Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol
Background, aim, and scope Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attract...
Saved in:
Published in: | The international journal of life cycle assessment Vol. 14; no. 6; pp. 529 - 539 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-09-2009
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background, aim, and scope
Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attractive option for one energy application, as transport fuel. Many studies on the LCA of fuel ethanol have been conducted, and the results vary to a large extent. In most of these studies, only one type of allocation is applied. However, the effect of allocation on outcomes is of crucial importance to LCA as a decision supporting tool. This is only addressed in a few studies to a limited extent. Moreover, most of the studies mainly focus on fossil energy use and GHG emissions. In this paper, a case study is presented wherein a more complete set of impact categories is used. Land use has been left out of account as only hectare data would be given which is obviously dominated by agriculture. Moreover, different allocation methods are applied to assess the sensitivity of the outcomes for allocation choices.
Materials and methods
This study focuses on the comparison of LCA results from the application of different allocation methods by presenting an LCA of gasoline and ethanol as fuels and with two types of blends of gasoline with ethanol, all used in a midsize car. As a main second-generation application growing fast in the USA, corn stover-based ethanol is chosen as a case study. The life cycles of the fuels include gasoline production, corn and stover agriculture, cellulosic ethanol production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85% of ethanol), and finally the use of gasoline, E10, E85, and ethanol. In this study, a substantially broader set of eight environmental impacts is covered.
Results
LCA results appear to be largely dependent on the allocation methods rendered. The level of abiotic depletion and ozone layer depletion decrease when replacing gasoline by ethanol fuels, irrespective of the allocation method applied, while the rest of the impacts except global warming potential are larger. The results show a reduction of global warming potential when mass/energy allocation is applied; in the case of economic allocation, it gives contrary results. In the expanded systems, global warming potential is significantly reduced comparing to the ones from the allocated systems. A contribution analysis shows that car driving, electricity use for cellulase enzyme production, and ethanol conversion contribute largely to global warming potential from the life cycle of ethanol fuels.
Discussion
The reason why the results of global warming potential show a reverse trend is that the corn/stover allocation ratio shifts from 7.5 to 1.7 when shifting from economic allocation to mass/energy allocation. When mass/energy allocation is applied, both more credits (CO
2
uptake) and more penalties (N
2
O emission) in agriculture are allocated to stover compared to the case of economic allocation. However, more CO
2
is taken up than N
2
O (in CO
2
eq.) emitted. Hence, the smaller the allocation ratio is between corn and stover, the lower the share of the overall global warming emissions being allocated to ethanol will be. In the system expansion approach, global warming potentials are significantly reduced, resulting in the negative values in all cases. This implies that the system expansion results are comparable to one another because they make the same cutoffs but not really to the results related to mass, energy, and economic value-based allocated systems.
Conclusions
The choice of the allocation methods is essential for the outcomes, especially for global warming potential in this case. The application of economic allocation leads to increased GWP when replacing gasoline by ethanol fuels, while reduction of GWP is achieved when mass/energy allocation is used as well as in the system where biogenic CO
2
is excluded. Ethanol fuels are better options than gasoline when abiotic depletion and ozone layer depletion are concerned. In terms of other environmental impacts, gasoline is a better option, mainly due to the emissions of nutrients and toxic substances connected with agriculture. A clear shift of problems can be detected: saving fossil fuels at the expense of emissions related to agriculture, with GHG benefits depending on allocation choices. The overall evaluation of these fuel options, therefore, depends very much on the importance attached to each impact category.
Recommendations and perspectives
This study focuses only on corn stover-based ethanol as one case. Further studies may include other types of cellulosic feedstocks (i.e., switchgrass or wood), which require less intensive agricultural practice and may lead to better environmental performance of fuel ethanol. Furthermore, this study shows that widely used but different allocation methods determine outcomes of LCA studies on biofuels. This is an unacceptable situation from a societal point of view and a challenge from a scientific point of view. The results from applying just one allocation method are not sufficient for decision making. Comparison of different allocation methods is certainly of crucial importance. A broader approach beyond LCA for the analysis of biorefinery systems with regard to energy conservation, environmental impact, and cost–benefit will provide general indications on the sustainability of bio-based productions. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0948-3349 1614-7502 |
DOI: | 10.1007/s11367-009-0112-6 |