Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples

The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high sa...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics Vol. 22; no. 22; pp. 14905 - 14930
Main Authors: Hamzehpour, Nikou, Marcolli, Claudia, Pashai, Sara, Klumpp, Kristian, Peter, Thomas
Format: Journal Article
Language:English
Published: Katlenburg-Lindau Copernicus GmbH 23-11-2022
Copernicus Publications
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention.
AbstractList The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention.
The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention.
Audience Academic
Author Peter, Thomas
Pashai, Sara
Marcolli, Claudia
Klumpp, Kristian
Hamzehpour, Nikou
Author_xml – sequence: 1
  fullname: Hamzehpour, Nikou
– sequence: 2
  fullname: Marcolli, Claudia
– sequence: 3
  fullname: Pashai, Sara
– sequence: 4
  fullname: Klumpp, Kristian
– sequence: 5
  fullname: Peter, Thomas
BookMark eNptks9u1DAQxiNUJNrCA3CzxIlDiu3EcdxbteLPSkUgaM_WxJksXiV2sB1Bb7wDF56PJ8G7WxVWQj7YM_rNp5nxd1acOO-wKJ4zeiGYql-BmUvOS1YrKkpOOX9UnLKmpaWseH3yz_tJcRbjllIuKKtPi1_vEeIScEKXSMDZh3RJbr4guQ2TBTKPcAcEIgES_RIMEj8QsKHzwSHpl5gIuJ5Yg6VbzIiQrNuQGUKyOYrk94-f5GOOCLskKx8CjpnwjnSYviG6LGrHuJd4EI0wzbn0afF4gDHis_v7vLh98_pm9a68_vB2vbq6Lk3NqlR2CkVruBANVKwGZtq6UtgKOaBiVHHZAgfT5vGZYqajyFhPZQ89sE6Zhlfnxfqg23vY6jnYCcKd9mD1PuHDRt9PoyVgJUwrBqVE3bUCTDPkdUvWDFKiGrLWi4PWHPzXBWPS27w0l9vXXFYqL7wS9V9qA1nUusGnAGay0egryWXDmkbtqIv_UPn0OFmTP3-wOX9U8PKoIDMJv6cNLDHq9edPxyw7sCb4GAMOD4Mzqnd-0tlPmnO995Pe-an6A7Abv0A
CitedBy_id crossref_primary_10_1016_j_catena_2023_107310
crossref_primary_10_1016_j_soisec_2023_100113
crossref_primary_10_1016_j_jag_2024_103879
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_1016_j_ecoinf_2023_102355
crossref_primary_10_1016_j_ecoinf_2024_102560
crossref_primary_10_5194_acp_22_14931_2022
crossref_primary_10_3390_atmos15010024
crossref_primary_10_1016_j_catena_2023_107799
crossref_primary_10_3390_rs15112774
Cites_doi 10.1002/jgrd.50801
10.4314/jasem.v23i8.15
10.1007/s12517-012-0566-x
10.1107/S1600576715014685
10.1016/j.scitotenv.2018.11.153
10.1016/j.atmosres.2019.104762
10.3724/SP.J.1227.2010.00144
10.1109/LGRS.2019.2949132
10.1016/S1352-2310(00)00403-9
10.1186/s40201-015-0238-3
10.3390/geosciences8050151
10.1029/2021JD035186
10.1016/j.aeolia.2014.08.004
10.1038/nature12278
10.1180/emu-notes.2010.emu9-3
10.1016/j.jaridenv.2015.01.008
10.1111/1475-5661.00013
10.5194/acp-7-5081-2007
10.1029/2000RG000095
10.1016/j.scitotenv.2013.06.045
10.1016/j.compag.2004.10.005
10.2134/agronmonogr9.1.c39
10.1016/j.aeolia.2016.12.001
10.1039/c2cs35200a
10.1016/j.epsl.2013.08.028
10.1175/AMSMONOGRAPHS-D-16-0006.1
10.1002/ecs2.2650
10.1016/j.quaint.2007.03.005
10.1080/00103624.2015.1118118
10.1016/j.aeolia.2017.04.001
10.5194/acp-18-16515-2018
10.1016/j.gexplo.2016.11.006
10.1002/2015GL064604
10.1080/02772248.2016.1166226
10.5194/acp-19-6059-2019
10.1007/s12517-010-0181-7
10.1016/j.catena.2020.104675
10.1007/s10661-008-0695-6
10.1016/S1352-2310(01)00190-X
10.5194/acp-22-3655-2022
10.1038/s41467-017-02620-y
10.4267/pollution-atmospherique.1907
10.5194/acp-15-11593-2015
10.1016/j.scitotenv.2004.09.031
10.2136/sssaj1950.036159950014000C0005x
10.1016/j.atmosenv.2017.03.045
10.1016/S1002-0160(11)60158-6
10.1021/jp509839x
10.1016/j.jglr.2016.07.033
10.17221/4376-PSE
10.5194/acp-14-1853-2014
10.5194/acp-15-11629-2015
10.5194/acp-16-11177-2016
10.2136/sssabookser5.4.c12
10.1346/CCMN.2003.0510212
10.5194/acp-12-9817-2012
10.2136/sssabookser5.3.c14
10.1038/s41561-022-00901-w
10.1016/j.jaerosci.2004.08.005
10.1177/0959683615591356
10.5194/acp-22-14931-2022
10.2136/sssabookser5.4.c14
10.1016/j.aeolia.2012.10.005
10.1016/j.geomorph.2011.09.005
10.1016/j.envres.2005.01.007
10.1016/j.chemosphere.2006.02.052
10.1021/acsearthspacechem.0c00077
10.5194/acp-15-2489-2015
10.1016/j.geoderma.2004.03.005
10.5194/acp-14-8521-2014
10.1007/s11269-013-0420-2
10.1016/j.gexplo.2011.04.004
10.1016/j.atmosenv.2004.07.010
10.1016/j.catena.2018.07.019
10.5194/acp-16-15075-2016
10.1039/C7SC05421A
10.5194/acp-12-5859-2012
10.1029/2009JD012959
10.1016/j.atmosenv.2015.08.021
10.5194/acp-16-7195-2016
10.1038/ngeo3052
10.5194/acp-21-18029-2021
10.1016/S0269-7491(99)00328-0
10.1021/acsearthspacechem.1c00034
10.1016/B978-0-12-409548-9.11195-9
10.5194/acp-19-11343-2019
10.1016/j.geoderma.2010.07.016
10.1016/j.chemosphere.2012.06.059
10.5194/acp-16-11477-2016
10.5194/acp-19-10901-2019
10.5194/acp-11-9643-2011
10.1016/j.geoderma.2019.113936
10.5194/acp-2022-356
10.1016/j.chemosphere.2021.131879
10.1016/S0045-6535(02)00177-7
10.1016/j.atmosenv.2011.03.024
10.5194/acp-19-6035-2019
10.1002/2016JD025119
10.1002/esp.1515
10.1016/j.geoderma.2018.07.012
10.1039/C0CE00153H
10.5194/acp-18-7057-2018
10.1007/s12665-010-0690-4
10.1016/S0016-7037(01)00864-X
10.1007/698_2018_359
10.2136/sssabookser5.3.c34
10.1126/science.183.4121.198
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-22-14905-2022
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 14930
ExternalDocumentID oai_doaj_org_article_7ae35c85f9954b85ac6f905716f77e9f
A727616694
10_5194_acp_22_14905_2022
GeographicLocations Iran
Lake Urmia
GeographicLocations_xml – name: Iran
– name: Lake Urmia
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
AFPKN
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
ID FETCH-LOGICAL-c413t-b9e58c2556a314a1c8439e857fe9109278a2ac8168191cb0e11d07dada1b9c623
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 22 15:12:56 EDT 2024
Sat Nov 09 14:11:54 EST 2024
Tue Nov 19 21:21:57 EST 2024
Tue Nov 12 22:36:36 EST 2024
Thu Aug 01 19:32:26 EDT 2024
Thu Nov 21 21:48:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b9e58c2556a314a1c8439e857fe9109278a2ac8168191cb0e11d07dada1b9c623
ORCID 0000-0002-9125-8722
OpenAccessLink https://doaj.org/article/7ae35c85f9954b85ac6f905716f77e9f
PQID 2739014354
PQPubID 105744
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_7ae35c85f9954b85ac6f905716f77e9f
proquest_journals_2739014354
gale_infotracmisc_A727616694
gale_infotracacademiconefile_A727616694
gale_incontextgauss_ISR_A727616694
crossref_primary_10_5194_acp_22_14905_2022
PublicationCentury 2000
PublicationDate 2022-11-23
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-23
  day: 23
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref107
  doi: 10.1002/jgrd.50801
– ident: ref6
  doi: 10.4314/jasem.v23i8.15
– ident: ref68
  doi: 10.1007/s12517-012-0566-x
– ident: ref91
– ident: ref27
  doi: 10.1107/S1600576715014685
– ident: ref40
  doi: 10.1016/j.scitotenv.2018.11.153
– ident: ref4
  doi: 10.1016/j.atmosres.2019.104762
– ident: ref24
– ident: ref2
  doi: 10.3724/SP.J.1227.2010.00144
– ident: ref15
  doi: 10.1109/LGRS.2019.2949132
– ident: ref29
  doi: 10.1016/S1352-2310(00)00403-9
– ident: ref38
  doi: 10.1186/s40201-015-0238-3
– ident: ref98
  doi: 10.3390/geosciences8050151
– ident: ref106
  doi: 10.1029/2021JD035186
– ident: ref41
  doi: 10.1016/j.aeolia.2014.08.004
– ident: ref30
– ident: ref9
  doi: 10.1038/nature12278
– ident: ref13
  doi: 10.1180/emu-notes.2010.emu9-3
– ident: ref36
– ident: ref75
  doi: 10.1016/j.jaridenv.2015.01.008
– ident: ref73
  doi: 10.1111/1475-5661.00013
– ident: ref71
  doi: 10.5194/acp-7-5081-2007
– ident: ref89
  doi: 10.1029/2000RG000095
– ident: ref50
– ident: ref92
  doi: 10.1016/j.scitotenv.2013.06.045
– ident: ref23
  doi: 10.1016/j.compag.2004.10.005
– ident: ref56
  doi: 10.2134/agronmonogr9.1.c39
– ident: ref72
  doi: 10.1016/j.aeolia.2016.12.001
– ident: ref78
  doi: 10.1039/c2cs35200a
– ident: ref1
  doi: 10.1016/j.epsl.2013.08.028
– ident: ref54
  doi: 10.1175/AMSMONOGRAPHS-D-16-0006.1
– ident: ref28
  doi: 10.1002/ecs2.2650
– ident: ref96
– ident: ref116
  doi: 10.1016/j.quaint.2007.03.005
– ident: ref10
  doi: 10.1080/00103624.2015.1118118
– ident: ref11
  doi: 10.1016/j.aeolia.2017.04.001
– ident: ref83
  doi: 10.5194/acp-18-16515-2018
– ident: ref60
– ident: ref122
  doi: 10.1016/j.gexplo.2016.11.006
– ident: ref77
  doi: 10.1002/2015GL064604
– ident: ref39
  doi: 10.1080/02772248.2016.1166226
– ident: ref64
  doi: 10.5194/acp-19-6059-2019
– ident: ref5
  doi: 10.1007/s12517-010-0181-7
– ident: ref76
  doi: 10.1016/j.catena.2020.104675
– ident: ref105
– ident: ref84
  doi: 10.1007/s10661-008-0695-6
– ident: ref7
  doi: 10.1016/S1352-2310(01)00190-X
– ident: ref58
  doi: 10.5194/acp-22-3655-2022
– ident: ref59
  doi: 10.1038/s41467-017-02620-y
– ident: ref25
  doi: 10.4267/pollution-atmospherique.1907
– ident: ref86
  doi: 10.5194/acp-15-11593-2015
– ident: ref34
  doi: 10.1016/j.scitotenv.2004.09.031
– ident: ref109
  doi: 10.2136/sssaj1950.036159950014000C0005x
– ident: ref57
  doi: 10.1016/j.atmosenv.2017.03.045
– ident: ref119
– ident: ref110
  doi: 10.1016/S1002-0160(11)60158-6
– ident: ref125
  doi: 10.1021/jp509839x
– ident: ref99
  doi: 10.1016/j.jglr.2016.07.033
– ident: ref16
  doi: 10.17221/4376-PSE
– ident: ref82
  doi: 10.5194/acp-14-1853-2014
– ident: ref87
  doi: 10.5194/acp-15-11629-2015
– ident: ref55
  doi: 10.5194/acp-16-11177-2016
– ident: ref35
  doi: 10.2136/sssabookser5.4.c12
– ident: ref121
  doi: 10.1346/CCMN.2003.0510212
– ident: ref49
  doi: 10.5194/acp-12-9817-2012
– ident: ref97
  doi: 10.2136/sssabookser5.3.c14
– ident: ref8
– ident: ref33
  doi: 10.1038/s41561-022-00901-w
– ident: ref111
  doi: 10.1016/j.jaerosci.2004.08.005
– ident: ref37
– ident: ref112
– ident: ref20
– ident: ref81
– ident: ref17
  doi: 10.1177/0959683615591356
– ident: ref44
  doi: 10.5194/acp-22-14931-2022
– ident: ref80
  doi: 10.2136/sssabookser5.4.c14
– ident: ref123
  doi: 10.1016/j.aeolia.2012.10.005
– ident: ref32
  doi: 10.1016/j.geomorph.2011.09.005
– ident: ref66
  doi: 10.1016/j.envres.2005.01.007
– ident: ref74
  doi: 10.1016/j.chemosphere.2006.02.052
– ident: ref117
  doi: 10.1021/acsearthspacechem.0c00077
– ident: ref47
  doi: 10.5194/acp-15-2489-2015
– ident: ref18
  doi: 10.1016/j.geoderma.2004.03.005
– ident: ref108
  doi: 10.5194/acp-14-8521-2014
– ident: ref53
  doi: 10.1007/s11269-013-0420-2
– ident: ref120
  doi: 10.1016/j.gexplo.2011.04.004
– ident: ref61
  doi: 10.1016/j.atmosenv.2004.07.010
– ident: ref43
  doi: 10.1016/j.catena.2018.07.019
– ident: ref14
  doi: 10.5194/acp-16-15075-2016
– ident: ref114
  doi: 10.1039/C7SC05421A
– ident: ref88
  doi: 10.5194/acp-12-5859-2012
– ident: ref67
  doi: 10.1029/2009JD012959
– ident: ref3
  doi: 10.1016/j.atmosenv.2015.08.021
– ident: ref46
  doi: 10.5194/acp-16-7195-2016
– ident: ref115
  doi: 10.1038/ngeo3052
– ident: ref19
  doi: 10.5194/acp-21-18029-2021
– ident: ref12
  doi: 10.1016/S0269-7491(99)00328-0
– ident: ref118
  doi: 10.1021/acsearthspacechem.1c00034
– ident: ref48
  doi: 10.1016/B978-0-12-409548-9.11195-9
– ident: ref45
  doi: 10.5194/acp-19-11343-2019
– ident: ref21
  doi: 10.1016/j.geoderma.2010.07.016
– ident: ref93
  doi: 10.1016/j.chemosphere.2012.06.059
– ident: ref85
  doi: 10.5194/acp-16-11477-2016
– ident: ref113
  doi: 10.5194/acp-19-10901-2019
– ident: ref22
  doi: 10.5194/acp-11-9643-2011
– ident: ref101
– ident: ref70
– ident: ref100
  doi: 10.1016/j.geoderma.2019.113936
– ident: ref42
  doi: 10.5194/acp-2022-356
– ident: ref69
  doi: 10.1016/j.chemosphere.2021.131879
– ident: ref52
  doi: 10.1016/S0045-6535(02)00177-7
– ident: ref90
– ident: ref26
  doi: 10.1016/j.atmosenv.2011.03.024
– ident: ref63
  doi: 10.5194/acp-19-6035-2019
– ident: ref104
  doi: 10.1002/2016JD025119
– ident: ref95
  doi: 10.1002/esp.1515
– ident: ref103
  doi: 10.1016/j.geoderma.2018.07.012
– ident: ref51
  doi: 10.1039/C0CE00153H
– ident: ref62
  doi: 10.5194/acp-18-7057-2018
– ident: ref65
  doi: 10.1007/s12665-010-0690-4
– ident: ref94
  doi: 10.1016/S0016-7037(01)00864-X
– ident: ref102
  doi: 10.1007/698_2018_359
– ident: ref79
  doi: 10.2136/sssabookser5.3.c34
– ident: ref124
  doi: 10.1126/science.183.4121.198
– ident: ref31
SSID ssj0025014
Score 2.5046823
Snippet The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions...
The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 14905
SubjectTerms Aerosols
Airborne sensing
Aluminum
Analysis
Atmospheric particulates
Carbonates
Chlorite
Clay
Clay minerals
Climate change
Climatic changes
Cloud properties
Composition
Concretions
Correlation
Crusts
Deserts
Desiccation
Differential scanning calorimetry
Drought
Dust
Dust control
Emulsions
Experiments
Feldspars
Freezing
Health aspects
Heat resistance
Ice nucleation
Iron
Kaolinite
Lake beds
Lake sediments
Lakes
Measurement
Minerals
Nucleation
Organic matter
Palygorskite
pH effects
Physicochemical analysis
Physicochemical properties
Playas
Quartz
Salinity
Salinity effects
Salt
Salt content
Sand
Sediments
Sediments (Geology)
Semi arid areas
Semiarid lands
Semiarid zones
Shores
Silicon
Size distribution
Soil erosion
Soil properties
Soils
Wind erosion
Zinc
Title Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
URI https://www.proquest.com/docview/2739014354
https://doaj.org/article/7ae35c85f9954b85ac6f905716f77e9f
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BT1wQFBCBFo0QAgnJqnf9te6tDa3gUIQolbitZr9QpMiJ4uTAjf_Ahd_XX8LM2gnKAXHhaGe0infGs-_tjt8I8Uq33uuWaAmtDTorLWE4W8WQRa8lyhKDV6mJ7XXz8at-d8EyObtWX1wTNsgDDxN30mAoKqeryMJlVlfo6tgSyJB1bJrQxpR983pLpkaqxadlTLVqnWfcm2k4zyS0Up6gW2ZEwIgZ5BXFiFJ7K1IS7v9bek5rzuUDcX8Ei3A2_MmH4k7oDsXkinDuYpW2w-E1TOczAp3p6pH4dfVnyw-G44BToEiAG_InwnKO3xGwB4Rh0x4WEXC2ojjoAnAPD8DOA-WOrGOdY-SaaFhui-fg9sdP-ERXIE9hym09hkI6GIu9aNDZvE9D7AbtkeWH-8fi5vLiy_R9NvZeyBwta-vMtqHSjvXJsCCXSacJuQRdNTEQwGhVo1Gh46YdRPiczYOUPm88epS2dYSpnoiDbtGFpwKCLCylCsedqzhdaFvqEEtlcxWYb07E2-38m-UgsWGImrCzDDnLKGWSs4xKxufsoZ0hq2OnGxQzZpwO86-YmYiX7F_D-hcdF9h8w03fmw_Xn80Z4bla1nVbTsSb0Sgu1it0OH6vQA_Fkll7lkd7lvSCuv2ft2FkxgTRG0KNfIBdVOWz__FEz8U9nh3-SFIVR-JgvdqEY3G395sX6cX4DWFjEJA
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+report%3A+The+Urmia+playa+as+a+source+of+airborne+dust+and+ice-nucleating+particles+%E2%80%93+Part+1%3A+Correlation+between+soils+and+airborne+samples&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Nikou+Hamzehpour&rft.au=Marcolli%2C+Claudia&rft.au=Pashai%2C+Sara&rft.au=Klumpp%2C+Kristian&rft.date=2022-11-23&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=22&rft.issue=22&rft.spage=14905&rft.epage=14930&rft_id=info:doi/10.5194%2Facp-22-14905-2022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon