In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts
The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 34; no. 13; pp. e2109108 - n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-04-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion.
In situ carbon corrosion and Cu leaching during the oxygen evolution reaction (OER) in multimetal electrocatalysts can effectively boost catalytic activity with a low overpotential. More importantly, by placing a single particle on a nanoelectrode, structural changes during electrocatalysis can be directly evaluated, providing in‐depth understanding for the catalyst's excellent OER performance. |
---|---|
AbstractList | The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in-depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm
and a Tafel slope of 43.9 mV dec
. It shows superior stability compared to RuO
in 1 m KOH, which is even preserved for 120 h at 500 mA cm
in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single-nanoparticle technique contributes to the development and characterization of high-performance catalysts for electrochemical energy conversion. The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion. The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion. In situ carbon corrosion and Cu leaching during the oxygen evolution reaction (OER) in multimetal electrocatalysts can effectively boost catalytic activity with a low overpotential. More importantly, by placing a single particle on a nanoelectrode, structural changes during electrocatalysis can be directly evaluated, providing in‐depth understanding for the catalyst's excellent OER performance. The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm −2 and a Tafel slope of 43.9 mV dec −1 . It shows superior stability compared to RuO 2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm −2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion. |
Author | Öhl, Denis Wilde, Patrick Zhang, Jian Chen, Yen‐Ting He, Wenhui Dieckhöfer, Stefan Jambrec, Daliborka Junqueira, João R. C. Quast, Thomas Schuhmann, Wolfgang |
Author_xml | – sequence: 1 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Ruhr University Bochum – sequence: 2 givenname: Thomas surname: Quast fullname: Quast, Thomas organization: Ruhr University Bochum – sequence: 3 givenname: Wenhui surname: He fullname: He, Wenhui organization: Ruhr University Bochum – sequence: 4 givenname: Stefan surname: Dieckhöfer fullname: Dieckhöfer, Stefan organization: Ruhr University Bochum – sequence: 5 givenname: João R. C. surname: Junqueira fullname: Junqueira, João R. C. organization: Ruhr University Bochum – sequence: 6 givenname: Denis surname: Öhl fullname: Öhl, Denis organization: Ruhr University Bochum – sequence: 7 givenname: Patrick surname: Wilde fullname: Wilde, Patrick organization: Ruhr University Bochum – sequence: 8 givenname: Daliborka surname: Jambrec fullname: Jambrec, Daliborka organization: Ruhr University Bochum – sequence: 9 givenname: Yen‐Ting surname: Chen fullname: Chen, Yen‐Ting organization: Ruhr‐Universität Bochum – sequence: 10 givenname: Wolfgang orcidid: 0000-0003-2916-5223 surname: Schuhmann fullname: Schuhmann, Wolfgang email: wolfgang.schuhmann@rub.de organization: Ruhr University Bochum |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35062041$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFK0dkiQuXLOOPOPZxCVuotFUlCufIcZwlVWIX2wEi8cfXy5YiceE0M5rfexrNO0MnzjuL0EsCawJA3-pu0msKlIAiIJ-gFSkpKTio8gStQLGyUILLU3QW4y0AKAHiGTplJQgKnKzQr0uHb4Y041qH1jtc-xB8HHKnXYfrGe-sNl8Ht8c6Yo1vUtDJ7hfc-4DfeR_TYXX9c9lbh7ff_Ting_ZTFv1uBoev5jENk016xNvRmhS80XlYYorP0dNej9G-eKjn6MvF9nP9sdhdf7isN7vCcMJk0VWiNYaVFfRSGiFVSy30BgiUFixTUHW8AtbKVlsruaiMYkC1gc5oKIGzc_Tm6HsX_LfZxtRMQzR2HLWzfo4NFZRSKRlUGX39D3rr5-DydZniZcXzN0Wm1kfK5GfFYPvmLgyTDktDoDnk0hxyaR5zyYJXD7ZzO9nuEf8TRAbUEfgxjHb5j12zeX-1-Wt-D8v4m3A |
CitedBy_id | crossref_primary_10_1002_anie_202218493 crossref_primary_10_1021_jacs_4c00652 crossref_primary_10_1016_j_jmst_2022_03_033 crossref_primary_10_1002_smll_202203365 crossref_primary_10_1002_ange_202317058 crossref_primary_10_1021_acsorginorgau_3c00007 crossref_primary_10_1002_anie_202317058 crossref_primary_10_1002_ange_202214830 crossref_primary_10_1016_j_isci_2022_105179 crossref_primary_10_1002_cssc_202300592 crossref_primary_10_1002_smll_202301473 crossref_primary_10_1021_acsaem_2c02622 crossref_primary_10_1002_sstr_202200094 crossref_primary_10_1002_adfm_202211576 crossref_primary_10_1002_anie_202309854 crossref_primary_10_1016_j_cej_2024_148887 crossref_primary_10_1002_ange_202218493 crossref_primary_10_1021_acs_nanolett_3c01978 crossref_primary_10_1002_zaac_202200125 crossref_primary_10_1039_D4GC00863D crossref_primary_10_1002_adfm_202311611 crossref_primary_10_1002_cctc_202301023 crossref_primary_10_26599_NRE_2022_9120029 crossref_primary_10_1021_acsaem_2c02254 crossref_primary_10_1002_ange_202309854 crossref_primary_10_1002_sstr_202300415 crossref_primary_10_1002_anie_202214830 crossref_primary_10_1016_j_psep_2023_08_066 crossref_primary_10_1021_acs_analchem_4c01406 |
Cites_doi | 10.1039/C9CS00607A 10.1002/anie.201909475 10.1021/j100238a048 10.1021/jp803775j 10.1016/j.nanoen.2020.105514 10.1039/a908800h 10.1038/ncomms5345 10.1002/adfm.201910596 10.1021/acscatal.9b03790 10.1021/ja307814j 10.1002/aenm.201900796 10.1021/acsami.0c07656 10.1021/acs.jpcc.6b09141 10.1002/advs.202100044 10.1002/adma.201804903 10.1016/j.ijhydene.2013.01.151 10.1021/acscatal.9b05283 10.1063/1.5046641 10.1002/aenm.201903891 10.1002/anie.201804673 10.1002/adma.201600054 10.1002/aenm.201700381 10.1002/adma.201900062 10.1021/acsami.7b16280 10.1021/acs.nanolett.8b04466 10.1021/acscatal.9b04216 10.1002/chem.201803165 10.1002/aenm.201701694 10.1039/C8NR09680E 10.1038/s41929-018-0141-2 10.1021/ja405997s 10.1016/j.jelechem.2006.11.008 10.1039/C5TA06304C 10.1007/s10854-014-2203-9 10.1016/j.apcatb.2013.10.009 10.1002/aenm.201502313 10.1002/adma.202001136 10.1002/adma.201808066 10.1016/j.molcata.2015.02.007 10.1002/adma.201903909 10.1002/adma.201705106 10.1002/anie.202014384 10.1002/adma.202006351 10.1021/jacs.8b12101 10.1002/aenm.201702774 10.1039/C7EE01917C 10.1038/ncomms5477 10.1002/anie.201903283 10.1002/celc.201800600 10.1021/acs.chemrev.6b00398 10.1039/D0EE00755B 10.1002/adma.202100745 10.1002/adma.201804333 10.1002/adfm.201907791 10.1039/C8NR02198H 10.1038/s41467-019-13051-2 10.1021/acsaem.8b02160 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202109108 |
DatabaseName | Wiley Open Access Wiley Online Library (Open Access Collection) PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202109108 35062041 ADMA202109108 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 388390466; 2033‐390677874 – fundername: European Research Council funderid: 833408 – fundername: Chinese Scholarship Council – fundername: Deutsche Forschungsgemeinschaft grantid: 388390466 – fundername: Deutsche Forschungsgemeinschaft grantid: 2033-390677874 – fundername: European Research Council grantid: 833408 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4138-d76bcc3570f88c689b2e0fc0105e0e3907d4703b8baee8467c9302ac0dca05043 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 11:36:12 EDT 2024 Tue Nov 19 05:41:19 EST 2024 Thu Nov 21 21:20:27 EST 2024 Sat Sep 28 08:22:22 EDT 2024 Sat Aug 24 00:56:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | oxygen evolution reaction carbon corrosion in situ Cu leaching multimetal electrocatalysts nanoelectrodes |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4138-d76bcc3570f88c689b2e0fc0105e0e3907d4703b8baee8467c9302ac0dca05043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2916-5223 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109108 |
PMID | 35062041 |
PQID | 2645746486 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2622288307 proquest_journals_2645746486 crossref_primary_10_1002_adma_202109108 pubmed_primary_35062041 wiley_primary_10_1002_adma_202109108_ADMA202109108 |
PublicationCentury | 2000 |
PublicationDate | April 1, 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2017; 7 2019; 6 2015; 3 2019; 31 2019; 2 2019; 11 2015; 400 2019; 10 2018; 124 2019; 58 2019; 19 2014; 25 2020; 59 2020; 13 2000; 2 2020; 12 2020; 10 2020; 32 2007; 607 2019; 141 2016; 120 2018; 24 2016; 6 2018; 8 2014; 5 2012; 134 2018; 5 2021; 33 2013; 38 2020; 30 2018; 1 2021 2017; 10 2020; 49 1983; 87 2013; 135 2018; 30 2016; 116 2008; 112 2016; 28 2021; 60 2018; 10 2014; 147 2018; 57 2021; 80 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Liu X. (e_1_2_7_28_1) 2021 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 87 start-page: 2960 year: 1983 publication-title: J. Phys. Chem. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 19 start-page: 530 year: 2019 publication-title: Nano Lett. – volume: 141 start-page: 5231 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 81 year: 2020 publication-title: ACS Catal. – volume: 60 start-page: 3576 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 400 start-page: 81 year: 2015 publication-title: J. Mol. Catal. A: Chem. – volume: 10 start-page: 745 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2200 year: 2020 publication-title: Energy Environ. Sci. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 24 year: 2018 publication-title: Chem. Eur. J. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 147 start-page: 733 year: 2014 publication-title: Appl. Catal. B – volume: 58 start-page: 8927 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 8654 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 2138 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 10 start-page: 736 year: 2020 publication-title: ACS Catal. – volume: 10 start-page: 463 year: 2020 publication-title: ACS Catal. – volume: 1 start-page: 711 year: 2018 publication-title: Nat. Catal. – volume: 10 start-page: 5048 year: 2019 publication-title: Nat. Commun. – year: 2021 publication-title: Adv. Mater. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3599 year: 2019 publication-title: Nanoscale – volume: 28 start-page: 4698 year: 2016 publication-title: Adv. Mater. – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 10 year: 2018 publication-title: Nanoscale – volume: 2 start-page: 1319 year: 2000 publication-title: Phys. Chem. Chem. Phys. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 607 start-page: 83 year: 2007 publication-title: J. Electroanal. Chem. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4345 year: 2014 publication-title: Nat. Commun. – volume: 25 start-page: 4553 year: 2014 publication-title: J. Mater. Sci: Mater. Electron. – volume: 5 start-page: 3083 year: 2018 publication-title: ChemElectroChem – volume: 10 start-page: 2563 year: 2017 publication-title: Energy Environ. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 59 start-page: 1585 year: 2020 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_3_1 doi: 10.1039/C9CS00607A – ident: e_1_2_7_55_1 doi: 10.1002/anie.201909475 – ident: e_1_2_7_6_1 doi: 10.1021/j100238a048 – ident: e_1_2_7_44_1 doi: 10.1021/jp803775j – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2020.105514 – ident: e_1_2_7_42_1 doi: 10.1039/a908800h – ident: e_1_2_7_34_1 doi: 10.1038/ncomms5345 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201910596 – ident: e_1_2_7_32_1 doi: 10.1021/acscatal.9b03790 – ident: e_1_2_7_33_1 doi: 10.1021/ja307814j – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201900796 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.0c07656 – ident: e_1_2_7_25_1 doi: 10.1021/acs.jpcc.6b09141 – ident: e_1_2_7_21_1 doi: 10.1002/advs.202100044 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201804903 – ident: e_1_2_7_51_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_7_35_1 doi: 10.1021/acscatal.9b05283 – ident: e_1_2_7_39_1 doi: 10.1063/1.5046641 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.201903891 – ident: e_1_2_7_15_1 doi: 10.1002/anie.201804673 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201600054 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201700381 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201900062 – ident: e_1_2_7_40_1 doi: 10.1021/acsami.7b16280 – ident: e_1_2_7_31_1 doi: 10.1021/acs.nanolett.8b04466 – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.9b04216 – ident: e_1_2_7_49_1 doi: 10.1002/chem.201803165 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201701694 – ident: e_1_2_7_37_1 doi: 10.1039/C8NR09680E – ident: e_1_2_7_7_1 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_7_57_1 doi: 10.1021/ja405997s – ident: e_1_2_7_8_1 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_7_38_1 doi: 10.1039/C5TA06304C – ident: e_1_2_7_46_1 doi: 10.1007/s10854-014-2203-9 – ident: e_1_2_7_45_1 doi: 10.1016/j.apcatb.2013.10.009 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201502313 – ident: e_1_2_7_27_1 doi: 10.1002/adma.202001136 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201808066 – ident: e_1_2_7_43_1 doi: 10.1016/j.molcata.2015.02.007 – ident: e_1_2_7_50_1 doi: 10.1002/adma.201903909 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201705106 – ident: e_1_2_7_53_1 doi: 10.1002/anie.202014384 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202006351 – ident: e_1_2_7_58_1 doi: 10.1021/jacs.8b12101 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201702774 – ident: e_1_2_7_18_1 doi: 10.1039/C7EE01917C – ident: e_1_2_7_47_1 doi: 10.1038/ncomms5477 – ident: e_1_2_7_54_1 doi: 10.1002/anie.201903283 – ident: e_1_2_7_52_1 doi: 10.1002/celc.201800600 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_7_22_1 doi: 10.1039/D0EE00755B – ident: e_1_2_7_24_1 doi: 10.1002/adma.202100745 – year: 2021 ident: e_1_2_7_28_1 publication-title: Adv. Mater. contributor: fullname: Liu X. – ident: e_1_2_7_29_1 doi: 10.1002/adma.201804333 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201907791 – ident: e_1_2_7_20_1 doi: 10.1039/C8NR02198H – ident: e_1_2_7_5_1 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_7_9_1 doi: 10.1021/acsaem.8b02160 |
SSID | ssj0009606 |
Score | 2.6131105 |
Snippet | The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The... The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2109108 |
SubjectTerms | Carbon carbon corrosion Catalysts Chemical synthesis Copper Corrosion Electrocatalysts Energy conversion in situ Cu leaching In situ leaching Leaching Materials science multimetal electrocatalysts nanoelectrodes Nanoparticles oxygen evolution reaction Oxygen evolution reactions Synergistic effect |
Title | In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109108 https://www.ncbi.nlm.nih.gov/pubmed/35062041 https://www.proquest.com/docview/2645746486 https://search.proquest.com/docview/2622288307 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS9xAEMAH65M-VKu2jbVlCoJPwb1NLtl7PM-TClrFD-hbmOxOwIcmcrmIB_7x3d3kYo8-FNrHkCxZdmZ2Zj_mNwCHqTImklqFqlAcxmnOofXjOlTEySingTTaF7G9Tb__UKdTh8nps_hbPkS_4eYsw8_XzsApr49foaFkPDdIOrKlz_a1SwWfwxFdv1J3E19c0x32haMkVktqo5DHq81XvdIfoeZq5Opdz9nW_3d6G952YSeOWz15B2tc7sDmbzDCXXg5L_H2Yd7ghGZ5VeKkmtm-WrEhlQYnDV50Fy-RaiTssLYLtFEvnlRV7e5P49XzwmokTp86jcYbbjMn8KFEn-z7k224j9O2-o7fPFrU83oP7s-md5NvYVebIdTW7anQpEmudTRMRaGUTtQolywK7eptsuDILrlNbCeTXOXE7GIcPYqEJC2MJuGoae9hvaxK_ggopBlyzJxGZhBrKigpBClBkdIOPk8BHC1lkz22CI6shS3LzI1n1o9nAAdL0WWdKdaZjfiGaWyFnwTwtX9tjcidjFDJVeO-cRthys53AXxoRd7_KhoKx-wfBCC9ZP_Sh2x8ejnun_b_pdEn2JAuycLfDzqA9fms4c_wpjbNF6_evwDKaPmx |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a9NDmkPQzdZK2Uyj0ZKKVvbb2uNlsSOgmLU0KvRlZGkMOtct6XbqQHx-N7HWy9BAoORpZWGhmNM-jmTcAn1JlbSSNClWhKIzTnELnx02oNCWjXA-kNb6J7UV6_lMdTZkmZ7yqhWn5IfqAG1uGP6_ZwDkgfXDLGqqtJw6STG3J5b5P4sRpI1dxRN9ueXcT316Tr_vCkRtf8TYKebA-f90v_QM217Grdz7H2w-w7Oew1SFPHLeq8gIeUfkSNu_wEb6C69MSL64WDU70PK9KnFRzt1gnOdSlxUmDsy73EnWNGjtm2yU64IuHVVVzCjV-_bt0SonTP51S43dqiyfwqkRf7_uLHOLHaduAx8ePlvWifg0_jqeXk5Owa88QGuf5VGjTJDcmGqaiUMokapRLEoXhlpskKHJ_3TZ250muck3EMMeMIiG1EdZowcRpb2CjrEp6CyikHVJMlEZ2EBtd6KQQWgkdKcP88zqAzyvhZL9bFo6s5VuWGe9n1u9nAPsr2WWdNdaZA33DlLUjCeBjP-zsiC9HdElVw-9wLEy5Iy-AnVbm_aeioWDa_kEA0ov2njVk46Ozcf-0-z-TPsDTk8uzWTY7Pf-yB88k11z4dKF92FjMG3oHj2vbvPe6fgObHv3Z |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fi9QwEMcHPUH0wd-n1VNHEHwql026bfZx3R94eJ6Hp-BbSZMp3IPtsd0et-Afbybt9lx8EPSxtKGhM5N8m2Q-A_A2084paXWsS01xkhUU-3ncxtpQOinMSDobitieZSff9XzBmJwhi7_jQwwLbhwZYbzmAL9w5eE1NNS4wA2STLbkbN9bidfiTM9X6vQau5uG6pq82xdP0kRvsY1CHu62352W_tCau9I1zD3L-__f6wdwr9edOO0c5SHcoOoR3P2NRvgYfh5VeHa-bnFmVkVd4axe-b56u6GpHM5aPO5PXqJp0GDPtd2gl734vq4bPkCNn6823iVxcdm7NH6hLnUCzysM2b4_yOt9XHTld8Lq0aZZN0_g23LxdfYh7oszxNbPezp2WVpYq8aZKLW2qZ4UkkRpueAmCVL-n9slfjQpdGGIWOTYiRLSWOGsEYxN24e9qq7oGaCQbkwJUabcKLGmNGkpjBZGacv0eRPBu61t8ouOwZF3tGWZ8_fMh-8ZwcHWdHkfi03uJd84S7zx0wjeDLd9FPHWiKmobvkZXgnTfsCL4Gln8uFVaiwY2j-KQAbL_qUP-XT-aTpcPf-XRq_h9ul8mR8fnXx8AXckJ1yEs0IHsLdetfQSbjaufRU8_Rd9Sfx_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Carbon+Corrosion+and+Cu+Leaching+as+a+Strategy+for+Boosting+Oxygen+Evolution+Reaction+in+Multimetal+Electrocatalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Jian&rft.au=Quast%2C+Thomas&rft.au=He%2C+Wenhui&rft.au=Dieckh%C3%B6fer%2C+Stefan&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109108&rft.externalDBID=10.1002%252Fadma.202109108&rft.externalDocID=ADMA202109108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |