Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high sa...
Saved in:
Published in: | Atmospheric chemistry and physics Vol. 22; no. 22; pp. 14905 - 14930 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
23-11-2022
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention. |
---|---|
AbstractList | The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention. The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions of the world poses a growing hazard. Airborne dust originating from such soils can create health and environmental issues due to their high salt content and the presence of toxic elements. The aim of the present study is twofold, namely to investigate the newly emerged playa surfaces of western Lake Urmia (LU) in Iran and their contribution to aerosol in the region by means of physicochemical, mineralogical, and elemental analyses and to study the ice nucleation (IN) activity of both surface-collected soil and airborne dust samples. The playa surfaces created by desiccation of LU on the western shores were mapped and sampled at 130 locations. Soil samples were subjected to physicochemical analyses, and their erodible fraction was determined. Based on these analyses, four highly erodible playa surfaces from the northwest to the south of LU were selected as sites for collection of dust by impaction and soil samples from the uppermost surface. Their particle physicochemical properties (size distribution, elemental and mineralogical composition) were compared with their IN activity determined by emulsion freezing experiments in a differential scanning calorimeter (DSC) in two suspension concentrations of 2 wt % and 5 wt %. The physicochemical soil properties differed significantly between the different playa surfaces, which affects their susceptibility to wind erosion. Sand sheets and sandy salt crusts were the most erodible playa surfaces due to their high sand fraction and low organic matter and clay content, favouring the presence of small aggregates. Mineralogical analyses document the prevalence of quartz, carbonates, and clay minerals, such as kaolinite, palygorskite, and chlorite in all of the samples. The predominant elements in the samples are Ca, Fe, Al, Si, and Na (and in some cases Ba, Sr, and Zn). The correlation between soil and dust samples based on mineralogical composition, elemental enrichment factors, and physicochemical properties confirm that the playa surfaces are the major contributors to dust in the region. IN activity with onset temperatures ranging from 245 to 250 K demonstrates the high potential of dust blown from Urmia playa surfaces to affect cloud properties and precipitation. Freezing onset temperatures and the fraction of heterogeneously frozen droplets in the emulsions reveal variations in IN activity depending on the mineralogical composition of the samples but which are also influenced by organic matter, salinity, and pH. Specifically, IN activity correlates positively with organic matter and clay minerals and negatively with pH, salinity, and (surprisingly) K-feldspar and quartz content. The high wind erodibility and dust production of the LU playa surfaces together with their high IN activity can play an important role in the climate of the region and thus needs careful monitoring and specific attention. |
Audience | Academic |
Author | Peter, Thomas Pashai, Sara Marcolli, Claudia Klumpp, Kristian Hamzehpour, Nikou |
Author_xml | – sequence: 1 fullname: Hamzehpour, Nikou – sequence: 2 fullname: Marcolli, Claudia – sequence: 3 fullname: Pashai, Sara – sequence: 4 fullname: Klumpp, Kristian – sequence: 5 fullname: Peter, Thomas |
BookMark | eNptks9u1DAQxiNUJNrCA3CzxIlDiu3EcdxbteLPSkUgaM_WxJksXiV2sB1Bb7wDF56PJ8G7WxVWQj7YM_rNp5nxd1acOO-wKJ4zeiGYql-BmUvOS1YrKkpOOX9UnLKmpaWseH3yz_tJcRbjllIuKKtPi1_vEeIScEKXSMDZh3RJbr4guQ2TBTKPcAcEIgES_RIMEj8QsKHzwSHpl5gIuJ5Yg6VbzIiQrNuQGUKyOYrk94-f5GOOCLskKx8CjpnwjnSYviG6LGrHuJd4EI0wzbn0afF4gDHis_v7vLh98_pm9a68_vB2vbq6Lk3NqlR2CkVruBANVKwGZtq6UtgKOaBiVHHZAgfT5vGZYqajyFhPZQ89sE6Zhlfnxfqg23vY6jnYCcKd9mD1PuHDRt9PoyVgJUwrBqVE3bUCTDPkdUvWDFKiGrLWi4PWHPzXBWPS27w0l9vXXFYqL7wS9V9qA1nUusGnAGay0egryWXDmkbtqIv_UPn0OFmTP3-wOX9U8PKoIDMJv6cNLDHq9edPxyw7sCb4GAMOD4Mzqnd-0tlPmnO995Pe-an6A7Abv0A |
CitedBy_id | crossref_primary_10_1016_j_catena_2023_107310 crossref_primary_10_1016_j_soisec_2023_100113 crossref_primary_10_1016_j_jag_2024_103879 crossref_primary_10_1016_j_aeolia_2024_100924 crossref_primary_10_1016_j_ecoinf_2023_102355 crossref_primary_10_1016_j_ecoinf_2024_102560 crossref_primary_10_5194_acp_22_14931_2022 crossref_primary_10_3390_atmos15010024 crossref_primary_10_1016_j_catena_2023_107799 crossref_primary_10_3390_rs15112774 |
Cites_doi | 10.1002/jgrd.50801 10.4314/jasem.v23i8.15 10.1007/s12517-012-0566-x 10.1107/S1600576715014685 10.1016/j.scitotenv.2018.11.153 10.1016/j.atmosres.2019.104762 10.3724/SP.J.1227.2010.00144 10.1109/LGRS.2019.2949132 10.1016/S1352-2310(00)00403-9 10.1186/s40201-015-0238-3 10.3390/geosciences8050151 10.1029/2021JD035186 10.1016/j.aeolia.2014.08.004 10.1038/nature12278 10.1180/emu-notes.2010.emu9-3 10.1016/j.jaridenv.2015.01.008 10.1111/1475-5661.00013 10.5194/acp-7-5081-2007 10.1029/2000RG000095 10.1016/j.scitotenv.2013.06.045 10.1016/j.compag.2004.10.005 10.2134/agronmonogr9.1.c39 10.1016/j.aeolia.2016.12.001 10.1039/c2cs35200a 10.1016/j.epsl.2013.08.028 10.1175/AMSMONOGRAPHS-D-16-0006.1 10.1002/ecs2.2650 10.1016/j.quaint.2007.03.005 10.1080/00103624.2015.1118118 10.1016/j.aeolia.2017.04.001 10.5194/acp-18-16515-2018 10.1016/j.gexplo.2016.11.006 10.1002/2015GL064604 10.1080/02772248.2016.1166226 10.5194/acp-19-6059-2019 10.1007/s12517-010-0181-7 10.1016/j.catena.2020.104675 10.1007/s10661-008-0695-6 10.1016/S1352-2310(01)00190-X 10.5194/acp-22-3655-2022 10.1038/s41467-017-02620-y 10.4267/pollution-atmospherique.1907 10.5194/acp-15-11593-2015 10.1016/j.scitotenv.2004.09.031 10.2136/sssaj1950.036159950014000C0005x 10.1016/j.atmosenv.2017.03.045 10.1016/S1002-0160(11)60158-6 10.1021/jp509839x 10.1016/j.jglr.2016.07.033 10.17221/4376-PSE 10.5194/acp-14-1853-2014 10.5194/acp-15-11629-2015 10.5194/acp-16-11177-2016 10.2136/sssabookser5.4.c12 10.1346/CCMN.2003.0510212 10.5194/acp-12-9817-2012 10.2136/sssabookser5.3.c14 10.1038/s41561-022-00901-w 10.1016/j.jaerosci.2004.08.005 10.1177/0959683615591356 10.5194/acp-22-14931-2022 10.2136/sssabookser5.4.c14 10.1016/j.aeolia.2012.10.005 10.1016/j.geomorph.2011.09.005 10.1016/j.envres.2005.01.007 10.1016/j.chemosphere.2006.02.052 10.1021/acsearthspacechem.0c00077 10.5194/acp-15-2489-2015 10.1016/j.geoderma.2004.03.005 10.5194/acp-14-8521-2014 10.1007/s11269-013-0420-2 10.1016/j.gexplo.2011.04.004 10.1016/j.atmosenv.2004.07.010 10.1016/j.catena.2018.07.019 10.5194/acp-16-15075-2016 10.1039/C7SC05421A 10.5194/acp-12-5859-2012 10.1029/2009JD012959 10.1016/j.atmosenv.2015.08.021 10.5194/acp-16-7195-2016 10.1038/ngeo3052 10.5194/acp-21-18029-2021 10.1016/S0269-7491(99)00328-0 10.1021/acsearthspacechem.1c00034 10.1016/B978-0-12-409548-9.11195-9 10.5194/acp-19-11343-2019 10.1016/j.geoderma.2010.07.016 10.1016/j.chemosphere.2012.06.059 10.5194/acp-16-11477-2016 10.5194/acp-19-10901-2019 10.5194/acp-11-9643-2011 10.1016/j.geoderma.2019.113936 10.5194/acp-2022-356 10.1016/j.chemosphere.2021.131879 10.1016/S0045-6535(02)00177-7 10.1016/j.atmosenv.2011.03.024 10.5194/acp-19-6035-2019 10.1002/2016JD025119 10.1002/esp.1515 10.1016/j.geoderma.2018.07.012 10.1039/C0CE00153H 10.5194/acp-18-7057-2018 10.1007/s12665-010-0690-4 10.1016/S0016-7037(01)00864-X 10.1007/698_2018_359 10.2136/sssabookser5.3.c34 10.1126/science.183.4121.198 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PYCSY DOA |
DOI | 10.5194/acp-22-14905-2022 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 14930 |
ExternalDocumentID | oai_doaj_org_article_7ae35c85f9954b85ac6f905716f77e9f A727616694 10_5194_acp_22_14905_2022 |
GeographicLocations | Iran Lake Urmia |
GeographicLocations_xml | – name: Iran – name: Lake Urmia |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 AFPKN 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PQEST PQUKI |
ID | FETCH-LOGICAL-c413t-b9e58c2556a314a1c8439e857fe9109278a2ac8168191cb0e11d07dada1b9c623 |
IEDL.DBID | DOA |
ISSN | 1680-7324 1680-7316 |
IngestDate | Tue Oct 22 15:12:56 EDT 2024 Sat Nov 09 14:11:54 EST 2024 Tue Nov 19 21:21:57 EST 2024 Tue Nov 12 22:36:36 EST 2024 Thu Aug 01 19:32:26 EDT 2024 Thu Nov 21 21:48:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-b9e58c2556a314a1c8439e857fe9109278a2ac8168191cb0e11d07dada1b9c623 |
ORCID | 0000-0002-9125-8722 |
OpenAccessLink | https://doaj.org/article/7ae35c85f9954b85ac6f905716f77e9f |
PQID | 2739014354 |
PQPubID | 105744 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7ae35c85f9954b85ac6f905716f77e9f proquest_journals_2739014354 gale_infotracmisc_A727616694 gale_infotracacademiconefile_A727616694 gale_incontextgauss_ISR_A727616694 crossref_primary_10_5194_acp_22_14905_2022 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-23 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2022 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref107 doi: 10.1002/jgrd.50801 – ident: ref6 doi: 10.4314/jasem.v23i8.15 – ident: ref68 doi: 10.1007/s12517-012-0566-x – ident: ref91 – ident: ref27 doi: 10.1107/S1600576715014685 – ident: ref40 doi: 10.1016/j.scitotenv.2018.11.153 – ident: ref4 doi: 10.1016/j.atmosres.2019.104762 – ident: ref24 – ident: ref2 doi: 10.3724/SP.J.1227.2010.00144 – ident: ref15 doi: 10.1109/LGRS.2019.2949132 – ident: ref29 doi: 10.1016/S1352-2310(00)00403-9 – ident: ref38 doi: 10.1186/s40201-015-0238-3 – ident: ref98 doi: 10.3390/geosciences8050151 – ident: ref106 doi: 10.1029/2021JD035186 – ident: ref41 doi: 10.1016/j.aeolia.2014.08.004 – ident: ref30 – ident: ref9 doi: 10.1038/nature12278 – ident: ref13 doi: 10.1180/emu-notes.2010.emu9-3 – ident: ref36 – ident: ref75 doi: 10.1016/j.jaridenv.2015.01.008 – ident: ref73 doi: 10.1111/1475-5661.00013 – ident: ref71 doi: 10.5194/acp-7-5081-2007 – ident: ref89 doi: 10.1029/2000RG000095 – ident: ref50 – ident: ref92 doi: 10.1016/j.scitotenv.2013.06.045 – ident: ref23 doi: 10.1016/j.compag.2004.10.005 – ident: ref56 doi: 10.2134/agronmonogr9.1.c39 – ident: ref72 doi: 10.1016/j.aeolia.2016.12.001 – ident: ref78 doi: 10.1039/c2cs35200a – ident: ref1 doi: 10.1016/j.epsl.2013.08.028 – ident: ref54 doi: 10.1175/AMSMONOGRAPHS-D-16-0006.1 – ident: ref28 doi: 10.1002/ecs2.2650 – ident: ref96 – ident: ref116 doi: 10.1016/j.quaint.2007.03.005 – ident: ref10 doi: 10.1080/00103624.2015.1118118 – ident: ref11 doi: 10.1016/j.aeolia.2017.04.001 – ident: ref83 doi: 10.5194/acp-18-16515-2018 – ident: ref60 – ident: ref122 doi: 10.1016/j.gexplo.2016.11.006 – ident: ref77 doi: 10.1002/2015GL064604 – ident: ref39 doi: 10.1080/02772248.2016.1166226 – ident: ref64 doi: 10.5194/acp-19-6059-2019 – ident: ref5 doi: 10.1007/s12517-010-0181-7 – ident: ref76 doi: 10.1016/j.catena.2020.104675 – ident: ref105 – ident: ref84 doi: 10.1007/s10661-008-0695-6 – ident: ref7 doi: 10.1016/S1352-2310(01)00190-X – ident: ref58 doi: 10.5194/acp-22-3655-2022 – ident: ref59 doi: 10.1038/s41467-017-02620-y – ident: ref25 doi: 10.4267/pollution-atmospherique.1907 – ident: ref86 doi: 10.5194/acp-15-11593-2015 – ident: ref34 doi: 10.1016/j.scitotenv.2004.09.031 – ident: ref109 doi: 10.2136/sssaj1950.036159950014000C0005x – ident: ref57 doi: 10.1016/j.atmosenv.2017.03.045 – ident: ref119 – ident: ref110 doi: 10.1016/S1002-0160(11)60158-6 – ident: ref125 doi: 10.1021/jp509839x – ident: ref99 doi: 10.1016/j.jglr.2016.07.033 – ident: ref16 doi: 10.17221/4376-PSE – ident: ref82 doi: 10.5194/acp-14-1853-2014 – ident: ref87 doi: 10.5194/acp-15-11629-2015 – ident: ref55 doi: 10.5194/acp-16-11177-2016 – ident: ref35 doi: 10.2136/sssabookser5.4.c12 – ident: ref121 doi: 10.1346/CCMN.2003.0510212 – ident: ref49 doi: 10.5194/acp-12-9817-2012 – ident: ref97 doi: 10.2136/sssabookser5.3.c14 – ident: ref8 – ident: ref33 doi: 10.1038/s41561-022-00901-w – ident: ref111 doi: 10.1016/j.jaerosci.2004.08.005 – ident: ref37 – ident: ref112 – ident: ref20 – ident: ref81 – ident: ref17 doi: 10.1177/0959683615591356 – ident: ref44 doi: 10.5194/acp-22-14931-2022 – ident: ref80 doi: 10.2136/sssabookser5.4.c14 – ident: ref123 doi: 10.1016/j.aeolia.2012.10.005 – ident: ref32 doi: 10.1016/j.geomorph.2011.09.005 – ident: ref66 doi: 10.1016/j.envres.2005.01.007 – ident: ref74 doi: 10.1016/j.chemosphere.2006.02.052 – ident: ref117 doi: 10.1021/acsearthspacechem.0c00077 – ident: ref47 doi: 10.5194/acp-15-2489-2015 – ident: ref18 doi: 10.1016/j.geoderma.2004.03.005 – ident: ref108 doi: 10.5194/acp-14-8521-2014 – ident: ref53 doi: 10.1007/s11269-013-0420-2 – ident: ref120 doi: 10.1016/j.gexplo.2011.04.004 – ident: ref61 doi: 10.1016/j.atmosenv.2004.07.010 – ident: ref43 doi: 10.1016/j.catena.2018.07.019 – ident: ref14 doi: 10.5194/acp-16-15075-2016 – ident: ref114 doi: 10.1039/C7SC05421A – ident: ref88 doi: 10.5194/acp-12-5859-2012 – ident: ref67 doi: 10.1029/2009JD012959 – ident: ref3 doi: 10.1016/j.atmosenv.2015.08.021 – ident: ref46 doi: 10.5194/acp-16-7195-2016 – ident: ref115 doi: 10.1038/ngeo3052 – ident: ref19 doi: 10.5194/acp-21-18029-2021 – ident: ref12 doi: 10.1016/S0269-7491(99)00328-0 – ident: ref118 doi: 10.1021/acsearthspacechem.1c00034 – ident: ref48 doi: 10.1016/B978-0-12-409548-9.11195-9 – ident: ref45 doi: 10.5194/acp-19-11343-2019 – ident: ref21 doi: 10.1016/j.geoderma.2010.07.016 – ident: ref93 doi: 10.1016/j.chemosphere.2012.06.059 – ident: ref85 doi: 10.5194/acp-16-11477-2016 – ident: ref113 doi: 10.5194/acp-19-10901-2019 – ident: ref22 doi: 10.5194/acp-11-9643-2011 – ident: ref101 – ident: ref70 – ident: ref100 doi: 10.1016/j.geoderma.2019.113936 – ident: ref42 doi: 10.5194/acp-2022-356 – ident: ref69 doi: 10.1016/j.chemosphere.2021.131879 – ident: ref52 doi: 10.1016/S0045-6535(02)00177-7 – ident: ref90 – ident: ref26 doi: 10.1016/j.atmosenv.2011.03.024 – ident: ref63 doi: 10.5194/acp-19-6035-2019 – ident: ref104 doi: 10.1002/2016JD025119 – ident: ref95 doi: 10.1002/esp.1515 – ident: ref103 doi: 10.1016/j.geoderma.2018.07.012 – ident: ref51 doi: 10.1039/C0CE00153H – ident: ref62 doi: 10.5194/acp-18-7057-2018 – ident: ref65 doi: 10.1007/s12665-010-0690-4 – ident: ref94 doi: 10.1016/S0016-7037(01)00864-X – ident: ref102 doi: 10.1007/698_2018_359 – ident: ref79 doi: 10.2136/sssabookser5.3.c34 – ident: ref124 doi: 10.1126/science.183.4121.198 – ident: ref31 |
SSID | ssj0025014 |
Score | 2.5046823 |
Snippet | The emergence of desiccated lake bed sediments and their exposure to wind
erosion as a consequence of climate change and drought in arid and semiarid
regions... The emergence of desiccated lake bed sediments and their exposure to wind erosion as a consequence of climate change and drought in arid and semiarid regions... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 14905 |
SubjectTerms | Aerosols Airborne sensing Aluminum Analysis Atmospheric particulates Carbonates Chlorite Clay Clay minerals Climate change Climatic changes Cloud properties Composition Concretions Correlation Crusts Deserts Desiccation Differential scanning calorimetry Drought Dust Dust control Emulsions Experiments Feldspars Freezing Health aspects Heat resistance Ice nucleation Iron Kaolinite Lake beds Lake sediments Lakes Measurement Minerals Nucleation Organic matter Palygorskite pH effects Physicochemical analysis Physicochemical properties Playas Quartz Salinity Salinity effects Salt Salt content Sand Sediments Sediments (Geology) Semi arid areas Semiarid lands Semiarid zones Shores Silicon Size distribution Soil erosion Soil properties Soils Wind erosion Zinc |
Title | Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples |
URI | https://www.proquest.com/docview/2739014354 https://doaj.org/article/7ae35c85f9954b85ac6f905716f77e9f |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BT1wQFBCBFo0QAgnJqnf9te6tDa3gUIQolbitZr9QpMiJ4uTAjf_Ahd_XX8LM2gnKAXHhaGe0infGs-_tjt8I8Uq33uuWaAmtDTorLWE4W8WQRa8lyhKDV6mJ7XXz8at-d8EyObtWX1wTNsgDDxN30mAoKqeryMJlVlfo6tgSyJB1bJrQxpR983pLpkaqxadlTLVqnWfcm2k4zyS0Up6gW2ZEwIgZ5BXFiFJ7K1IS7v9bek5rzuUDcX8Ei3A2_MmH4k7oDsXkinDuYpW2w-E1TOczAp3p6pH4dfVnyw-G44BToEiAG_InwnKO3xGwB4Rh0x4WEXC2ojjoAnAPD8DOA-WOrGOdY-SaaFhui-fg9sdP-ERXIE9hym09hkI6GIu9aNDZvE9D7AbtkeWH-8fi5vLiy_R9NvZeyBwta-vMtqHSjvXJsCCXSacJuQRdNTEQwGhVo1Gh46YdRPiczYOUPm88epS2dYSpnoiDbtGFpwKCLCylCsedqzhdaFvqEEtlcxWYb07E2-38m-UgsWGImrCzDDnLKGWSs4xKxufsoZ0hq2OnGxQzZpwO86-YmYiX7F_D-hcdF9h8w03fmw_Xn80Z4bla1nVbTsSb0Sgu1it0OH6vQA_Fkll7lkd7lvSCuv2ft2FkxgTRG0KNfIBdVOWz__FEz8U9nh3-SFIVR-JgvdqEY3G395sX6cX4DWFjEJA |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+report%3A+The+Urmia+playa+as+a+source+of+airborne+dust+and+ice-nucleating+particles+%E2%80%93+Part+1%3A+Correlation+between+soils+and+airborne+samples&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Nikou+Hamzehpour&rft.au=Marcolli%2C+Claudia&rft.au=Pashai%2C+Sara&rft.au=Klumpp%2C+Kristian&rft.date=2022-11-23&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=22&rft.issue=22&rft.spage=14905&rft.epage=14930&rft_id=info:doi/10.5194%2Facp-22-14905-2022&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |