Gradient High‐Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light‐Matter Coupling
Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample com...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 36; no. 25; pp. e2314279 - n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena.
Mid‐infrared all‐dielectric gradient metasurfaces, realized by gradually varying unit cell parameters along the structure, provide continuous tuning of high‐Q resonances over an ultra‐broad spectral range in a compact device footprint. The unmatched flexibility of such metasurfaces for SEIRA applications, including polymer mixture deconvolution, sensitive broadband biomolecule detection, and exploring the onset of vibrational strong coupling are demonstrated. |
---|---|
AbstractList | Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena. Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena. Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light‐matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow‐band resonances. Here, a novel concept of resonance‐gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high‐quality‐factor (high‐Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit‐cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient‐resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light‐matter interaction phenomena. Mid‐infrared all‐dielectric gradient metasurfaces, realized by gradually varying unit cell parameters along the structure, provide continuous tuning of high‐Q resonances over an ultra‐broad spectral range in a compact device footprint. The unmatched flexibility of such metasurfaces for SEIRA applications, including polymer mixture deconvolution, sensitive broadband biomolecule detection, and exploring the onset of vibrational strong coupling are demonstrated. |
Author | Richter, Felix Ulrich Sinev, Ivan Altug, Hatice Kivshar, Yuri Oh, Sang‐Hyun Leitis, Aleksandrs Tseng, Ming Lun Zhou, Senlu |
Author_xml | – sequence: 1 givenname: Felix Ulrich orcidid: 0000-0001-8410-9131 surname: Richter fullname: Richter, Felix Ulrich organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Ivan surname: Sinev fullname: Sinev, Ivan organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Senlu surname: Zhou fullname: Zhou, Senlu organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Aleksandrs surname: Leitis fullname: Leitis, Aleksandrs organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Sang‐Hyun surname: Oh fullname: Oh, Sang‐Hyun organization: University of Minnesota – sequence: 6 givenname: Ming Lun surname: Tseng fullname: Tseng, Ming Lun email: mltseng@nycu.edu.tw organization: National Yang Ming Chiao Tung University – sequence: 7 givenname: Yuri orcidid: 0000-0002-3410-812X surname: Kivshar fullname: Kivshar, Yuri email: yuri.kivshar@anu.edu.au organization: Australian National University – sequence: 8 givenname: Hatice surname: Altug fullname: Altug, Hatice email: hatice.altug@epfl.ch organization: École Polytechnique Fédérale de Lausanne (EPFL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38511549$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URNPCliWyxKabSX2ZmYyXIYW2UiKEuGwtX46Lq4kdbI9QdzwCz8iT1FHaIrFhc3wW3__J9n-CjkIMgNBrSuaUEHau7FbNGWGctmwhnqEZ7RhtWiK6IzQjgneN6NvhGJ3kfEsIET3pX6BjPnSUdq2YoXSZlPUQCr7yN9___Pr9CV94GMGU5A3eQFF5Sk4ZyNjFhN-lqKxWweLPELIPN3i_r2IoKY44OvzN66SKj0GNeF2NpSo3qhRIlZp2Y428RM-dGjO8ejhP0dcP77-srpr1x8vr1XLdmJZy0WhryTCoOqjoqKDEMdVbppnTnHEHmisxGNcR4dxgDLUL2iltBQMxaLCEn6Kzg3eX4o8JcpFbnw2MowoQpyyZWHBKeN_zir79B72NU6pvyJKTXgheb9RWan6gTIo5J3Byl_xWpTtJidy3IfdtyKc2auDNg3bSW7BP-OP3V0AcgJ9-hLv_6OTyYrP8K78Hz86avw |
CitedBy_id | crossref_primary_10_1063_5_0194812 |
Cites_doi | 10.1038/nprot.2011.302 10.1126/sciadv.adg9644 10.1016/S1381-1177(99)00030-2 10.1126/science.abd0336 10.1103/PhysRevB.98.161113 10.1016/j.scib.2018.12.003 10.1515/nanoph-2022-0311 10.1039/C7NR06917K 10.1364/OPTICA.4.000814 10.1103/PhysRevLett.125.017402 10.1038/s41467-018-04594-x 10.1021/acs.nanolett.9b02638 10.1021/acs.chemrev.2c00774 10.1021/acs.jpcc.8b03808 10.1002/adom.201800554 10.1021/acssensors.8b00139 10.1002/adma.202301208 10.1119/1.3471177 10.1126/science.aaz3985 10.1103/PhysRevApplied.12.024043 10.1038/nature06285 10.1038/s41377-020-0286-z 10.1021/acsami.9b18002 10.1021/acs.chemrev.6b00743 10.1021/acsphotonics.5b00141 10.1126/sciadv.aaw2871 10.1038/s41467-023-40511-7 10.1038/s41467-023-37628-0 10.3390/biophysica3030035 10.1515/nanoph-2018-0108 10.1039/D1SC03706D 10.1038/1381009a0 10.1103/PhysRevB.108.155412 10.1515/nanoph-2020-0375 10.1103/PhysRevLett.121.193903 10.1021/acs.nanolett.2c00548 10.1073/pnas.0907459106 10.1364/OPTICA.4.000229 10.1021/acs.jpclett.0c03003 10.1002/adma.202006054 10.1126/science.aas9768 10.1038/nmat3161 10.1126/science.1253213 10.1038/srep14403 10.1038/s41467-021-23357-9 10.1021/acsnano.5b00412 10.1021/acs.jpcc.8b04209 10.1002/adma.202110163 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202314279 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202314279 38511549 ADMA202314279 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: NSTC 112‐2636‐M‐A49‐001 – fundername: Sanford P. Bordeau Chair – fundername: Samsung Global Research Outreach (GRO) – fundername: National Yang Ming Chiao Tung University – fundername: Army Research Office funderid: FA520923C0023 – fundername: HORIZON EUROPE European Innovation Council funderid: 10104642 – fundername: H2020 European Research Council funderid: 682167 VIBRANT‐BIO; 875672 POCSEL – fundername: Australian Research Council funderid: DP210101292 – fundername: Taiwan Semiconductor Research Institute (TSRI) – fundername: Ministry of Education – fundername: H2020 European Research Council grantid: 875672 POCSEL – fundername: National Science and Technology Council grantid: NSTC 112-2636-M-A49-001 – fundername: Army Research Office grantid: FA520923C0023 – fundername: Center for Integrated Electronics-Optics Technologies and Systems – fundername: H2020 European Research Council grantid: 682167 VIBRANT-BIO – fundername: HORIZON EUROPE European Innovation Council grantid: 10104642 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4139-bdd088ad081951910f2a6d2b2fb323feb3a98cf509ff8cc1d715abd92e98bed03 |
IEDL.DBID | 33P |
ISSN | 0935-9648 1521-4095 |
IngestDate | Sat Oct 26 04:38:26 EDT 2024 Thu Oct 10 22:52:46 EDT 2024 Fri Nov 22 03:32:52 EST 2024 Sat Nov 02 12:27:55 EDT 2024 Sat Aug 24 00:57:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | high‐Q resonances bound states in the continuum surface‐enhanced infrared absorption spectroscopy (SEIRA) broadband metasurface dielectric metasurfaces Biosensing |
Language | English |
License | Attribution 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4139-bdd088ad081951910f2a6d2b2fb323feb3a98cf509ff8cc1d715abd92e98bed03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3410-812X 0000-0001-8410-9131 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202314279 |
PMID | 38511549 |
PQID | 3069934134 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2973103663 proquest_journals_3069934134 crossref_primary_10_1002_adma_202314279 pubmed_primary_38511549 wiley_primary_10_1002_adma_202314279_ADMA202314279 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2010; 78 2018; 122 2018; 121 2023; 35 2023; 14 2015; 5 2023; 36 2018; 360 2017; 4 2019; 5 1936; 138 2019; 11 2023; 9 2019; 12 2023; 123 2019; 19 2020; 367 2023; 108 2022; 22 2020; 125 2020; 10 2023; 3 2015; 9 1999; 7 2011; 6 2012; 11 2017; 117 2018; 6 2018; 9 2018; 8 2018; 3 2021; 12 2021; 33 2019; 64 2007; 450 2020; 9 2021; 373 2022; 11 2018; 98 2018; 10 2014; 345 2009; 106 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 Jangid P. (e_1_2_12_35_1) 2023; 36 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_9_1 |
References_xml | – volume: 373 start-page: 6551 year: 2021 publication-title: Science – volume: 10 start-page: 3589 year: 2018 publication-title: Nanoscale – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 35 start-page: 28 year: 2023 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 367 start-page: 288 year: 2020 publication-title: Science – volume: 138 start-page: 1009 year: 1936 publication-title: Nature – volume: 7 start-page: 207 year: 1999 publication-title: J. Mol. Catal. B: Enzym. – volume: 22 start-page: 3512 year: 2022 publication-title: Nano Lett. – volume: 64 start-page: 836 year: 2019 publication-title: Sci. Bull. – volume: 345 start-page: 298 year: 2014 publication-title: Science – volume: 4 start-page: 229 year: 2017 publication-title: Optica – volume: 9 start-page: 56 year: 2020 publication-title: Light: Sci. Appl. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 19 start-page: 6429 year: 2019 publication-title: Nano Lett. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 106 year: 2009 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 14 start-page: 1 year: 2023 publication-title: Nat. Commun. – volume: 9 start-page: 3284 year: 2015 publication-title: ACS Nano – volume: 8 start-page: 325 year: 2018 publication-title: Nanophotonics – volume: 3 start-page: 524 year: 2023 publication-title: Biophysica – volume: 78 start-page: 1199 year: 2010 publication-title: Am. J. Phys. – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 655 year: 2020 publication-title: Nanophotonics – volume: 2 start-page: 779 year: 2015 publication-title: ACS Photonics – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 4 start-page: 814 year: 2017 publication-title: Optica – volume: 11 start-page: 4221 year: 2022 publication-title: Nanophotonics – volume: 12 start-page: 379 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 36 start-page: 2 year: 2023 publication-title: Adv. Mater. – volume: 11 start-page: 69 year: 2012 publication-title: Nat. Mater. – volume: 123 start-page: 5020 year: 2023 publication-title: Chem. Rev. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 12 start-page: 3293 year: 2021 publication-title: Nat. Commun. – volume: 6 start-page: 523 year: 2011 publication-title: Nat. Protoc. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 360 start-page: 1105 year: 2018 publication-title: Science – volume: 108 year: 2023 publication-title: Phys. Rev. B – volume: 3 start-page: 984 year: 2018 publication-title: ACS Sens. – volume: 9 start-page: 2160 year: 2018 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 14 start-page: 4814 year: 2023 publication-title: Nat. Commun. – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 125 start-page: 1 year: 2020 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 5110 year: 2017 publication-title: Chem. Rev. – volume: 450 start-page: 397 year: 2007 publication-title: Nature – ident: e_1_2_12_49_1 doi: 10.1038/nprot.2011.302 – ident: e_1_2_12_12_1 doi: 10.1126/sciadv.adg9644 – ident: e_1_2_12_37_1 doi: 10.1016/S1381-1177(99)00030-2 – ident: e_1_2_12_39_1 doi: 10.1126/science.abd0336 – ident: e_1_2_12_41_1 doi: 10.1103/PhysRevB.98.161113 – ident: e_1_2_12_21_1 doi: 10.1016/j.scib.2018.12.003 – ident: e_1_2_12_43_1 doi: 10.1515/nanoph-2022-0311 – ident: e_1_2_12_46_1 doi: 10.1039/C7NR06917K – ident: e_1_2_12_18_1 doi: 10.1364/OPTICA.4.000814 – ident: e_1_2_12_24_1 doi: 10.1103/PhysRevLett.125.017402 – ident: e_1_2_12_15_1 doi: 10.1038/s41467-018-04594-x – volume: 36 start-page: 2 year: 2023 ident: e_1_2_12_35_1 publication-title: Adv. Mater. contributor: fullname: Jangid P. – ident: e_1_2_12_16_1 doi: 10.1021/acs.nanolett.9b02638 – ident: e_1_2_12_40_1 doi: 10.1021/acs.chemrev.2c00774 – ident: e_1_2_12_8_1 doi: 10.1021/acs.jpcc.8b03808 – ident: e_1_2_12_28_1 doi: 10.1002/adom.201800554 – ident: e_1_2_12_9_1 doi: 10.1021/acssensors.8b00139 – ident: e_1_2_12_13_1 doi: 10.1002/adma.202301208 – ident: e_1_2_12_45_1 doi: 10.1119/1.3471177 – ident: e_1_2_12_19_1 doi: 10.1126/science.aaz3985 – ident: e_1_2_12_30_1 doi: 10.1103/PhysRevApplied.12.024043 – ident: e_1_2_12_26_1 doi: 10.1038/nature06285 – ident: e_1_2_12_42_1 doi: 10.1038/s41377-020-0286-z – ident: e_1_2_12_10_1 doi: 10.1021/acsami.9b18002 – ident: e_1_2_12_1_1 doi: 10.1021/acs.chemrev.6b00743 – ident: e_1_2_12_6_1 doi: 10.1021/acsphotonics.5b00141 – ident: e_1_2_12_23_1 doi: 10.1126/sciadv.aaw2871 – ident: e_1_2_12_3_1 doi: 10.1038/s41467-023-40511-7 – ident: e_1_2_12_34_1 doi: 10.1038/s41467-023-37628-0 – ident: e_1_2_12_38_1 doi: 10.3390/biophysica3030035 – ident: e_1_2_12_32_1 doi: 10.1515/nanoph-2018-0108 – ident: e_1_2_12_48_1 doi: 10.1039/D1SC03706D – ident: e_1_2_12_36_1 doi: 10.1038/1381009a0 – ident: e_1_2_12_44_1 doi: 10.1103/PhysRevB.108.155412 – ident: e_1_2_12_25_1 doi: 10.1515/nanoph-2020-0375 – ident: e_1_2_12_20_1 doi: 10.1103/PhysRevLett.121.193903 – ident: e_1_2_12_17_1 doi: 10.1021/acs.nanolett.2c00548 – ident: e_1_2_12_11_1 doi: 10.1073/pnas.0907459106 – ident: e_1_2_12_31_1 doi: 10.1364/OPTICA.4.000229 – ident: e_1_2_12_47_1 doi: 10.1021/acs.jpclett.0c03003 – ident: e_1_2_12_4_1 doi: 10.1002/adma.202006054 – ident: e_1_2_12_22_1 doi: 10.1126/science.aas9768 – ident: e_1_2_12_5_1 doi: 10.1038/nmat3161 – ident: e_1_2_12_27_1 doi: 10.1126/science.1253213 – ident: e_1_2_12_29_1 doi: 10.1038/srep14403 – ident: e_1_2_12_33_1 doi: 10.1038/s41467-021-23357-9 – ident: e_1_2_12_14_1 doi: 10.1021/acsnano.5b00412 – ident: e_1_2_12_7_1 doi: 10.1021/acs.jpcc.8b04209 – ident: e_1_2_12_2_1 doi: 10.1002/adma.202110163 |
SSID | ssj0009606 |
Score | 2.5198414 |
Snippet | Surface‐enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical‐specific analysis. SEIRA can be... Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2314279 |
SubjectTerms | Absorption spectroscopy Band spectra Biosensing bound states in the continuum Broadband broadband metasurface dielectric metasurfaces high‐Q resonances Infrared absorption Metasurfaces Planar structures Resonance Spectral bands surface‐enhanced infrared absorption spectroscopy (SEIRA) |
Title | Gradient High‐Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light‐Matter Coupling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202314279 https://www.ncbi.nlm.nih.gov/pubmed/38511549 https://www.proquest.com/docview/3069934134 https://www.proquest.com/docview/2973103663 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4BJzhAW36allZGQuIUkXVcJzmuWCiHLgLRIm6RnbERlyzanzuPwDPyJJ2xd0NXHCrBzVHsxLI99jfjmW8ADtGUHP_o00whKSi5tWmpsyotsDGF0aYsApfe-XVxcVsOTpkmp4vij_wQncGNJSPs1yzgxk6OX0hDDQbeIMInShYcwUeqQojhyC9fWHd1SK7Jl31ppVW5YG3M5PFy8-VT6RXUXEau4eg523p_pz_A5hx2in5cJx9hxbWfYOMfMsJtGP8cB_evqWDfj-fHpysxuI9Zcu4bMXRTNiZ69uASBHQF6e8GrWlRXLMPfHsnuHwSPd_FyIsb7mi0NIpfbAKgTw4DmyfVmnEg8N0O_Dk7_X1yns4zMqQNHXZVahFpVzLIOIKgXy_z0miUVnqby9yTYm6qsvEEQrwvm6aHRe-HsVhJV5XWYZbvwlo7at1nEBkSctLeNihzpRRaV2jVOCk91dZoEjhazEj9EIk36kixLGsexbobxQT2FxNWzwVwUpMmRMiLOq0SOOhek-jwfYhp3Wg2qUPaLjrBdZ7AXpzo7lc5I1HSnROQYT7_04e6Pxj2u6cvb2n0FdaprKIb2j6sTccz9w1WJzj7Hhb1X1wN-GA |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcoAeeD8CBYyExClq1jZOclx1WxaxW4FaELfIzthVL9lqH3d-Ar-RX8KMvZt21QMS4pbEdjLyI_PNePwNwDu0FZ9_DHmhkQwU5VxemaLOS2xtaY2tysilNz4tT35UoyOmyRluzsIkfoje4cYrI_6veYGzQ_rgijXUYiQOIoCiZVnvwG1tdMUTW6kvV7y7JqbX5O2-vKbyDW9jIQ-222_rpRtgcxu7RuVzfP8_iP0A7q2RpximqfIQbvnuEexd4yN8DPOP8xgBthQc_vH756-vYnSREuVctGLql-xPDBzEJQjrCjLhLTrboTjlMPjuXPD1YQp-F7MgvrOkydkoJuwFoFdOI6En1VrxWeDzJ_Dt-OjscJyvkzLkLem7OneI9GOyyFCC0N-gCNIalE4Gp6QKZJvbumoD4ZAQqrYdYDn4YB3W0teV81iop7DbzTr_HESBBJ5McC1KpbVG50ujWy9loNoGbQbvN0PSXCbujSaxLMuGe7HpezGD_c2INes1uGjIGCLwRULrDN72xbR6eEvEdn62WjQxcxcpcaMyeJZGuv-UYjBK5nMGMg7oX2RohqPpsL978S-N3sCd8dl00kw-nXx-CXfpuU5Rafuwu5yv_CvYWeDqdZzhfwARCvyJ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiE48C4EChgJiVPUrG2c5LjqdltEtyoqIG6WnbGrXrLVPu78BH4jv4QZZzftqgekcsvDTkYej_3NePwZ4AO6ivc_xrzQSA6K8j6vTFHnJTaudMZVZeLSOzorT35WowOmyel38Xf8EH3AjS0jjdds4JcY965IQx0m3iDCJ1qW9Rbc1YTFOalPqdMr2l2TTtfk1b68Nrpa0zYWcm-z_ua0dANrbkLXNPeMH_2_1I_h4Qp3imHXUZ7AndA-hQfX2AifwexwlvK_FoKTP_78-v1VjC66Y3IuGjEJC44mRk7hEoR0BTnwDr1rUZxxEnx7Lvh6v0t9F9MofrCgXahRHHMMgD45SXSeVGrJO4HPn8P38cG3_aN8dSRD3tBsV-cekYYlhwwkCPsNiiidQell9EqqSJ65q6smEgqJsWqaAZaDT85jLUNd-YCF2oHtdtqGlyAKJOhkom9QKq01-lAa3QQpI5U26DL4uNaIveyYN2zHsSwtt6LtWzGD3bXC7MoC55ZcIYJeJLTO4H3_mmyHF0RcG6bLuU3ndtEUblQGLzpF979SDEXJec5AJn3-QwY7HE2G_d2r21R6B_dOR2N7_Pnky2u4T491l5K2C9uL2TK8ga05Lt-m_v0X_-H7Lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+High%E2%80%90Q+Dielectric+Metasurfaces+for+Broadband+Sensing+and+Control+of+Vibrational+Light%E2%80%90Matter+Coupling&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Richter%2C+Felix+Ulrich&rft.au=Sinev%2C+Ivan&rft.au=Zhou%2C+Senlu&rft.au=Leitis%2C+Aleksandrs&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202314279&rft.externalDBID=10.1002%252Fadma.202314279&rft.externalDocID=ADMA202314279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |