115. Yan, C. N.; Liu, Y.; Wang, T. Z.; Tan, Z. Q.; Qu, S. S.; Shen, P.. Chemosphere, 1999, 38, 891. Sposito, G., The Chemistry of Soils, Oxford University Press, Oxford, UK, 1989, pp. 203-205. Renella, G.; Landi, L.; Mench, M.; Nannipieri, P.. Soil Biol. Biochem., 2005, 37, 133. Pennanen, T.; Fritze, H.; Vanhala, P.; Kiikkila, O.; Neuvonen, S.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1998, 64, 2173. Barros, N.; Feijóo, S.; Balsa, R.. Thermochim. Acta, 1997, 296, 53. Yao, J.; Tian, L.; Wang, Y. X.; Atakora, D.; Wang, F.; Chen, H. L.. Ecotoxicol. Environ. Saf., 2008, 69, 289. Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Appl. Soil Ecol., 2001, 18, 271. Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Thermochim. Acta, 2004, 410, 35. Turner, B. L.; Bristow, A. W.; Haygarth, P. M.. Soil Biol. Biochem., 2001, 33, 913. Silbergeld, E. K.. Mutat. Res., 2003, 533, 121. Chen, H. L.; Yao, J.; Wang, F.; Gyula, Z.. Chin. J. Chem., 2009, 27, 2125. Díaz-Ravińa, M.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1996, 62, 2970. Majer, B. J.; Tscherko, D.; Paschke, A.; Wennrich, R.; Kundi, M.; Kandeler, E.; Knasmüller, S.. Mutat. Res., 2002, 515, 111. Teeling, H.; Cypionka, H.. Appl. Microbiol. Biotechnol., 1997, 48, 275. McNeill, D. R.; Narayana, A.; Wong, H. K.; Wilson III, D. M.. Environ. Health Perspect., 2004, 112, 799. Griffiths, R. I.; Bailey, J. M.; Mcnamara, N. P.; Whiteley, A. S.. Appl. Soil Ecol., 2006, 33, 114. Nú ñez-Regueira, L.; Rodríguez-Añón, J. A.; Proupín-Castiñeiras, J.; Villanueva-López, M.; Núñez-Fernández, O.. J. Therm. Anal. Calorim., 2006, 84, 7. Needleman, H. L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E. N.. J. Med. Chem., 1990, 322, 83. Fliessbach, A.; Martens, R.; Reber, H.. Soil Biol. Biochem., 1994, 26, 1201. Gadd, G. M.. New Phytol., 1993, 124, 25. Liu, Y.; Li, X.; Qu, S. S.; Shen, P.. J. Biochem. Biophys. Methods, 2000, 45, 231. Wang, F.; Yao, J.; Si, Y.; Chen, H. L.; Mohammad, R.; Chen, K.; Qian, Y. G.; Gyula, Z.; Emilia, B.. J. Hazard. Mater., 2010, 173, 510. Rodríguez Martín, J. A.; Arias, M. L.; Grau Cobí, J. M.. Environ. Pollut., 2006, 144, 1001. Anderson, J. P. E.; Domsch, K. H.. Soil Biol. Biochem., 1978, 10, 215. Desmartin-Chomel, A.; Hamad, B.; Palomeque, J.; Essayem, N.; Bergeret, G.; Figueras, F.. Catal. Today, 2010, 152, 110. Zheng, S. X.; Hu, J. L.; Chen, K.; Yao, J.; Yu, Z. N.; Lin, X. G.. Soil Biol. Biochem., 2009, 41, 2094. Critter, S. A. M.; Freitas, S. S.; Airoldi, C.. Thermochim. Acta, 2002, 394, 145. Speir, T. W.; Kettles, H. A.; Percival, H. J.; Parshotam, A.. Soil Biol. Biochem., 1999, 31, 1953. Rajkumar, M.; Freitas, H.. Chemosphere, 2008, 71, 834. Díaz-Raviña, M.; Bn̊n̊th, E.. Appl. Environ. Microbiol., 1996, 62, 2970. Preston, S.; Road, N.; Townsend, J.; Killham, K.; Paton, G. I.. Environ. Toxicol. Chem., 2000, 19, 775. 2009; 41 2000; 45 1978; 10 2006; 33 2002; 394 1997; 296 1997; 48 2006; 38 1994; 26 2002; 515 2003; 533 1990; 322 1993; 124 2008; 71 1998; 64 2009; 27 1983; 34 1999 2004; 112 2000; 19 2004; 410 2006; 84 1999; 38 2008; 69 2010; 152 1996; 62 1999; 31 1999; 30 2010; 173 2001; 18 2005; 37 2003; 104 2001; 33 1998; 51 2006; 144 1989 Needleman H. L. (e_1_2_1_11_2) 1990; 322 e_1_2_1_22_2 e_1_2_1_23_2 Díaz‐Ravińa M. (e_1_2_1_34_2) 1996; 62 e_1_2_1_20_2 e_1_2_1_21_2 Nicklin J. (e_1_2_1_37_2) 1999 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 Sposito G. (e_1_2_1_2_2) 1989 e_1_2_1_29_2 Díaz‐Raviña M. (e_1_2_1_28_2) 1996; 62 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 Pennanen T. (e_1_2_1_36_2) 1998; 64 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – start-page: 203 year: 1989 end-page: 205 – volume: 152 start-page: 110 year: 2010 publication-title: Catal. Today – volume: 64 start-page: 2173 year: 1998 publication-title: Appl. Environ. Microbiol. – volume: 71 start-page: 834 year: 2008 publication-title: Chemosphere – volume: 515 start-page: 111 year: 2002 publication-title: Mutat. Res. – volume: 62 start-page: 2970 year: 1996 publication-title: Appl. Environ. Microbiol. – volume: 33 start-page: 913 year: 2001 publication-title: Soil Biol. Biochem. – volume: 112 start-page: 799 year: 2004 publication-title: Environ. Health Perspect. – start-page: 103 year: 1999 end-page: 107 – volume: 84 start-page: 7 year: 2006 publication-title: J. Therm. Anal. Calorim. – volume: 144 start-page: 1001 year: 2006 publication-title: Environ. Pollut. – volume: 38 start-page: 115 year: 2006 publication-title: Soil Biol. Biochem. – volume: 38 start-page: 891 year: 1999 publication-title: Chemosphere – volume: 33 start-page: 114 year: 2006 publication-title: Appl. Soil Ecol. – volume: 34 start-page: 381 year: 1983 publication-title: Eur. J. Soil Sci. – volume: 394 start-page: 145 year: 2002 publication-title: Thermochim. Acta – volume: 124 start-page: 25 year: 1993 publication-title: New Phytol. – volume: 322 start-page: 83 year: 1990 publication-title: J. Med. Chem. – volume: 104 start-page: 561 year: 2003 publication-title: Biophys. Chem. – volume: 26 start-page: 1201 year: 1994 publication-title: Soil Biol. Biochem. – volume: 410 start-page: 35 year: 2004 publication-title: Thermochim. Acta – volume: 173 start-page: 510 year: 2010 publication-title: J. Hazard. Mater. – volume: 41 start-page: 2094 year: 2009 publication-title: Soil Biol. Biochem. – volume: 69 start-page: 289 year: 2008 publication-title: Ecotoxicol. Environ. Saf. – volume: 296 start-page: 53 year: 1997 publication-title: Thermochim. Acta – volume: 533 start-page: 121 year: 2003 publication-title: Mutat. Res. – volume: 37 start-page: 133 year: 2005 publication-title: Soil Biol. Biochem. – volume: 45 start-page: 231 year: 2000 publication-title: J. Biochem. Biophys. Methods – volume: 27 start-page: 2125 year: 2009 publication-title: Chin. J. Chem. – volume: 31 start-page: 1953 year: 1999 publication-title: Soil Biol. Biochem. – volume: 10 start-page: 215 year: 1978 publication-title: Soil Biol. Biochem. – volume: 51 start-page: 123 year: 1998 publication-title: Nutr. Cycling Agroecosyst. – volume: 30 start-page: 202 year: 1999 publication-title: Biol. Fertil. Soils – volume: 18 start-page: 271 year: 2001 publication-title: Appl. Soil Ecol. – volume: 19 start-page: 775 year: 2000 publication-title: Environ. Toxicol. Chem. – volume: 48 start-page: 275 year: 1997 publication-title: Appl. Microbiol. Biotechnol. – ident: e_1_2_1_33_2 doi: 10.1289/ehp.7038 – ident: e_1_2_1_8_2 doi: 10.1002/etc.5620190332 – ident: e_1_2_1_27_2 doi: 10.1016/j.soilbio.2005.04.031 – ident: e_1_2_1_29_2 doi: 10.1016/S0165-022X(00)00115-9 – ident: e_1_2_1_17_2 doi: 10.1016/S0040-6031(02)00247-2 – ident: e_1_2_1_12_2 doi: 10.1016/S1383-5718(02)00004-9 – ident: e_1_2_1_30_2 doi: 10.1016/0038-0717(94)90144-9 – ident: e_1_2_1_23_2 doi: 10.1007/s002530051050 – ident: e_1_2_1_35_2 doi: 10.1016/S0038-0717(99)00115-7 – ident: e_1_2_1_4_2 doi: 10.1016/S0040-6031(03)00371-X – ident: e_1_2_1_6_2 doi: 10.1016/j.apsoil.2006.03.007 – ident: e_1_2_1_32_2 doi: 10.1016/j.mrfmmm.2003.07.010 – start-page: 203 volume-title: The Chemistry of Soils year: 1989 ident: e_1_2_1_2_2 contributor: fullname: Sposito G. – ident: e_1_2_1_19_2 doi: 10.1111/j.1365-2389.1983.tb01043.x – ident: e_1_2_1_10_2 doi: 10.1016/j.envpol.2006.01.045 – ident: e_1_2_1_21_2 doi: 10.1002/cjoc.200990356 – ident: e_1_2_1_25_2 doi: 10.1023/A:1009738307837 – volume: 62 start-page: 2970 year: 1996 ident: e_1_2_1_34_2 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.62.8.2970-2977.1996 contributor: fullname: Díaz‐Ravińa M. – ident: e_1_2_1_24_2 doi: 10.1016/S0045-6535(98)00224-0 – ident: e_1_2_1_31_2 doi: 10.1111/j.1469-8137.1993.tb03796.x – ident: e_1_2_1_20_2 doi: 10.1016/j.cattod.2009.10.020 – ident: e_1_2_1_18_2 doi: 10.1016/S0301-4622(03)00059-0 – ident: e_1_2_1_5_2 doi: 10.1016/j.ecoenv.2007.02.005 – ident: e_1_2_1_7_2 doi: 10.1007/s003740050609 – start-page: 103 volume-title: Microbiology year: 1999 ident: e_1_2_1_37_2 contributor: fullname: Nicklin J. – ident: e_1_2_1_13_2 doi: 10.1016/j.jhazmat.2009.08.114 – ident: e_1_2_1_22_2 doi: 10.1016/S0038-0717(00)00238-8 – ident: e_1_2_1_26_2 doi: 10.1007/s10973-005-7200-z – ident: e_1_2_1_9_2 doi: 10.1016/j.soilbio.2004.06.015 – ident: e_1_2_1_15_2 doi: 10.1016/j.chemosphere.2007.11.038 – ident: e_1_2_1_38_2 doi: 10.1016/0038-0717(78)90099-8 – volume: 322 start-page: 83 year: 1990 ident: e_1_2_1_11_2 publication-title: J. Med. Chem. contributor: fullname: Needleman H. L. – ident: e_1_2_1_3_2 doi: 10.1016/S0040-6031(97)00071-3 – ident: e_1_2_1_14_2 doi: 10.1016/j.soilbio.2009.07.019 – volume: 64 start-page: 2173 year: 1998 ident: e_1_2_1_36_2 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.6.2173-2180.1998 contributor: fullname: Pennanen T. – ident: e_1_2_1_16_2 doi: 10.1016/S0929-1393(01)00166-4 – volume: 62 start-page: 2970 year: 1996 ident: e_1_2_1_28_2 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.62.8.2970-2977.1996 contributor: fullname: Díaz‐Raviña M. |
SSID | ssj0027726 |
Score | 1.9099112 |
Snippet | Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate... Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate... |
SourceID | proquest crossref wiley istex chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1541 |
SubjectTerms | lead contamination microcalorimetry soil microbial activity 土壤微生物活性 土壤样品 微生物数量 微生物活动 果园土壤 活性下降 生物活性测定 铅污染 |
Title | Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry |
URI | http://lib.cqvip.com/qk/84126X/201107/38699313.html https://api.istex.fr/ark:/67375/WNG-L0GV72B0-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201180277 https://www.proquest.com/docview/1766808156 https://search.proquest.com/docview/1919966350 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZ4HODC8hRlAQUJwamiTdOmPS4DA0K8JJ63KG1TdhbUssyOtPx77GSmMCckkHppk0aRncR24nwfwDbGsXGZlKHPM8MxQJGRn5eoEKJ1wJg5L4S9lXZ8Jc_v04NDgslpb_E7fIh2w41mhl2vaYLrvL_3Dhpa_GkKC8GZ0jEkLsIYKtg7HNHle8QlLd8a4Qz5SSDuR6iNAd8b_52QFX439cNftBdjFmqahP1_zP386MRaK9T98f3-z8Pc0ANlv9yQWYAJUy_CTGdE_LYE1w7RmDUVIwJORgBWmjJmSIcMn6um98TOehbCiVoqHAMFO3P7jSXLX10x6r8h-gBsdhluuofXnWN_SL7gFyIUZLlMZWKp0QOLRV4J4iXJdCbLiqN2jdQC7Vqk0xJtYJrg50DnoShzqdHlqiIZrcBU3dRmFRivpIiLJEq0CemYThcyDquYpzh-dMZzD9Za4atnB7KhsFF0ncLIg92RNtoyB7XMFYlQtSL0YMcqq62mXx4pbU3G6u78SJ0GR7eS7weq68H6SJtqOGP7ioAyiYUkTjzYaotR8nSAomvTDLBORjnb6KIFHnCr20-6pDonF532be0rP_2EWbeNTRnC6zD172VgNmCyXw427Vh_Ayda-tk |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7R5lAulKdwCbBIqJys2uu11z6WkDQtSYrUAL2t1vYa-pBd2kZq_z0zu7FDTkgIyRd7H7JnZj0z-_g-gPeYx8ZlUoY-zwzHBEVGfl6iQojWAXPmvBD2VNr4RM5O009DgsnZb8_COHyIbsKNRob9X9MApwnpvRVqaHHeFBaDM6V1yA3oiQStkU5xRF9WOZe0jGuENOQngThtcRsDvrfenrAVfjb1j1_oMdZ8VI_EfbcWgP4Zxlo_NNr-D1_wGB4tg1C276zmCTww9VPYGrTcb89g7kCNWVMx4uBkhGGladMMqZHhddKcXbLpmUVxop4KR0LBpm7KsWT5vStGE2iIQQC7fQ5fR8P5YOwv-Rf8QoSCnJepTCw1BmGxyCtB1CSZzmRZcVSwkVqga4t0WqIbTBN8HOg8FGUuNUZdVSSjF7BZN7V5CYxXUsRFEiXahLRSpwsZh1XMUzQhnfHcg51O-urK4Wwo7BSjpzDy4EOrjq7MoS1zRSJUnQg92LXa6qrp6wvauSZj9X12oCbBwTfJPwZq5EG_VadaDtobRViZREQSJx6864pR8rSGomvTLLBORtu2MUoLPOBWuX95JTU4Oh50dzv_0ugtbI3n04maHM4-v4KHblabNgz3YfP2emFew8ZNuXhjDf83D8r_AQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAoXoIWK8KorVe0pInGcODmWhYW2sEXiebOc2CnQKuG1UvvvO2Pvhu4JqUi5JH4ombEzM_b4-wA-YBybmszEIS8sxwBFJmFpUCFE64Axc1kJdyrt4EQOLvPdPYLJ6U7xe3yIbsGNZob7X9MEvzX19hNoaHXTVg6CM6dtyGmYFeiLE3p-khw_hVzSEa4R0FCYReJyDNsY8e3J9gStcNU2P-7QYEyYqFmS9u8J__NfL9aZof7iyz9gCRZGLij77MfMa5iyzRuY642Z35bh1EMas7ZmxMDJCMFKU8oMKZHhddJe_2JH1w7DiXqqPAUFO_ILjoaVf3wxDoCW-AOw2xU46--d9g7CEftCWIlYkOmytU2lRhcsFWUtiJik0IU0NUf1WqkFGrZE5waNYJ7h40iXsTCl1Ohz1YlM3sJM0zZ2FRivpUirLMm0jWmfTlcyjeuU5ziAdMHLANY64atbj7KhsFP0neIkgE9jbXRlHmuZKxKh6kQYwEenrK6avv9JeWsyVReDfXUY7Z9LvhOpfgAbY22q0ZR9UISUSTQkaRbA-64YJU87KLqx7RDrFJS0jT5aFAB3un3mlVTv6_ded7f2P43ewavj3b46_DL4tg7zfkmbsoU3YObxfmg3YfrBDLfcsP8L6Hf9pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Lead+Contamination+on+Soil+Microbial+Activity+Measured+by+Microcalorimetry&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Gai%2C+Nan&rft.au=Yang%2C+Yongliang&rft.au=Li%2C+Tao&rft.au=Yao%2C+Jun&rft.date=2011-07-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=7&rft.spage=1541&rft.epage=1547&rft_id=info:doi/10.1002%2Fcjoc.201180277&rft.externalDBID=10.1002%252Fcjoc.201180277&rft.externalDocID=CJOC201180277 |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg |