In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts

The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 34; no. 13; pp. e2109108 - n/a
Main Authors: Zhang, Jian, Quast, Thomas, He, Wenhui, Dieckhöfer, Stefan, Junqueira, João R. C., Öhl, Denis, Wilde, Patrick, Jambrec, Daliborka, Chen, Yen‐Ting, Schuhmann, Wolfgang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-04-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion. In situ carbon corrosion and Cu leaching during the oxygen evolution reaction (OER) in multimetal electrocatalysts can effectively boost catalytic activity with a low overpotential. More importantly, by placing a single particle on a nanoelectrode, structural changes during electrocatalysis can be directly evaluated, providing in‐depth understanding for the catalyst's excellent OER performance.
AbstractList The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in-depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm and a Tafel slope of 43.9 mV dec . It shows superior stability compared to RuO in 1 m KOH, which is even preserved for 120 h at 500 mA cm in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single-nanoparticle technique contributes to the development and characterization of high-performance catalysts for electrochemical energy conversion.
The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion.
The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion. In situ carbon corrosion and Cu leaching during the oxygen evolution reaction (OER) in multimetal electrocatalysts can effectively boost catalytic activity with a low overpotential. More importantly, by placing a single particle on a nanoelectrode, structural changes during electrocatalysis can be directly evaluated, providing in‐depth understanding for the catalyst's excellent OER performance.
The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in‐depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm −2 and a Tafel slope of 43.9 mV dec −1 . It shows superior stability compared to RuO 2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm −2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single‐nanoparticle technique contributes to the development and characterization of high‐performance catalysts for electrochemical energy conversion.
Author Öhl, Denis
Wilde, Patrick
Zhang, Jian
Chen, Yen‐Ting
He, Wenhui
Dieckhöfer, Stefan
Jambrec, Daliborka
Junqueira, João R. C.
Quast, Thomas
Schuhmann, Wolfgang
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Ruhr University Bochum
– sequence: 2
  givenname: Thomas
  surname: Quast
  fullname: Quast, Thomas
  organization: Ruhr University Bochum
– sequence: 3
  givenname: Wenhui
  surname: He
  fullname: He, Wenhui
  organization: Ruhr University Bochum
– sequence: 4
  givenname: Stefan
  surname: Dieckhöfer
  fullname: Dieckhöfer, Stefan
  organization: Ruhr University Bochum
– sequence: 5
  givenname: João R. C.
  surname: Junqueira
  fullname: Junqueira, João R. C.
  organization: Ruhr University Bochum
– sequence: 6
  givenname: Denis
  surname: Öhl
  fullname: Öhl, Denis
  organization: Ruhr University Bochum
– sequence: 7
  givenname: Patrick
  surname: Wilde
  fullname: Wilde, Patrick
  organization: Ruhr University Bochum
– sequence: 8
  givenname: Daliborka
  surname: Jambrec
  fullname: Jambrec, Daliborka
  organization: Ruhr University Bochum
– sequence: 9
  givenname: Yen‐Ting
  surname: Chen
  fullname: Chen, Yen‐Ting
  organization: Ruhr‐Universität Bochum
– sequence: 10
  givenname: Wolfgang
  orcidid: 0000-0003-2916-5223
  surname: Schuhmann
  fullname: Schuhmann, Wolfgang
  email: wolfgang.schuhmann@rub.de
  organization: Ruhr University Bochum
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062041$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFK0dkiQuXLOOPOPZxCVuotFUlCufIcZwlVWIX2wEi8cfXy5YiceE0M5rfexrNO0MnzjuL0EsCawJA3-pu0msKlIAiIJ-gFSkpKTio8gStQLGyUILLU3QW4y0AKAHiGTplJQgKnKzQr0uHb4Y041qH1jtc-xB8HHKnXYfrGe-sNl8Ht8c6Yo1vUtDJ7hfc-4DfeR_TYXX9c9lbh7ff_Ting_ZTFv1uBoev5jENk016xNvRmhS80XlYYorP0dNej9G-eKjn6MvF9nP9sdhdf7isN7vCcMJk0VWiNYaVFfRSGiFVSy30BgiUFixTUHW8AtbKVlsruaiMYkC1gc5oKIGzc_Tm6HsX_LfZxtRMQzR2HLWzfo4NFZRSKRlUGX39D3rr5-DydZniZcXzN0Wm1kfK5GfFYPvmLgyTDktDoDnk0hxyaR5zyYJXD7ZzO9nuEf8TRAbUEfgxjHb5j12zeX-1-Wt-D8v4m3A
CitedBy_id crossref_primary_10_1002_anie_202218493
crossref_primary_10_1021_jacs_4c00652
crossref_primary_10_1016_j_jmst_2022_03_033
crossref_primary_10_1002_smll_202203365
crossref_primary_10_1002_ange_202317058
crossref_primary_10_1021_acsorginorgau_3c00007
crossref_primary_10_1002_anie_202317058
crossref_primary_10_1002_ange_202214830
crossref_primary_10_1016_j_isci_2022_105179
crossref_primary_10_1002_cssc_202300592
crossref_primary_10_1002_smll_202301473
crossref_primary_10_1021_acsaem_2c02622
crossref_primary_10_1002_sstr_202200094
crossref_primary_10_1002_adfm_202211576
crossref_primary_10_1002_anie_202309854
crossref_primary_10_1016_j_cej_2024_148887
crossref_primary_10_1002_ange_202218493
crossref_primary_10_1021_acs_nanolett_3c01978
crossref_primary_10_1002_zaac_202200125
crossref_primary_10_1039_D4GC00863D
crossref_primary_10_1002_adfm_202311611
crossref_primary_10_1002_cctc_202301023
crossref_primary_10_26599_NRE_2022_9120029
crossref_primary_10_1021_acsaem_2c02254
crossref_primary_10_1002_ange_202309854
crossref_primary_10_1002_sstr_202300415
crossref_primary_10_1002_anie_202214830
crossref_primary_10_1016_j_psep_2023_08_066
crossref_primary_10_1021_acs_analchem_4c01406
Cites_doi 10.1039/C9CS00607A
10.1002/anie.201909475
10.1021/j100238a048
10.1021/jp803775j
10.1016/j.nanoen.2020.105514
10.1039/a908800h
10.1038/ncomms5345
10.1002/adfm.201910596
10.1021/acscatal.9b03790
10.1021/ja307814j
10.1002/aenm.201900796
10.1021/acsami.0c07656
10.1021/acs.jpcc.6b09141
10.1002/advs.202100044
10.1002/adma.201804903
10.1016/j.ijhydene.2013.01.151
10.1021/acscatal.9b05283
10.1063/1.5046641
10.1002/aenm.201903891
10.1002/anie.201804673
10.1002/adma.201600054
10.1002/aenm.201700381
10.1002/adma.201900062
10.1021/acsami.7b16280
10.1021/acs.nanolett.8b04466
10.1021/acscatal.9b04216
10.1002/chem.201803165
10.1002/aenm.201701694
10.1039/C8NR09680E
10.1038/s41929-018-0141-2
10.1021/ja405997s
10.1016/j.jelechem.2006.11.008
10.1039/C5TA06304C
10.1007/s10854-014-2203-9
10.1016/j.apcatb.2013.10.009
10.1002/aenm.201502313
10.1002/adma.202001136
10.1002/adma.201808066
10.1016/j.molcata.2015.02.007
10.1002/adma.201903909
10.1002/adma.201705106
10.1002/anie.202014384
10.1002/adma.202006351
10.1021/jacs.8b12101
10.1002/aenm.201702774
10.1039/C7EE01917C
10.1038/ncomms5477
10.1002/anie.201903283
10.1002/celc.201800600
10.1021/acs.chemrev.6b00398
10.1039/D0EE00755B
10.1002/adma.202100745
10.1002/adma.201804333
10.1002/adfm.201907791
10.1039/C8NR02198H
10.1038/s41467-019-13051-2
10.1021/acsaem.8b02160
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202109108
DatabaseName Wiley Open Access
Wiley Online Library (Open Access Collection)
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202109108
35062041
ADMA202109108
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 388390466; 2033‐390677874
– fundername: European Research Council
  funderid: 833408
– fundername: Chinese Scholarship Council
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 388390466
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 2033-390677874
– fundername: European Research Council
  grantid: 833408
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4138-d76bcc3570f88c689b2e0fc0105e0e3907d4703b8baee8467c9302ac0dca05043
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 11:36:12 EDT 2024
Tue Nov 19 05:41:19 EST 2024
Thu Nov 21 21:20:27 EST 2024
Sat Sep 28 08:22:22 EDT 2024
Sat Aug 24 00:56:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords oxygen evolution reaction
carbon corrosion
in situ Cu leaching
multimetal electrocatalysts
nanoelectrodes
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4138-d76bcc3570f88c689b2e0fc0105e0e3907d4703b8baee8467c9302ac0dca05043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2916-5223
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109108
PMID 35062041
PQID 2645746486
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2622288307
proquest_journals_2645746486
crossref_primary_10_1002_adma_202109108
pubmed_primary_35062041
wiley_primary_10_1002_adma_202109108_ADMA202109108
PublicationCentury 2000
PublicationDate April 1, 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2017; 7
2019; 6
2015; 3
2019; 31
2019; 2
2019; 11
2015; 400
2019; 10
2018; 124
2019; 58
2019; 19
2014; 25
2020; 59
2020; 13
2000; 2
2020; 12
2020; 10
2020; 32
2007; 607
2019; 141
2016; 120
2018; 24
2016; 6
2018; 8
2014; 5
2012; 134
2018; 5
2021; 33
2013; 38
2020; 30
2018; 1
2021
2017; 10
2020; 49
1983; 87
2013; 135
2018; 30
2016; 116
2008; 112
2016; 28
2021; 60
2018; 10
2014; 147
2018; 57
2021; 80
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Liu X. (e_1_2_7_28_1) 2021
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 87
  start-page: 2960
  year: 1983
  publication-title: J. Phys. Chem.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 530
  year: 2019
  publication-title: Nano Lett.
– volume: 141
  start-page: 5231
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 81
  year: 2020
  publication-title: ACS Catal.
– volume: 60
  start-page: 3576
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 400
  start-page: 81
  year: 2015
  publication-title: J. Mol. Catal. A: Chem.
– volume: 10
  start-page: 745
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2200
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 24
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 147
  start-page: 733
  year: 2014
  publication-title: Appl. Catal. B
– volume: 58
  start-page: 8927
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 8654
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 2138
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 10
  start-page: 736
  year: 2020
  publication-title: ACS Catal.
– volume: 10
  start-page: 463
  year: 2020
  publication-title: ACS Catal.
– volume: 1
  start-page: 711
  year: 2018
  publication-title: Nat. Catal.
– volume: 10
  start-page: 5048
  year: 2019
  publication-title: Nat. Commun.
– year: 2021
  publication-title: Adv. Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3599
  year: 2019
  publication-title: Nanoscale
– volume: 28
  start-page: 4698
  year: 2016
  publication-title: Adv. Mater.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 2
  start-page: 1319
  year: 2000
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 607
  start-page: 83
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4345
  year: 2014
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4553
  year: 2014
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 5
  start-page: 3083
  year: 2018
  publication-title: ChemElectroChem
– volume: 10
  start-page: 2563
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 59
  start-page: 1585
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_3_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.201909475
– ident: e_1_2_7_6_1
  doi: 10.1021/j100238a048
– ident: e_1_2_7_44_1
  doi: 10.1021/jp803775j
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nanoen.2020.105514
– ident: e_1_2_7_42_1
  doi: 10.1039/a908800h
– ident: e_1_2_7_34_1
  doi: 10.1038/ncomms5345
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.201910596
– ident: e_1_2_7_32_1
  doi: 10.1021/acscatal.9b03790
– ident: e_1_2_7_33_1
  doi: 10.1021/ja307814j
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201900796
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.0c07656
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.jpcc.6b09141
– ident: e_1_2_7_21_1
  doi: 10.1002/advs.202100044
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201804903
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_7_35_1
  doi: 10.1021/acscatal.9b05283
– ident: e_1_2_7_39_1
  doi: 10.1063/1.5046641
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.201903891
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201804673
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201600054
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201700381
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201900062
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.7b16280
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.nanolett.8b04466
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.9b04216
– ident: e_1_2_7_49_1
  doi: 10.1002/chem.201803165
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201701694
– ident: e_1_2_7_37_1
  doi: 10.1039/C8NR09680E
– ident: e_1_2_7_7_1
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_7_57_1
  doi: 10.1021/ja405997s
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_7_38_1
  doi: 10.1039/C5TA06304C
– ident: e_1_2_7_46_1
  doi: 10.1007/s10854-014-2203-9
– ident: e_1_2_7_45_1
  doi: 10.1016/j.apcatb.2013.10.009
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201502313
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.202001136
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201808066
– ident: e_1_2_7_43_1
  doi: 10.1016/j.molcata.2015.02.007
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.201903909
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201705106
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.202014384
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202006351
– ident: e_1_2_7_58_1
  doi: 10.1021/jacs.8b12101
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201702774
– ident: e_1_2_7_18_1
  doi: 10.1039/C7EE01917C
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_7_54_1
  doi: 10.1002/anie.201903283
– ident: e_1_2_7_52_1
  doi: 10.1002/celc.201800600
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_7_22_1
  doi: 10.1039/D0EE00755B
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202100745
– year: 2021
  ident: e_1_2_7_28_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Liu X.
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201804333
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201907791
– ident: e_1_2_7_20_1
  doi: 10.1039/C8NR02198H
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_7_9_1
  doi: 10.1021/acsaem.8b02160
SSID ssj0009606
Score 2.6131105
Snippet The number of active sites and their intrinsic activity are key factors in designing high‐performance catalysts for the oxygen evolution reaction (OER). The...
The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2109108
SubjectTerms Carbon
carbon corrosion
Catalysts
Chemical synthesis
Copper
Corrosion
Electrocatalysts
Energy conversion
in situ Cu leaching
In situ leaching
Leaching
Materials science
multimetal electrocatalysts
nanoelectrodes
Nanoparticles
oxygen evolution reaction
Oxygen evolution reactions
Synergistic effect
Title In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109108
https://www.ncbi.nlm.nih.gov/pubmed/35062041
https://www.proquest.com/docview/2645746486
https://search.proquest.com/docview/2622288307
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS9xAEMAH65M-VKu2jbVlCoJPwb1NLtl7PM-TClrFD-hbmOxOwIcmcrmIB_7x3d3kYo8-FNrHkCxZdmZ2Zj_mNwCHqTImklqFqlAcxmnOofXjOlTEySingTTaF7G9Tb__UKdTh8nps_hbPkS_4eYsw8_XzsApr49foaFkPDdIOrKlz_a1SwWfwxFdv1J3E19c0x32haMkVktqo5DHq81XvdIfoeZq5Opdz9nW_3d6G952YSeOWz15B2tc7sDmbzDCXXg5L_H2Yd7ghGZ5VeKkmtm-WrEhlQYnDV50Fy-RaiTssLYLtFEvnlRV7e5P49XzwmokTp86jcYbbjMn8KFEn-z7k224j9O2-o7fPFrU83oP7s-md5NvYVebIdTW7anQpEmudTRMRaGUTtQolywK7eptsuDILrlNbCeTXOXE7GIcPYqEJC2MJuGoae9hvaxK_ggopBlyzJxGZhBrKigpBClBkdIOPk8BHC1lkz22CI6shS3LzI1n1o9nAAdL0WWdKdaZjfiGaWyFnwTwtX9tjcidjFDJVeO-cRthys53AXxoRd7_KhoKx-wfBCC9ZP_Sh2x8ejnun_b_pdEn2JAuycLfDzqA9fms4c_wpjbNF6_evwDKaPmx
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a9NDmkPQzdZK2Uyj0ZKKVvbb2uNlsSOgmLU0KvRlZGkMOtct6XbqQHx-N7HWy9BAoORpZWGhmNM-jmTcAn1JlbSSNClWhKIzTnELnx02oNCWjXA-kNb6J7UV6_lMdTZkmZ7yqhWn5IfqAG1uGP6_ZwDkgfXDLGqqtJw6STG3J5b5P4sRpI1dxRN9ueXcT316Tr_vCkRtf8TYKebA-f90v_QM217Grdz7H2w-w7Oew1SFPHLeq8gIeUfkSNu_wEb6C69MSL64WDU70PK9KnFRzt1gnOdSlxUmDsy73EnWNGjtm2yU64IuHVVVzCjV-_bt0SonTP51S43dqiyfwqkRf7_uLHOLHaduAx8ePlvWifg0_jqeXk5Owa88QGuf5VGjTJDcmGqaiUMokapRLEoXhlpskKHJ_3TZ250muck3EMMeMIiG1EdZowcRpb2CjrEp6CyikHVJMlEZ2EBtd6KQQWgkdKcP88zqAzyvhZL9bFo6s5VuWGe9n1u9nAPsr2WWdNdaZA33DlLUjCeBjP-zsiC9HdElVw-9wLEy5Iy-AnVbm_aeioWDa_kEA0ov2njVk46Ozcf-0-z-TPsDTk8uzWTY7Pf-yB88k11z4dKF92FjMG3oHj2vbvPe6fgObHv3Z
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fi9QwEMcHPUH0wd-n1VNHEHwql026bfZx3R94eJ6Hp-BbSZMp3IPtsd0et-Afbybt9lx8EPSxtKGhM5N8m2Q-A_A2084paXWsS01xkhUU-3ncxtpQOinMSDobitieZSff9XzBmJwhi7_jQwwLbhwZYbzmAL9w5eE1NNS4wA2STLbkbN9bidfiTM9X6vQau5uG6pq82xdP0kRvsY1CHu62352W_tCau9I1zD3L-__f6wdwr9edOO0c5SHcoOoR3P2NRvgYfh5VeHa-bnFmVkVd4axe-b56u6GpHM5aPO5PXqJp0GDPtd2gl734vq4bPkCNn6823iVxcdm7NH6hLnUCzysM2b4_yOt9XHTld8Lq0aZZN0_g23LxdfYh7oszxNbPezp2WVpYq8aZKLW2qZ4UkkRpueAmCVL-n9slfjQpdGGIWOTYiRLSWOGsEYxN24e9qq7oGaCQbkwJUabcKLGmNGkpjBZGacv0eRPBu61t8ouOwZF3tGWZ8_fMh-8ZwcHWdHkfi03uJd84S7zx0wjeDLd9FPHWiKmobvkZXgnTfsCL4Gln8uFVaiwY2j-KQAbL_qUP-XT-aTpcPf-XRq_h9ul8mR8fnXx8AXckJ1yEs0IHsLdetfQSbjaufRU8_Rd9Sfx_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Carbon+Corrosion+and+Cu+Leaching+as+a+Strategy+for+Boosting+Oxygen+Evolution+Reaction+in+Multimetal+Electrocatalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Jian&rft.au=Quast%2C+Thomas&rft.au=He%2C+Wenhui&rft.au=Dieckh%C3%B6fer%2C+Stefan&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109108&rft.externalDBID=10.1002%252Fadma.202109108&rft.externalDocID=ADMA202109108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon