Mycorrhizae Differentially Alter Growth, Physiology, and Competitive Ability of an Invasive Shrub

Mycorrhizae improve phosphorus availability to host plants and alter their morphology, physiology, and competitive ability. We examined how different isolates of arbuscular mycorrhizal fungi, soil-P, light, and competition affect the growth, physiology, and biomass allocation of seedlings of an exot...

Full description

Saved in:
Bibliographic Details
Published in:Ecological applications Vol. 13; no. 3; pp. 565 - 574
Main Authors: Sarah R. Bray, Kitajima, Kaoru, Sylvia, David M.
Format: Journal Article
Language:English
Published: Ecological Society of America 01-06-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycorrhizae improve phosphorus availability to host plants and alter their morphology, physiology, and competitive ability. We examined how different isolates of arbuscular mycorrhizal fungi, soil-P, light, and competition affect the growth, physiology, and biomass allocation of seedlings of an exotic invasive shrub of the southeastern United States, Ardisia crenata, in two greenhouse experiments. When Ardisia seedlings were grown singly in pots without competition, soil phosphorus concentration and light had no effect on seedling growth. Relative growth rates (RGR) and leaf area ratio (LAR), however, were higher for seedlings inoculated with mycorrhizal fungi isolated from Ardisia roots than those inoculated with single-spore isolates and nonmycorrhizal controls. In the second experiment, an Ardisia seedling was grown in each pot in competition with another conspecific seedling or with a seedling of Prunus caroliniana, a native subcanopy tree. The identity of the competitor had little effect on seedling RGR of Ardisia, but LAR was significantly higher for seedlings in conspecific competition. Overall, Prunus seedlings had higher RGR than Ardisia, but RGR and survival of Prunus seedlings were significantly reduced in competition with Ardisia when mycorrhizal fungi were suppressed by benomyl. These results suggest that competitive interactions of exotic invasive plants with native plants are dependent on the isolates of mycorrhizae present.
Bibliography:sbray@botany.ufl.edu
E‐mail
Corresponding Editor: D. P. C. Peters
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-0761
1939-5582
DOI:10.1890/1051-0761(2003)013[0565:MDAGPA]2.0.CO;2