Unusual Spectrally Reproducible and High Q‐Factor Random Lasing in Polycrystalline Tin Perovskite Films

An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 35; no. 9; pp. e2208293 - n/a
Main Authors: Chirvony, Vladimir S., Suárez, Isaac, Sanchez‐Diaz, Jesus, Sánchez, Rafael S., Rodríguez‐Romero, Jesús, Mora‐Seró, Iván, Martínez‐Pastor, Juan P.
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-03-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. Highly spectrally reproducible multimode random lasing is observed in thin polycrystalline films of tin iodide perovskite that cannot be explained by a strong mode localization. The observed spectral reproducibility can be due to the strong inhomogeneous broadening of photoluminescence spectra measured in tin‐based perovskites on the basis of a comparison with an analogous Pb‐based counterpart.
AbstractList An unusual spectrally reproducible near-IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn to Sn oxidation. Remarkably, a quality Q-factor as high as ≈10 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn-based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines.
An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines.
An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn 2+ to Sn 4+ oxidation. Remarkably, a quality Q‐factor as high as ≈10 4 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm −2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines.
An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. Highly spectrally reproducible multimode random lasing is observed in thin polycrystalline films of tin iodide perovskite that cannot be explained by a strong mode localization. The observed spectral reproducibility can be due to the strong inhomogeneous broadening of photoluminescence spectra measured in tin‐based perovskites on the basis of a comparison with an analogous Pb‐based counterpart.
Author Chirvony, Vladimir S.
Mora‐Seró, Iván
Rodríguez‐Romero, Jesús
Suárez, Isaac
Martínez‐Pastor, Juan P.
Sánchez, Rafael S.
Sanchez‐Diaz, Jesus
Author_xml – sequence: 1
  givenname: Vladimir S.
  orcidid: 0000-0003-4121-9773
  surname: Chirvony
  fullname: Chirvony, Vladimir S.
  email: vladimir.chyrvony@uv.es
  organization: Universidad de Valencia
– sequence: 2
  givenname: Isaac
  orcidid: 0000-0002-2773-8801
  surname: Suárez
  fullname: Suárez, Isaac
  organization: Universidad de Valencia
– sequence: 3
  givenname: Jesus
  surname: Sanchez‐Diaz
  fullname: Sanchez‐Diaz, Jesus
  organization: Universitat Jaume I
– sequence: 4
  givenname: Rafael S.
  orcidid: 0000-0001-8948-6120
  surname: Sánchez
  fullname: Sánchez, Rafael S.
  organization: Universitat Jaume I
– sequence: 5
  givenname: Jesús
  surname: Rodríguez‐Romero
  fullname: Rodríguez‐Romero, Jesús
  organization: Universidad Nacional Autónoma de México
– sequence: 6
  givenname: Iván
  orcidid: 0000-0003-2508-0994
  surname: Mora‐Seró
  fullname: Mora‐Seró, Iván
  email: sero@uji.es
  organization: Universitat Jaume I
– sequence: 7
  givenname: Juan P.
  orcidid: 0000-0003-3683-0578
  surname: Martínez‐Pastor
  fullname: Martínez‐Pastor, Juan P.
  email: juan.mtnez.pastor@uv.es
  organization: Universidad de Valencia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36385442$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUtkiQ2bDP6Lx16OCtMiDQJKu45uHKe4OPZgJ6Ds-gg8I0-CR1OKxIbVlY6-e-7POUFHIQaL0HNKlpQQ9hq6AZaMMEYU0_wRWtCa0UoQXR-hBdG8rrQU6hid5HxLCNGSyCfomEuuaiHYArnrMOUJPP68s2ZM4P2ML-0uxW4yrvUWQ-jwhbv5gj_9uvu5ATPGhC-LGAe8hezCDXYBf4x-NmnOY-l3weKrvWZT_J6_utHijfNDfooe9-CzfXZfT9H15u3V2UW1_XD-7my9rYygnFfQsk72TAMnHWiulNDQ9rSue-gFSK1kqxSjrK9tD0oaQ1ptoRVSS7aqBfBT9OrgW474Ntk8NoPLxnoPwcYpN2zFV0JKQmRBX_6D3sYphbJdoRSlZD-uUMsDZVLMOdm-2SU3QJobSpp9CM0-hOYhhNLw4t52agfbPeB_vl4AfQB-OG_n_9g16zfv13_NfwNKk5ZJ
CitedBy_id crossref_primary_10_1021_acsphotonics_3c00206
crossref_primary_10_1088_2040_8986_ad2e1e
crossref_primary_10_1002_solr_202300610
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1002_adma_202313252
crossref_primary_10_1002_adom_202302513
crossref_primary_10_1126_sciadv_adj3476
crossref_primary_10_1021_acs_nanolett_3c00932
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1039_D4TC01556H
crossref_primary_10_1002_adma_202403455
crossref_primary_10_1002_adom_202400189
crossref_primary_10_1038_s41467_024_48942_6
crossref_primary_10_3390_nano13172466
crossref_primary_10_1021_acsphotonics_3c01826
Cites_doi 10.1002/adfm.201902963
10.1002/adma.201100423
10.1364/OE.395821
10.1063/1.343793
10.1063/1.122853
10.1063/1.2826543
10.1103/PhysRevB.69.104202
10.1021/acsenergylett.1c00776
10.1039/C5NR01349F
10.1021/cm402919x
10.1038/s41566-021-00946-0
10.1021/jz500279b
10.1016/j.jlumin.2021.118453
10.1088/0022-3727/48/48/483001
10.1088/0305-4470/38/49/004
10.1103/PhysRevLett.82.2278
10.1364/AOP.3.000088
10.1002/adma.201601418
10.1063/1.4824147
10.1021/acsnano.7b01351
10.1038/nphoton.2011.217
10.1002/aenm.201702019
10.1364/OE.26.000A75
10.1021/acs.jpclett.9b02353
10.1088/0959-7174/13/3/201
10.1002/solr.202100825
10.1021/acs.jpcc.0c11016
10.1103/PhysRevLett.85.70
10.1002/adom.201600513
10.1038/s41467-017-02684-w
10.1021/acs.jpcc.8b10218
10.1039/C6QM00028B
10.1038/nmat3911
10.1103/PhysRevB.67.161101
10.1021/acsnano.9b00154
10.1038/nnano.2014.213
10.1039/C6TA04840D
10.1002/adom.202200458
10.1039/C6TC02818G
10.1126/sciadv.aba1705
10.1039/D0NA00794C
10.1002/adom.202100807
10.1016/j.joule.2022.02.014
10.3390/app9214591
10.1088/2040-8978/12/2/024001
10.1021/nl050440u
10.1016/j.trechm.2019.04.004
10.1063/1.4898703
10.1039/C6NR05561C
10.1364/OPTICA.425593
10.1103/PhysRevLett.98.143901
10.1515/nanoph-2019-0552
10.1016/S1631-0705(02)01336-1
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202208293
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202208293
36385442
ADMA202208293
Genre article
Journal Article
GrantInformation_xml – fundername: Horizon 2020 research and innovation program
  funderid: 862656
– fundername: Ministry of Science and Innovation of Spain
  funderid: PID2019‐107314RB‐I00; PID2020‐120484RB‐I00
– fundername: Ministry of Science and Innovation of Spain
  grantid: PID2019-107314RB-I00
– fundername: Ministry of Science and Innovation of Spain
  grantid: PID2020-120484RB-I00
– fundername: Horizon 2020 research and innovation program
  grantid: 862656
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4133-ab2d6f29a30da938849abf155faf4a6986b88212f5efa86cc0b9eab46962754a3
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 21:37:27 EDT 2024
Thu Oct 10 17:14:04 EDT 2024
Thu Nov 21 21:20:37 EST 2024
Sat Sep 28 08:15:43 EDT 2024
Sat Aug 24 00:56:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Pb-free
random lasing
halide perovskites
stability
thin films
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4133-ab2d6f29a30da938849abf155faf4a6986b88212f5efa86cc0b9eab46962754a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3683-0578
0000-0003-4121-9773
0000-0002-2773-8801
0000-0001-8948-6120
0000-0003-2508-0994
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208293
PMID 36385442
PQID 2781106986
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2737466006
proquest_journals_2781106986
crossref_primary_10_1002_adma_202208293
pubmed_primary_36385442
wiley_primary_10_1002_adma_202208293_ADMA202208293
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2018; 122
2017; 1
2013; 25
2013; 1
2021; 125
2019; 10
2019; 13
2004; 69
2000; 85
2003; 13
2021; 240
1999; 82
2018; 9
2015; 48
2020; 6
2018; 8
2014; 5
2020; 2
2020; 9
1986
2014; 13
2019; 29
2011; 23
2014; 9
2005; 38
2021; 9
2021; 8
2019; 9
2021; 6
1989; 66
2021; 3
2019; 1
2002; 3
2007; 91
2011; 3
2007; 98
2011; 5
2015; 7
2018; 26
2016; 4
2014; 105
2022; 6
2017; 11
2020; 28
2005; 5
2022; 10
1998; 73
2016; 28
2016; 8
2022; 16
2003; 67
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Siegman A. E. (e_1_2_8_34_1) 1986
Hu Z. (e_1_2_8_13_1) 2021; 3
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 1
  year: 2013
  publication-title: APL Mater.
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 6038
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 8191
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 935
  year: 2020
  publication-title: Nanophotonics
– volume: 23
  start-page: 2199
  year: 2011
  publication-title: Adv. Mater.
– volume: 1
  start-page: 368
  year: 2019
  publication-title: Trends Chem
– volume: 5
  start-page: 615
  year: 2011
  publication-title: Nat. Photonics
– volume: 12
  year: 2010
  publication-title: J Opt
– volume: 125
  start-page: 5180
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 16
  start-page: 219
  year: 2022
  publication-title: Nat. Photonics
– volume: 4
  start-page: 8373
  year: 2016
  publication-title: J. Mater. Chem. C
– year: 1986
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 73
  start-page: 3656
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 509
  year: 2002
  publication-title: C. R. Physique
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 66
  start-page: 4801
  year: 1989
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 243
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2413
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 917
  year: 2005
  publication-title: Nano Lett.
– volume: 240
  year: 2021
  publication-title: J. Lumin.
– volume: 82
  start-page: 2278
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 9505
  year: 2015
  publication-title: Nanoscale
– volume: 13
  start-page: 476
  year: 2014
  publication-title: Nat. Mater.
– volume: 3
  year: 2021
  publication-title: Adv. Photonics
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 4613
  year: 2013
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1160
  year: 2021
  publication-title: Optica
– volume: 6
  start-page: 861
  year: 2022
  publication-title: Joule
– volume: 85
  start-page: 70
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 38
  year: 2005
  publication-title: J Phys A Math Gen
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 2
  start-page: 5833
  year: 2020
  publication-title: Nanoscale Adv
– volume: 9
  start-page: 891
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 2063
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 9
  start-page: 4591
  year: 2019
  publication-title: Appl. Sci.
– volume: 11
  start-page: 5766
  year: 2017
  publication-title: ACS Nano
– volume: 67
  year: 2003
  publication-title: Phys. Rev. B
– volume: 26
  start-page: A75
  year: 2018
  publication-title: Opt. Express
– volume: 3
  start-page: 88
  year: 2011
  publication-title: Adv. Opt. Photonics
– volume: 13
  start-page: R1
  year: 2003
  publication-title: Mult. Scattering Waves Random Media, Proc. U.S. Army Workshop
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 48
  year: 2015
  publication-title: J. Phys. D: Appl. Phys.
– volume: 13
  start-page: 5421
  year: 2019
  publication-title: ACS Nano
– volume: 69
  year: 2004
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 477
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201902963
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201100423
– ident: e_1_2_8_18_1
  doi: 10.1364/OE.395821
– ident: e_1_2_8_35_1
  doi: 10.1063/1.343793
– volume: 3
  start-page: 034002
  year: 2021
  ident: e_1_2_8_13_1
  publication-title: Adv. Photonics
  contributor:
    fullname: Hu Z.
– ident: e_1_2_8_5_1
  doi: 10.1063/1.122853
– ident: e_1_2_8_50_1
  doi: 10.1063/1.2826543
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.69.104202
– ident: e_1_2_8_20_1
  doi: 10.1021/acsenergylett.1c00776
– ident: e_1_2_8_52_1
  doi: 10.1039/C5NR01349F
– ident: e_1_2_8_7_1
  doi: 10.1021/cm402919x
– ident: e_1_2_8_53_1
  doi: 10.1038/s41566-021-00946-0
– ident: e_1_2_8_9_1
  doi: 10.1021/jz500279b
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jlumin.2021.118453
– volume-title: Lasers
  year: 1986
  ident: e_1_2_8_34_1
  contributor:
    fullname: Siegman A. E.
– ident: e_1_2_8_51_1
  doi: 10.1088/0022-3727/48/48/483001
– ident: e_1_2_8_4_1
  doi: 10.1088/0305-4470/38/49/004
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevLett.82.2278
– ident: e_1_2_8_26_1
  doi: 10.1364/AOP.3.000088
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201601418
– ident: e_1_2_8_8_1
  doi: 10.1063/1.4824147
– ident: e_1_2_8_28_1
  doi: 10.1021/acsnano.7b01351
– ident: e_1_2_8_1_1
  doi: 10.1038/nphoton.2011.217
– ident: e_1_2_8_27_1
  doi: 10.1002/aenm.201702019
– ident: e_1_2_8_16_1
  doi: 10.1364/OE.26.000A75
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.jpclett.9b02353
– ident: e_1_2_8_3_1
  doi: 10.1088/0959-7174/13/3/201
– ident: e_1_2_8_45_1
  doi: 10.1002/solr.202100825
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jpcc.0c11016
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevLett.85.70
– ident: e_1_2_8_55_1
  doi: 10.1002/adom.201600513
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-017-02684-w
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.jpcc.8b10218
– ident: e_1_2_8_31_1
  doi: 10.1039/C6QM00028B
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat3911
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.67.161101
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.9b00154
– ident: e_1_2_8_25_1
  doi: 10.1038/nnano.2014.213
– ident: e_1_2_8_41_1
  doi: 10.1039/C6TA04840D
– ident: e_1_2_8_24_1
  doi: 10.1002/adom.202200458
– ident: e_1_2_8_14_1
  doi: 10.1039/C6TC02818G
– ident: e_1_2_8_54_1
  doi: 10.1126/sciadv.aba1705
– ident: e_1_2_8_32_1
  doi: 10.1039/D0NA00794C
– ident: e_1_2_8_33_1
  doi: 10.1002/adom.202100807
– ident: e_1_2_8_23_1
  doi: 10.1016/j.joule.2022.02.014
– ident: e_1_2_8_12_1
  doi: 10.3390/app9214591
– ident: e_1_2_8_40_1
  doi: 10.1088/2040-8978/12/2/024001
– ident: e_1_2_8_29_1
  doi: 10.1021/nl050440u
– ident: e_1_2_8_19_1
  doi: 10.1016/j.trechm.2019.04.004
– ident: e_1_2_8_11_1
  doi: 10.1063/1.4898703
– ident: e_1_2_8_15_1
  doi: 10.1039/C6NR05561C
– ident: e_1_2_8_42_1
  doi: 10.1364/OPTICA.425593
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.98.143901
– ident: e_1_2_8_49_1
  doi: 10.1515/nanoph-2019-0552
– ident: e_1_2_8_2_1
  doi: 10.1016/S1631-0705(02)01336-1
SSID ssj0009606
Score 2.546877
Snippet An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of...
An unusual spectrally reproducible near-IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2208293
SubjectTerms halide perovskites
Inhomogeneity
Lasing
Oxidation
Pb‐free
Perovskites
Polycrystals
random lasing
Reproducibility
Semiconductor materials
Spectral emittance
Spontaneous emission
Stability
Thin films
Tin
Title Unusual Spectrally Reproducible and High Q‐Factor Random Lasing in Polycrystalline Tin Perovskite Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208293
https://www.ncbi.nlm.nih.gov/pubmed/36385442
https://www.proquest.com/docview/2781106986
https://search.proquest.com/docview/2737466006
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELc2ntgDG__LABkJiaeI1HbS-LEaVH1gE4NW4i06J7ZUqSSoIZP6to-wz8gn2Z3TplR7QGKPSc6K5fPZvzv7fsfYeU8ZCDNifhTGooMSRwE49HmUNlGGc6irgHKHh_e9Hw_J1TXR5LRZ_A0_RBtwI8vw6zUZOJjqckUaCrnnDRKCskOJ7hNdBZ_DIW9XrLuxL65Jh32BjlWyZG0MxeV68_Vd6R-ouY5c_dYz-Pz_nf7Cthawk_ebebLNPthih316RUa4yybjoq5qFKKS9BT_mM45wnPPCDsxU8uhyDldC-E_X37_Gfg6PfwOX5aP_AYo5MAnBb8tp_NsNkfMSWTflo_onZ2VvyoKE_PBZPpY7bHx4Hr0bRgsCjEEGe5xMgAj8tgJDTLMQcskURqMQyTiwCmIdRIbBOpd4SLrIImzLDTagkHPmziQFch9tlGUhT1kPMclBKxw0oBUEDmthdM5WEDRLoTdDrtYKiJ9avg20oZZWaQ0eGk7eB12vNRTurC7KhWUOBtSjzrsrP2MFkPHIFDYsiYZ2VMxAj2UOWj02_5K4nIUKSU6THg1vtGHtH_1vd8-Hb2n0Ve2SRXsm2ttx2zjeVbbE_axyutTP5f_AoKo870
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED_W7mHbQ_d_TdduGgz2ZOpIsmM9hrYhY2npthT2Zk62BIHUHnE9yNs-Qj9jP0nv7MRd2MOg7NHSCQvdSfrppPsdwMeBthhmzPworaMDShwF6OnMo42NMrKhvkaOHR5_H5z9SI5PmCZnuI6FafkhOocbz4xmveYJzg7pwzvWUMwb4iApOTxUbcFDHZM1chSHOr_j3Y2b9Jp83RcYql_zNobycLP95r70F9jcxK7N5jN6-h-6_Qx2VshTDFtTeQ4PXPECnvzBR_gSZhdFXdUkxFnp2QUyXwpC6A0p7MzOncAiF_wyRHy9-X09alL1iG9UWF6KCbLXQcwKcV7Ol9liSbCT-b6dmHKZW5S_KvYUi9Fsflm9govRyfRoHKxyMQQZbXMqQCvz2EuDKszRqCTRBq0nMOLRa4xNElvC6n3pI-cxibMstMahpcM30yBrVK9huygLtwsip1UEnfTKotIYeWOkNzk6JNE-hv0efFprIv3ZUm6kLbmyTHnw0m7werC_VlS6mnpVKjl2NuQe9eBDV02Thm9CsHBlzTJqoGPCeiTzplVw9ytFK1KkteyBbPT4jz6kw-PTYfe1d59G7-HReHo6SSefz768hcec0L595bYP21eL2h3AVpXX7xrDvgXxvffl
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ygNIe-n5smrYqFHoy8Uqy1zou3ZiEpGGTJtCbGdkSLGzssK4Le-tP6G_sL8mMvet06aHQHi2PkNBopE8jzTcAH0baYpgz86O0jg4ocRSgpzOPNjbKaQ4NNXLs8NGX0dnXZHLINDl9FH_HD9E73Ngy2vWaDfym8Ad3pKFYtLxBUnJ0qNqGXU1YnNnzlZre0e7GbXZNvu0LTKyTNW1jKA82629uS39gzU3o2u496aP_7_VjeLjCnWLcTZQnsOXKp_DgNzbCZzC7Kpu6ISHOSc8OkPlSED5vKWFndu4EloXgdyHi_NePn2mbqEdcUGF1LU6RfQ5iVoppNV_miyWBTmb7duKSy9yi-l6zn1iks_l1_Ryu0sPLT0fBKhNDkNMmpwK0soi9NKjCAo1KEm3QeoIiHr3G2CSxJaQ-lD5yHpM4z0NrHFo6ejMJskb1AnbKqnSvQBS0hqCTXllUGiNvjPSmQIckOsRwOICPa0VkNx3hRtZRK8uMBy_rB28A-2s9ZSvDqzPJkbMh92gA7_vfZDJ8D4KlqxqWUSMdE9IjmZedfvumFK1HkdZyALJV41_6kI0nn8f9196_VHoH96aTNDs9Pjt5Dfc5m333xG0fdr4tGvcGtuuiedtO61vuZvaL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unusual+Spectrally+Reproducible+and+High+Q%E2%80%90Factor+Random+Lasing+in+Polycrystalline+Tin+Perovskite+Films&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chirvony%2C+Vladimir+S.&rft.au=Su%C3%A1rez%2C+Isaac&rft.au=Sanchez%E2%80%90Diaz%2C+Jesus&rft.au=S%C3%A1nchez%2C+Rafael+S.&rft.date=2023-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202208293&rft.externalDBID=10.1002%252Fadma.202208293&rft.externalDocID=ADMA202208293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon