Unusual Spectrally Reproducible and High Q‐Factor Random Lasing in Polycrystalline Tin Perovskite Films
An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 35; no. 9; pp. e2208293 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines.
Highly spectrally reproducible multimode random lasing is observed in thin polycrystalline films of tin iodide perovskite that cannot be explained by a strong mode localization. The observed spectral reproducibility can be due to the strong inhomogeneous broadening of photoluminescence spectra measured in tin‐based perovskites on the basis of a comparison with an analogous Pb‐based counterpart. |
---|---|
AbstractList | An unusual spectrally reproducible near-IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn
to Sn
oxidation. Remarkably, a quality Q-factor as high as ≈10
with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm
(both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn-based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn 2+ to Sn 4+ oxidation. Remarkably, a quality Q‐factor as high as ≈10 4 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm −2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q‐factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm−2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn‐based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines. Highly spectrally reproducible multimode random lasing is observed in thin polycrystalline films of tin iodide perovskite that cannot be explained by a strong mode localization. The observed spectral reproducibility can be due to the strong inhomogeneous broadening of photoluminescence spectra measured in tin‐based perovskites on the basis of a comparison with an analogous Pb‐based counterpart. |
Author | Chirvony, Vladimir S. Mora‐Seró, Iván Rodríguez‐Romero, Jesús Suárez, Isaac Martínez‐Pastor, Juan P. Sánchez, Rafael S. Sanchez‐Diaz, Jesus |
Author_xml | – sequence: 1 givenname: Vladimir S. orcidid: 0000-0003-4121-9773 surname: Chirvony fullname: Chirvony, Vladimir S. email: vladimir.chyrvony@uv.es organization: Universidad de Valencia – sequence: 2 givenname: Isaac orcidid: 0000-0002-2773-8801 surname: Suárez fullname: Suárez, Isaac organization: Universidad de Valencia – sequence: 3 givenname: Jesus surname: Sanchez‐Diaz fullname: Sanchez‐Diaz, Jesus organization: Universitat Jaume I – sequence: 4 givenname: Rafael S. orcidid: 0000-0001-8948-6120 surname: Sánchez fullname: Sánchez, Rafael S. organization: Universitat Jaume I – sequence: 5 givenname: Jesús surname: Rodríguez‐Romero fullname: Rodríguez‐Romero, Jesús organization: Universidad Nacional Autónoma de México – sequence: 6 givenname: Iván orcidid: 0000-0003-2508-0994 surname: Mora‐Seró fullname: Mora‐Seró, Iván email: sero@uji.es organization: Universitat Jaume I – sequence: 7 givenname: Juan P. orcidid: 0000-0003-3683-0578 surname: Martínez‐Pastor fullname: Martínez‐Pastor, Juan P. email: juan.mtnez.pastor@uv.es organization: Universidad de Valencia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36385442$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUtkiQ2bDP6Lx16OCtMiDQJKu45uHKe4OPZgJ6Ds-gg8I0-CR1OKxIbVlY6-e-7POUFHIQaL0HNKlpQQ9hq6AZaMMEYU0_wRWtCa0UoQXR-hBdG8rrQU6hid5HxLCNGSyCfomEuuaiHYArnrMOUJPP68s2ZM4P2ML-0uxW4yrvUWQ-jwhbv5gj_9uvu5ATPGhC-LGAe8hezCDXYBf4x-NmnOY-l3weKrvWZT_J6_utHijfNDfooe9-CzfXZfT9H15u3V2UW1_XD-7my9rYygnFfQsk72TAMnHWiulNDQ9rSue-gFSK1kqxSjrK9tD0oaQ1ptoRVSS7aqBfBT9OrgW474Ntk8NoPLxnoPwcYpN2zFV0JKQmRBX_6D3sYphbJdoRSlZD-uUMsDZVLMOdm-2SU3QJobSpp9CM0-hOYhhNLw4t52agfbPeB_vl4AfQB-OG_n_9g16zfv13_NfwNKk5ZJ |
CitedBy_id | crossref_primary_10_1021_acsphotonics_3c00206 crossref_primary_10_1088_2040_8986_ad2e1e crossref_primary_10_1002_solr_202300610 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1002_adma_202313252 crossref_primary_10_1002_adom_202302513 crossref_primary_10_1126_sciadv_adj3476 crossref_primary_10_1021_acs_nanolett_3c00932 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1039_D4TC01556H crossref_primary_10_1002_adma_202403455 crossref_primary_10_1002_adom_202400189 crossref_primary_10_1038_s41467_024_48942_6 crossref_primary_10_3390_nano13172466 crossref_primary_10_1021_acsphotonics_3c01826 |
Cites_doi | 10.1002/adfm.201902963 10.1002/adma.201100423 10.1364/OE.395821 10.1063/1.343793 10.1063/1.122853 10.1063/1.2826543 10.1103/PhysRevB.69.104202 10.1021/acsenergylett.1c00776 10.1039/C5NR01349F 10.1021/cm402919x 10.1038/s41566-021-00946-0 10.1021/jz500279b 10.1016/j.jlumin.2021.118453 10.1088/0022-3727/48/48/483001 10.1088/0305-4470/38/49/004 10.1103/PhysRevLett.82.2278 10.1364/AOP.3.000088 10.1002/adma.201601418 10.1063/1.4824147 10.1021/acsnano.7b01351 10.1038/nphoton.2011.217 10.1002/aenm.201702019 10.1364/OE.26.000A75 10.1021/acs.jpclett.9b02353 10.1088/0959-7174/13/3/201 10.1002/solr.202100825 10.1021/acs.jpcc.0c11016 10.1103/PhysRevLett.85.70 10.1002/adom.201600513 10.1038/s41467-017-02684-w 10.1021/acs.jpcc.8b10218 10.1039/C6QM00028B 10.1038/nmat3911 10.1103/PhysRevB.67.161101 10.1021/acsnano.9b00154 10.1038/nnano.2014.213 10.1039/C6TA04840D 10.1002/adom.202200458 10.1039/C6TC02818G 10.1126/sciadv.aba1705 10.1039/D0NA00794C 10.1002/adom.202100807 10.1016/j.joule.2022.02.014 10.3390/app9214591 10.1088/2040-8978/12/2/024001 10.1021/nl050440u 10.1016/j.trechm.2019.04.004 10.1063/1.4898703 10.1039/C6NR05561C 10.1364/OPTICA.425593 10.1103/PhysRevLett.98.143901 10.1515/nanoph-2019-0552 10.1016/S1631-0705(02)01336-1 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202208293 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Free Archive PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202208293 36385442 ADMA202208293 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Horizon 2020 research and innovation program funderid: 862656 – fundername: Ministry of Science and Innovation of Spain funderid: PID2019‐107314RB‐I00; PID2020‐120484RB‐I00 – fundername: Ministry of Science and Innovation of Spain grantid: PID2019-107314RB-I00 – fundername: Ministry of Science and Innovation of Spain grantid: PID2020-120484RB-I00 – fundername: Horizon 2020 research and innovation program grantid: 862656 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4133-ab2d6f29a30da938849abf155faf4a6986b88212f5efa86cc0b9eab46962754a3 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 21:37:27 EDT 2024 Thu Oct 10 17:14:04 EDT 2024 Thu Nov 21 21:20:37 EST 2024 Sat Sep 28 08:15:43 EDT 2024 Sat Aug 24 00:56:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Pb-free random lasing halide perovskites stability thin films |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4133-ab2d6f29a30da938849abf155faf4a6986b88212f5efa86cc0b9eab46962754a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3683-0578 0000-0003-4121-9773 0000-0002-2773-8801 0000-0001-8948-6120 0000-0003-2508-0994 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208293 |
PMID | 36385442 |
PQID | 2781106986 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2737466006 proquest_journals_2781106986 crossref_primary_10_1002_adma_202208293 pubmed_primary_36385442 wiley_primary_10_1002_adma_202208293_ADMA202208293 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2018; 122 2017; 1 2013; 25 2013; 1 2021; 125 2019; 10 2019; 13 2004; 69 2000; 85 2003; 13 2021; 240 1999; 82 2018; 9 2015; 48 2020; 6 2018; 8 2014; 5 2020; 2 2020; 9 1986 2014; 13 2019; 29 2011; 23 2014; 9 2005; 38 2021; 9 2021; 8 2019; 9 2021; 6 1989; 66 2021; 3 2019; 1 2002; 3 2007; 91 2011; 3 2007; 98 2011; 5 2015; 7 2018; 26 2016; 4 2014; 105 2022; 6 2017; 11 2020; 28 2005; 5 2022; 10 1998; 73 2016; 28 2016; 8 2022; 16 2003; 67 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Siegman A. E. (e_1_2_8_34_1) 1986 Hu Z. (e_1_2_8_13_1) 2021; 3 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 1 year: 2013 publication-title: APL Mater. – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 6038 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 8191 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 935 year: 2020 publication-title: Nanophotonics – volume: 23 start-page: 2199 year: 2011 publication-title: Adv. Mater. – volume: 1 start-page: 368 year: 2019 publication-title: Trends Chem – volume: 5 start-page: 615 year: 2011 publication-title: Nat. Photonics – volume: 12 year: 2010 publication-title: J Opt – volume: 125 start-page: 5180 year: 2021 publication-title: J. Phys. Chem. C – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 16 start-page: 219 year: 2022 publication-title: Nat. Photonics – volume: 4 start-page: 8373 year: 2016 publication-title: J. Mater. Chem. C – year: 1986 – volume: 28 year: 2020 publication-title: Opt. Express – volume: 73 start-page: 3656 year: 1998 publication-title: Appl. Phys. Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 509 year: 2002 publication-title: C. R. Physique – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 66 start-page: 4801 year: 1989 publication-title: J. Appl. Phys. – volume: 9 start-page: 243 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 2413 year: 2021 publication-title: ACS Energy Lett. – volume: 5 start-page: 917 year: 2005 publication-title: Nano Lett. – volume: 240 year: 2021 publication-title: J. Lumin. – volume: 82 start-page: 2278 year: 1999 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 9505 year: 2015 publication-title: Nanoscale – volume: 13 start-page: 476 year: 2014 publication-title: Nat. Mater. – volume: 3 year: 2021 publication-title: Adv. Photonics – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 25 start-page: 4613 year: 2013 publication-title: Chem. Mater. – volume: 8 start-page: 1160 year: 2021 publication-title: Optica – volume: 6 start-page: 861 year: 2022 publication-title: Joule – volume: 85 start-page: 70 year: 2000 publication-title: Phys. Rev. Lett. – volume: 38 year: 2005 publication-title: J Phys A Math Gen – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 2 start-page: 5833 year: 2020 publication-title: Nanoscale Adv – volume: 9 start-page: 891 year: 2014 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 2063 year: 2016 publication-title: Adv. Opt. Mater. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 9 start-page: 4591 year: 2019 publication-title: Appl. Sci. – volume: 11 start-page: 5766 year: 2017 publication-title: ACS Nano – volume: 67 year: 2003 publication-title: Phys. Rev. B – volume: 26 start-page: A75 year: 2018 publication-title: Opt. Express – volume: 3 start-page: 88 year: 2011 publication-title: Adv. Opt. Photonics – volume: 13 start-page: R1 year: 2003 publication-title: Mult. Scattering Waves Random Media, Proc. U.S. Army Workshop – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 48 year: 2015 publication-title: J. Phys. D: Appl. Phys. – volume: 13 start-page: 5421 year: 2019 publication-title: ACS Nano – volume: 69 year: 2004 publication-title: Phys. Rev. B – volume: 1 start-page: 477 year: 2017 publication-title: Mater. Chem. Front. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201902963 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201100423 – ident: e_1_2_8_18_1 doi: 10.1364/OE.395821 – ident: e_1_2_8_35_1 doi: 10.1063/1.343793 – volume: 3 start-page: 034002 year: 2021 ident: e_1_2_8_13_1 publication-title: Adv. Photonics contributor: fullname: Hu Z. – ident: e_1_2_8_5_1 doi: 10.1063/1.122853 – ident: e_1_2_8_50_1 doi: 10.1063/1.2826543 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.69.104202 – ident: e_1_2_8_20_1 doi: 10.1021/acsenergylett.1c00776 – ident: e_1_2_8_52_1 doi: 10.1039/C5NR01349F – ident: e_1_2_8_7_1 doi: 10.1021/cm402919x – ident: e_1_2_8_53_1 doi: 10.1038/s41566-021-00946-0 – ident: e_1_2_8_9_1 doi: 10.1021/jz500279b – ident: e_1_2_8_48_1 doi: 10.1016/j.jlumin.2021.118453 – volume-title: Lasers year: 1986 ident: e_1_2_8_34_1 contributor: fullname: Siegman A. E. – ident: e_1_2_8_51_1 doi: 10.1088/0022-3727/48/48/483001 – ident: e_1_2_8_4_1 doi: 10.1088/0305-4470/38/49/004 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevLett.82.2278 – ident: e_1_2_8_26_1 doi: 10.1364/AOP.3.000088 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201601418 – ident: e_1_2_8_8_1 doi: 10.1063/1.4824147 – ident: e_1_2_8_28_1 doi: 10.1021/acsnano.7b01351 – ident: e_1_2_8_1_1 doi: 10.1038/nphoton.2011.217 – ident: e_1_2_8_27_1 doi: 10.1002/aenm.201702019 – ident: e_1_2_8_16_1 doi: 10.1364/OE.26.000A75 – ident: e_1_2_8_46_1 doi: 10.1021/acs.jpclett.9b02353 – ident: e_1_2_8_3_1 doi: 10.1088/0959-7174/13/3/201 – ident: e_1_2_8_45_1 doi: 10.1002/solr.202100825 – ident: e_1_2_8_22_1 doi: 10.1021/acs.jpcc.0c11016 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevLett.85.70 – ident: e_1_2_8_55_1 doi: 10.1002/adom.201600513 – ident: e_1_2_8_47_1 doi: 10.1038/s41467-017-02684-w – ident: e_1_2_8_43_1 doi: 10.1021/acs.jpcc.8b10218 – ident: e_1_2_8_31_1 doi: 10.1039/C6QM00028B – ident: e_1_2_8_10_1 doi: 10.1038/nmat3911 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.67.161101 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.9b00154 – ident: e_1_2_8_25_1 doi: 10.1038/nnano.2014.213 – ident: e_1_2_8_41_1 doi: 10.1039/C6TA04840D – ident: e_1_2_8_24_1 doi: 10.1002/adom.202200458 – ident: e_1_2_8_14_1 doi: 10.1039/C6TC02818G – ident: e_1_2_8_54_1 doi: 10.1126/sciadv.aba1705 – ident: e_1_2_8_32_1 doi: 10.1039/D0NA00794C – ident: e_1_2_8_33_1 doi: 10.1002/adom.202100807 – ident: e_1_2_8_23_1 doi: 10.1016/j.joule.2022.02.014 – ident: e_1_2_8_12_1 doi: 10.3390/app9214591 – ident: e_1_2_8_40_1 doi: 10.1088/2040-8978/12/2/024001 – ident: e_1_2_8_29_1 doi: 10.1021/nl050440u – ident: e_1_2_8_19_1 doi: 10.1016/j.trechm.2019.04.004 – ident: e_1_2_8_11_1 doi: 10.1063/1.4898703 – ident: e_1_2_8_15_1 doi: 10.1039/C6NR05561C – ident: e_1_2_8_42_1 doi: 10.1364/OPTICA.425593 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevLett.98.143901 – ident: e_1_2_8_49_1 doi: 10.1515/nanoph-2019-0552 – ident: e_1_2_8_2_1 doi: 10.1016/S1631-0705(02)01336-1 |
SSID | ssj0009606 |
Score | 2.546877 |
Snippet | An unusual spectrally reproducible near‐IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of... An unusual spectrally reproducible near-IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2208293 |
SubjectTerms | halide perovskites Inhomogeneity Lasing Oxidation Pb‐free Perovskites Polycrystals random lasing Reproducibility Semiconductor materials Spectral emittance Spontaneous emission Stability Thin films Tin |
Title | Unusual Spectrally Reproducible and High Q‐Factor Random Lasing in Polycrystalline Tin Perovskite Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208293 https://www.ncbi.nlm.nih.gov/pubmed/36385442 https://www.proquest.com/docview/2781106986 https://search.proquest.com/docview/2737466006 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELc2ntgDG__LABkJiaeI1HbS-LEaVH1gE4NW4i06J7ZUqSSoIZP6to-wz8gn2Z3TplR7QGKPSc6K5fPZvzv7fsfYeU8ZCDNifhTGooMSRwE49HmUNlGGc6irgHKHh_e9Hw_J1TXR5LRZ_A0_RBtwI8vw6zUZOJjqckUaCrnnDRKCskOJ7hNdBZ_DIW9XrLuxL65Jh32BjlWyZG0MxeV68_Vd6R-ouY5c_dYz-Pz_nf7Cthawk_ebebLNPthih316RUa4yybjoq5qFKKS9BT_mM45wnPPCDsxU8uhyDldC-E_X37_Gfg6PfwOX5aP_AYo5MAnBb8tp_NsNkfMSWTflo_onZ2VvyoKE_PBZPpY7bHx4Hr0bRgsCjEEGe5xMgAj8tgJDTLMQcskURqMQyTiwCmIdRIbBOpd4SLrIImzLDTagkHPmziQFch9tlGUhT1kPMclBKxw0oBUEDmthdM5WEDRLoTdDrtYKiJ9avg20oZZWaQ0eGk7eB12vNRTurC7KhWUOBtSjzrsrP2MFkPHIFDYsiYZ2VMxAj2UOWj02_5K4nIUKSU6THg1vtGHtH_1vd8-Hb2n0Ve2SRXsm2ttx2zjeVbbE_axyutTP5f_AoKo870 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED_W7mHbQ_d_TdduGgz2ZOpIsmM9hrYhY2npthT2Zk62BIHUHnE9yNs-Qj9jP0nv7MRd2MOg7NHSCQvdSfrppPsdwMeBthhmzPworaMDShwF6OnMo42NMrKhvkaOHR5_H5z9SI5PmCZnuI6FafkhOocbz4xmveYJzg7pwzvWUMwb4iApOTxUbcFDHZM1chSHOr_j3Y2b9Jp83RcYql_zNobycLP95r70F9jcxK7N5jN6-h-6_Qx2VshTDFtTeQ4PXPECnvzBR_gSZhdFXdUkxFnp2QUyXwpC6A0p7MzOncAiF_wyRHy9-X09alL1iG9UWF6KCbLXQcwKcV7Ol9liSbCT-b6dmHKZW5S_KvYUi9Fsflm9govRyfRoHKxyMQQZbXMqQCvz2EuDKszRqCTRBq0nMOLRa4xNElvC6n3pI-cxibMstMahpcM30yBrVK9huygLtwsip1UEnfTKotIYeWOkNzk6JNE-hv0efFprIv3ZUm6kLbmyTHnw0m7werC_VlS6mnpVKjl2NuQe9eBDV02Thm9CsHBlzTJqoGPCeiTzplVw9ytFK1KkteyBbPT4jz6kw-PTYfe1d59G7-HReHo6SSefz768hcec0L595bYP21eL2h3AVpXX7xrDvgXxvffl |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ygNIe-n5smrYqFHoy8Uqy1zou3ZiEpGGTJtCbGdkSLGzssK4Le-tP6G_sL8mMvet06aHQHi2PkNBopE8jzTcAH0baYpgz86O0jg4ocRSgpzOPNjbKaQ4NNXLs8NGX0dnXZHLINDl9FH_HD9E73Ngy2vWaDfym8Ad3pKFYtLxBUnJ0qNqGXU1YnNnzlZre0e7GbXZNvu0LTKyTNW1jKA82629uS39gzU3o2u496aP_7_VjeLjCnWLcTZQnsOXKp_DgNzbCZzC7Kpu6ISHOSc8OkPlSED5vKWFndu4EloXgdyHi_NePn2mbqEdcUGF1LU6RfQ5iVoppNV_miyWBTmb7duKSy9yi-l6zn1iks_l1_Ryu0sPLT0fBKhNDkNMmpwK0soi9NKjCAo1KEm3QeoIiHr3G2CSxJaQ-lD5yHpM4z0NrHFo6ejMJskb1AnbKqnSvQBS0hqCTXllUGiNvjPSmQIckOsRwOICPa0VkNx3hRtZRK8uMBy_rB28A-2s9ZSvDqzPJkbMh92gA7_vfZDJ8D4KlqxqWUSMdE9IjmZedfvumFK1HkdZyALJV41_6kI0nn8f9196_VHoH96aTNDs9Pjt5Dfc5m333xG0fdr4tGvcGtuuiedtO61vuZvaL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unusual+Spectrally+Reproducible+and+High+Q%E2%80%90Factor+Random+Lasing+in+Polycrystalline+Tin+Perovskite+Films&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chirvony%2C+Vladimir+S.&rft.au=Su%C3%A1rez%2C+Isaac&rft.au=Sanchez%E2%80%90Diaz%2C+Jesus&rft.au=S%C3%A1nchez%2C+Rafael+S.&rft.date=2023-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202208293&rft.externalDBID=10.1002%252Fadma.202208293&rft.externalDocID=ADMA202208293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |