Gradient High‐Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light‐Matter Coupling

Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample com...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 36; no. 25; pp. e2314279 - n/a
Main Authors: Richter, Felix Ulrich, Sinev, Ivan, Zhou, Senlu, Leitis, Aleksandrs, Oh, Sang‐Hyun, Tseng, Ming Lun, Kivshar, Yuri, Altug, Hatice
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena. Mid‐infrared all‐dielectric gradient metasurfaces, realized by gradually varying unit cell parameters along the structure, provide continuous tuning of high‐Q resonances over an ultra‐broad spectral range in a compact device footprint. The unmatched flexibility of such metasurfaces for SEIRA applications, including polymer mixture deconvolution, sensitive broadband biomolecule detection, and exploring the onset of vibrational strong coupling are demonstrated.
AbstractList Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.
Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena.
Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena. Mid‐infrared all‐dielectric gradient metasurfaces, realized by gradually varying unit cell parameters along the structure, provide continuous tuning of high‐Q resonances over an ultra‐broad spectral range in a compact device footprint. The unmatched flexibility of such metasurfaces for SEIRA applications, including polymer mixture deconvolution, sensitive broadband biomolecule detection, and exploring the onset of vibrational strong coupling are demonstrated.
Author Richter, Felix Ulrich
Sinev, Ivan
Altug, Hatice
Kivshar, Yuri
Oh, Sang‐Hyun
Leitis, Aleksandrs
Tseng, Ming Lun
Zhou, Senlu
Author_xml – sequence: 1
  givenname: Felix Ulrich
  orcidid: 0000-0001-8410-9131
  surname: Richter
  fullname: Richter, Felix Ulrich
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Ivan
  surname: Sinev
  fullname: Sinev, Ivan
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Senlu
  surname: Zhou
  fullname: Zhou, Senlu
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Aleksandrs
  surname: Leitis
  fullname: Leitis, Aleksandrs
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Sang‐Hyun
  surname: Oh
  fullname: Oh, Sang‐Hyun
  organization: University of Minnesota
– sequence: 6
  givenname: Ming Lun
  surname: Tseng
  fullname: Tseng, Ming Lun
  email: mltseng@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University
– sequence: 7
  givenname: Yuri
  orcidid: 0000-0002-3410-812X
  surname: Kivshar
  fullname: Kivshar, Yuri
  email: yuri.kivshar@anu.edu.au
  organization: Australian National University
– sequence: 8
  givenname: Hatice
  surname: Altug
  fullname: Altug, Hatice
  email: hatice.altug@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38511549$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCliWyxKabSX2ZmYyXIYW2UiKEuGwtX46Lq4kdbI9QdzwCz8iT1FHaIrFhc3wW3__J9n-CjkIMgNBrSuaUEHau7FbNGWGctmwhnqEZ7RhtWiK6IzQjgneN6NvhGJ3kfEsIET3pX6BjPnSUdq2YoXSZlPUQCr7yN9___Pr9CV94GMGU5A3eQFF5Sk4ZyNjFhN-lqKxWweLPELIPN3i_r2IoKY44OvzN66SKj0GNeF2NpSo3qhRIlZp2Y428RM-dGjO8ejhP0dcP77-srpr1x8vr1XLdmJZy0WhryTCoOqjoqKDEMdVbppnTnHEHmisxGNcR4dxgDLUL2iltBQMxaLCEn6Kzg3eX4o8JcpFbnw2MowoQpyyZWHBKeN_zir79B72NU6pvyJKTXgheb9RWan6gTIo5J3Byl_xWpTtJidy3IfdtyKc2auDNg3bSW7BP-OP3V0AcgJ9-hLv_6OTyYrP8K78Hz86avw
CitedBy_id crossref_primary_10_1063_5_0194812
Cites_doi 10.1038/nprot.2011.302
10.1126/sciadv.adg9644
10.1016/S1381-1177(99)00030-2
10.1126/science.abd0336
10.1103/PhysRevB.98.161113
10.1016/j.scib.2018.12.003
10.1515/nanoph-2022-0311
10.1039/C7NR06917K
10.1364/OPTICA.4.000814
10.1103/PhysRevLett.125.017402
10.1038/s41467-018-04594-x
10.1021/acs.nanolett.9b02638
10.1021/acs.chemrev.2c00774
10.1021/acs.jpcc.8b03808
10.1002/adom.201800554
10.1021/acssensors.8b00139
10.1002/adma.202301208
10.1119/1.3471177
10.1126/science.aaz3985
10.1103/PhysRevApplied.12.024043
10.1038/nature06285
10.1038/s41377-020-0286-z
10.1021/acsami.9b18002
10.1021/acs.chemrev.6b00743
10.1021/acsphotonics.5b00141
10.1126/sciadv.aaw2871
10.1038/s41467-023-40511-7
10.1038/s41467-023-37628-0
10.3390/biophysica3030035
10.1515/nanoph-2018-0108
10.1039/D1SC03706D
10.1038/1381009a0
10.1103/PhysRevB.108.155412
10.1515/nanoph-2020-0375
10.1103/PhysRevLett.121.193903
10.1021/acs.nanolett.2c00548
10.1073/pnas.0907459106
10.1364/OPTICA.4.000229
10.1021/acs.jpclett.0c03003
10.1002/adma.202006054
10.1126/science.aas9768
10.1038/nmat3161
10.1126/science.1253213
10.1038/srep14403
10.1038/s41467-021-23357-9
10.1021/acsnano.5b00412
10.1021/acs.jpcc.8b04209
10.1002/adma.202110163
ContentType Journal Article
Copyright 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202314279
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202314279
38511549
ADMA202314279
Genre article
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: NSTC 112‐2636‐M‐A49‐001
– fundername: Sanford P. Bordeau Chair
– fundername: Samsung Global Research Outreach (GRO)
– fundername: National Yang Ming Chiao Tung University
– fundername: Army Research Office
  funderid: FA520923C0023
– fundername: HORIZON EUROPE European Innovation Council
  funderid: 10104642
– fundername: H2020 European Research Council
  funderid: 682167 VIBRANT‐BIO; 875672 POCSEL
– fundername: Australian Research Council
  funderid: DP210101292
– fundername: Taiwan Semiconductor Research Institute (TSRI)
– fundername: Ministry of Education
– fundername: H2020 European Research Council
  grantid: 875672 POCSEL
– fundername: National Science and Technology Council
  grantid: NSTC 112-2636-M-A49-001
– fundername: Army Research Office
  grantid: FA520923C0023
– fundername: Center for Integrated Electronics-Optics Technologies and Systems
– fundername: H2020 European Research Council
  grantid: 682167 VIBRANT-BIO
– fundername: HORIZON EUROPE European Innovation Council
  grantid: 10104642
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4139-bdd088ad081951910f2a6d2b2fb323feb3a98cf509ff8cc1d715abd92e98bed03
IEDL.DBID 33P
ISSN 0935-9648
1521-4095
IngestDate Sat Oct 26 04:38:26 EDT 2024
Thu Oct 10 22:52:46 EDT 2024
Fri Nov 22 03:32:52 EST 2024
Sat Nov 02 12:27:55 EDT 2024
Sat Aug 24 00:57:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords high‐Q resonances
bound states in the continuum
surface‐enhanced infrared absorption spectroscopy (SEIRA)
broadband metasurface
dielectric metasurfaces
Biosensing
Language English
License Attribution
2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4139-bdd088ad081951910f2a6d2b2fb323feb3a98cf509ff8cc1d715abd92e98bed03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3410-812X
0000-0001-8410-9131
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202314279
PMID 38511549
PQID 3069934134
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2973103663
proquest_journals_3069934134
crossref_primary_10_1002_adma_202314279
pubmed_primary_38511549
wiley_primary_10_1002_adma_202314279_ADMA202314279
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2010; 78
2018; 122
2018; 121
2023; 35
2023; 14
2015; 5
2023; 36
2018; 360
2017; 4
2019; 5
1936; 138
2019; 11
2023; 9
2019; 12
2023; 123
2019; 19
2020; 367
2023; 108
2022; 22
2020; 125
2020; 10
2023; 3
2015; 9
1999; 7
2011; 6
2012; 11
2017; 117
2018; 6
2018; 9
2018; 8
2018; 3
2021; 12
2021; 33
2019; 64
2007; 450
2020; 9
2021; 373
2022; 11
2018; 98
2018; 10
2014; 345
2009; 106
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_33_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
Jangid P. (e_1_2_12_35_1) 2023; 36
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 373
  start-page: 6551
  year: 2021
  publication-title: Science
– volume: 10
  start-page: 3589
  year: 2018
  publication-title: Nanoscale
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 35
  start-page: 28
  year: 2023
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 367
  start-page: 288
  year: 2020
  publication-title: Science
– volume: 138
  start-page: 1009
  year: 1936
  publication-title: Nature
– volume: 7
  start-page: 207
  year: 1999
  publication-title: J. Mol. Catal. B: Enzym.
– volume: 22
  start-page: 3512
  year: 2022
  publication-title: Nano Lett.
– volume: 64
  start-page: 836
  year: 2019
  publication-title: Sci. Bull.
– volume: 345
  start-page: 298
  year: 2014
  publication-title: Science
– volume: 4
  start-page: 229
  year: 2017
  publication-title: Optica
– volume: 9
  start-page: 56
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 19
  start-page: 6429
  year: 2019
  publication-title: Nano Lett.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 106
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 1
  year: 2023
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3284
  year: 2015
  publication-title: ACS Nano
– volume: 8
  start-page: 325
  year: 2018
  publication-title: Nanophotonics
– volume: 3
  start-page: 524
  year: 2023
  publication-title: Biophysica
– volume: 78
  start-page: 1199
  year: 2010
  publication-title: Am. J. Phys.
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 655
  year: 2020
  publication-title: Nanophotonics
– volume: 2
  start-page: 779
  year: 2015
  publication-title: ACS Photonics
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 4
  start-page: 814
  year: 2017
  publication-title: Optica
– volume: 11
  start-page: 4221
  year: 2022
  publication-title: Nanophotonics
– volume: 12
  start-page: 379
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 36
  start-page: 2
  year: 2023
  publication-title: Adv. Mater.
– volume: 11
  start-page: 69
  year: 2012
  publication-title: Nat. Mater.
– volume: 123
  start-page: 5020
  year: 2023
  publication-title: Chem. Rev.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 3293
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  start-page: 523
  year: 2011
  publication-title: Nat. Protoc.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 360
  start-page: 1105
  year: 2018
  publication-title: Science
– volume: 108
  year: 2023
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 984
  year: 2018
  publication-title: ACS Sens.
– volume: 9
  start-page: 2160
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 14
  start-page: 4814
  year: 2023
  publication-title: Nat. Commun.
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 125
  start-page: 1
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 5110
  year: 2017
  publication-title: Chem. Rev.
– volume: 450
  start-page: 397
  year: 2007
  publication-title: Nature
– ident: e_1_2_12_49_1
  doi: 10.1038/nprot.2011.302
– ident: e_1_2_12_12_1
  doi: 10.1126/sciadv.adg9644
– ident: e_1_2_12_37_1
  doi: 10.1016/S1381-1177(99)00030-2
– ident: e_1_2_12_39_1
  doi: 10.1126/science.abd0336
– ident: e_1_2_12_41_1
  doi: 10.1103/PhysRevB.98.161113
– ident: e_1_2_12_21_1
  doi: 10.1016/j.scib.2018.12.003
– ident: e_1_2_12_43_1
  doi: 10.1515/nanoph-2022-0311
– ident: e_1_2_12_46_1
  doi: 10.1039/C7NR06917K
– ident: e_1_2_12_18_1
  doi: 10.1364/OPTICA.4.000814
– ident: e_1_2_12_24_1
  doi: 10.1103/PhysRevLett.125.017402
– ident: e_1_2_12_15_1
  doi: 10.1038/s41467-018-04594-x
– volume: 36
  start-page: 2
  year: 2023
  ident: e_1_2_12_35_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Jangid P.
– ident: e_1_2_12_16_1
  doi: 10.1021/acs.nanolett.9b02638
– ident: e_1_2_12_40_1
  doi: 10.1021/acs.chemrev.2c00774
– ident: e_1_2_12_8_1
  doi: 10.1021/acs.jpcc.8b03808
– ident: e_1_2_12_28_1
  doi: 10.1002/adom.201800554
– ident: e_1_2_12_9_1
  doi: 10.1021/acssensors.8b00139
– ident: e_1_2_12_13_1
  doi: 10.1002/adma.202301208
– ident: e_1_2_12_45_1
  doi: 10.1119/1.3471177
– ident: e_1_2_12_19_1
  doi: 10.1126/science.aaz3985
– ident: e_1_2_12_30_1
  doi: 10.1103/PhysRevApplied.12.024043
– ident: e_1_2_12_26_1
  doi: 10.1038/nature06285
– ident: e_1_2_12_42_1
  doi: 10.1038/s41377-020-0286-z
– ident: e_1_2_12_10_1
  doi: 10.1021/acsami.9b18002
– ident: e_1_2_12_1_1
  doi: 10.1021/acs.chemrev.6b00743
– ident: e_1_2_12_6_1
  doi: 10.1021/acsphotonics.5b00141
– ident: e_1_2_12_23_1
  doi: 10.1126/sciadv.aaw2871
– ident: e_1_2_12_3_1
  doi: 10.1038/s41467-023-40511-7
– ident: e_1_2_12_34_1
  doi: 10.1038/s41467-023-37628-0
– ident: e_1_2_12_38_1
  doi: 10.3390/biophysica3030035
– ident: e_1_2_12_32_1
  doi: 10.1515/nanoph-2018-0108
– ident: e_1_2_12_48_1
  doi: 10.1039/D1SC03706D
– ident: e_1_2_12_36_1
  doi: 10.1038/1381009a0
– ident: e_1_2_12_44_1
  doi: 10.1103/PhysRevB.108.155412
– ident: e_1_2_12_25_1
  doi: 10.1515/nanoph-2020-0375
– ident: e_1_2_12_20_1
  doi: 10.1103/PhysRevLett.121.193903
– ident: e_1_2_12_17_1
  doi: 10.1021/acs.nanolett.2c00548
– ident: e_1_2_12_11_1
  doi: 10.1073/pnas.0907459106
– ident: e_1_2_12_31_1
  doi: 10.1364/OPTICA.4.000229
– ident: e_1_2_12_47_1
  doi: 10.1021/acs.jpclett.0c03003
– ident: e_1_2_12_4_1
  doi: 10.1002/adma.202006054
– ident: e_1_2_12_22_1
  doi: 10.1126/science.aas9768
– ident: e_1_2_12_5_1
  doi: 10.1038/nmat3161
– ident: e_1_2_12_27_1
  doi: 10.1126/science.1253213
– ident: e_1_2_12_29_1
  doi: 10.1038/srep14403
– ident: e_1_2_12_33_1
  doi: 10.1038/s41467-021-23357-9
– ident: e_1_2_12_14_1
  doi: 10.1021/acsnano.5b00412
– ident: e_1_2_12_7_1
  doi: 10.1021/acs.jpcc.8b04209
– ident: e_1_2_12_2_1
  doi: 10.1002/adma.202110163
SSID ssj0009606
Score 2.5198414
Snippet Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be...
Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2314279
SubjectTerms Absorption spectroscopy
Band spectra
Biosensing
bound states in the continuum
Broadband
broadband metasurface
dielectric metasurfaces
high‐Q resonances
Infrared absorption
Metasurfaces
Planar structures
Resonance
Spectral bands
surface‐enhanced infrared absorption spectroscopy (SEIRA)
Title Gradient High‐Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light‐Matter Coupling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202314279
https://www.ncbi.nlm.nih.gov/pubmed/38511549
https://www.proquest.com/docview/3069934134
https://www.proquest.com/docview/2973103663
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4BJzhAW36allZGQuIUkXVcJzmuWCiHLgLRIm6RnbERlyzanzuPwDPyJJ2xd0NXHCrBzVHsxLI99jfjmW8ADtGUHP_o00whKSi5tWmpsyotsDGF0aYsApfe-XVxcVsOTpkmp4vij_wQncGNJSPs1yzgxk6OX0hDDQbeIMInShYcwUeqQojhyC9fWHd1SK7Jl31ppVW5YG3M5PFy8-VT6RXUXEau4eg523p_pz_A5hx2in5cJx9hxbWfYOMfMsJtGP8cB_evqWDfj-fHpysxuI9Zcu4bMXRTNiZ69uASBHQF6e8GrWlRXLMPfHsnuHwSPd_FyIsb7mi0NIpfbAKgTw4DmyfVmnEg8N0O_Dk7_X1yns4zMqQNHXZVahFpVzLIOIKgXy_z0miUVnqby9yTYm6qsvEEQrwvm6aHRe-HsVhJV5XWYZbvwlo7at1nEBkSctLeNihzpRRaV2jVOCk91dZoEjhazEj9EIk36kixLGsexbobxQT2FxNWzwVwUpMmRMiLOq0SOOhek-jwfYhp3Wg2qUPaLjrBdZ7AXpzo7lc5I1HSnROQYT7_04e6Pxj2u6cvb2n0FdaprKIb2j6sTccz9w1WJzj7Hhb1X1wN-GA
link.rule.ids 315,782,786,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcoAeeD8CBYyExClq1jZOclx1WxaxW4FaELfIzthVL9lqH3d-Ar-RX8KMvZt21QMS4pbEdjLyI_PNePwNwDu0FZ9_DHmhkQwU5VxemaLOS2xtaY2tysilNz4tT35UoyOmyRluzsIkfoje4cYrI_6veYGzQ_rgijXUYiQOIoCiZVnvwG1tdMUTW6kvV7y7JqbX5O2-vKbyDW9jIQ-222_rpRtgcxu7RuVzfP8_iP0A7q2RpximqfIQbvnuEexd4yN8DPOP8xgBthQc_vH756-vYnSREuVctGLql-xPDBzEJQjrCjLhLTrboTjlMPjuXPD1YQp-F7MgvrOkydkoJuwFoFdOI6En1VrxWeDzJ_Dt-OjscJyvkzLkLem7OneI9GOyyFCC0N-gCNIalE4Gp6QKZJvbumoD4ZAQqrYdYDn4YB3W0teV81iop7DbzTr_HESBBJ5McC1KpbVG50ujWy9loNoGbQbvN0PSXCbujSaxLMuGe7HpezGD_c2INes1uGjIGCLwRULrDN72xbR6eEvEdn62WjQxcxcpcaMyeJZGuv-UYjBK5nMGMg7oX2RohqPpsL978S-N3sCd8dl00kw-nXx-CXfpuU5Rafuwu5yv_CvYWeDqdZzhfwARCvyJ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiE48C4EChgJiVPUrG2c5LjqdltEtyoqIG6WnbGrXrLVPu78BH4jv4QZZzftqgekcsvDTkYej_3NePwZ4AO6ivc_xrzQSA6K8j6vTFHnJTaudMZVZeLSOzorT35WowOmyel38Xf8EH3AjS0jjdds4JcY965IQx0m3iDCJ1qW9Rbc1YTFOalPqdMr2l2TTtfk1b68Nrpa0zYWcm-z_ua0dANrbkLXNPeMH_2_1I_h4Qp3imHXUZ7AndA-hQfX2AifwexwlvK_FoKTP_78-v1VjC66Y3IuGjEJC44mRk7hEoR0BTnwDr1rUZxxEnx7Lvh6v0t9F9MofrCgXahRHHMMgD45SXSeVGrJO4HPn8P38cG3_aN8dSRD3tBsV-cekYYlhwwkCPsNiiidQell9EqqSJ65q6smEgqJsWqaAZaDT85jLUNd-YCF2oHtdtqGlyAKJOhkom9QKq01-lAa3QQpI5U26DL4uNaIveyYN2zHsSwtt6LtWzGD3bXC7MoC55ZcIYJeJLTO4H3_mmyHF0RcG6bLuU3ndtEUblQGLzpF979SDEXJec5AJn3-QwY7HE2G_d2r21R6B_dOR2N7_Pnky2u4T491l5K2C9uL2TK8ga05Lt-m_v0X_-H7Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+High%E2%80%90Q+Dielectric+Metasurfaces+for+Broadband+Sensing+and+Control+of+Vibrational+Light%E2%80%90Matter+Coupling&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Richter%2C+Felix+Ulrich&rft.au=Sinev%2C+Ivan&rft.au=Zhou%2C+Senlu&rft.au=Leitis%2C+Aleksandrs&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202314279&rft.externalDBID=10.1002%252Fadma.202314279&rft.externalDocID=ADMA202314279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon